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Abstract.     
The Logos Model underlying OpenLogos is described.  The Logos Model is characterized with 
respect to four fundamental issues:   (1) how natural language is to be represented; (2) how 
linguistic knowledge is to be stored, (3) how this knowledge store is to be applied to the input 
stream, (4) how complexity effects are to be dealt with as the knowledge store grows, year after 
year, in the quest for fully automatic, high-quality translation (FAHQT). The Model reflects 
principles derived from assumptions about human sentence processing, which are described.  
Using the metaphor of a biological neural net, a complex, 57-word sentence is tracked as it 
proceeds along a pipeline architecture, simulating an hypothesized human model.  Limitations of 
the Logos Model are also discussed. 
 
1.0 HISTORICAL BACKGROUND 
Logos Corporation and the Logos Machine Translation System came into being in 1970, in 
response to a sudden national requirement to translate massive quantities of U.S. military manuals 
into Vietnamese.  This requirement was triggered by a presidential decision to turn the materiel 
and conduct of the war over to the South Vietnamese, and was compounded by the critical lack of 
human translation resources to implement this new policy. This all took place only a few years 
after ALPAC, and officials of the US Government were understandably skeptical of help from 
machine translation. But when our newly formed Logos Corporation insisted it could build a 
machine translation system able to address this requirement, we were given a chance to prove 
ourselves. Feasibility was to entail an ability to machine translate some twenty pages of a 
previously unseen helicopter manual.  We were given three months to prepare for this.    
 
The results of the trial were judged sufficiently promising and the Company was awarded an 
emergency contract to develop a full-scale, production system.  This effort proved quite 
successful. In his annual report for 1972, Dr. John Foster, Director of Defense Research and 
Engineering (DDR&E), stated that the Logos System had now “established the feasibility of 
large-scale machine translation”1. This was the first positive word accorded MT since the advent 
of the ALPAC winter six years earlier.   
 
1.0  Design Objectives of the Logos Model   
From the outset, Logos developers elected to build a general-purpose system that could be used 
for any language combination.  Major components of the Model are shown in Fig. 1.  Fig. 2 
shows the model’s pipeline architecture. 
 
2.1 ARCHITECTURAL DESIGN  
Logos Model implementation was guided by the following design objectives:  

 Language-Neutral Software: A physically common, language-neutral body of 
software serves all language combinations (except for language-specific I/O 
functions).  Apart from I/O, all language-specific operations (morphological, 
syntactic, semantic) are accomplished by means of tables (for morphology) and rules 
(for everything else), all in the form of data.   
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 Software Modularity:  The system is highly modular. A fully implemented, 

operational version of the model, running in megabytes of main memory, has also 
been implemented in memory environments as small as 64K (1981 implementation 
on a Wang OIS microchip).   

 
 Declarativeness:  Semantico-syntactic representation of an input sentence is passed 

down a pipeline (Fig. 2) where the symbolic input string itself now drives rule base 
interaction. (Input stream and rules are expressed in the same symbolic representation 
language). How input stream and rule base interact is a fundamental, characterizing 
aspect of the Logos Model (See 4.3). 

 
 Multi-target Functionality:  New targets (any number) are added to an existing source 

by linking target data modules (morphological tables, lexicon, rule bases). No new 
programming is required (except for target-specific I/O).  

 
Extendibility and Improvability:  The system is open-ended, designed to absorb 
endless extensions and improvements.  Two considerations were paramount:  (1) 
there should be no inherent risk of logic saturation as the knowledge base grows in 
size, leading to developmental stasis; (2) nothing in the design should preclude 
fully automatic, high quality translation (FAHQT) long-term. In sum, translation 
quality shortfall should be attributable to knowledge base deficiencies, never to 
design decisions. 
 
 

2.2 FAHQT  
The long-term objective of FAHQT, of course, can only apply to discursive texts, i.e., texts 
intended for information transfer.  And such texts must be reasonably well written. Texts written 
for edification, where style is paramount, thus are ruled out.  Fig. 3 illustrates the areas of written 
language where the Logos Model (and MT in general) can expect cost-effective application. 
(Quantitative indications are pure estimates.)  
 
FAHQT remains a far-off goal for Logos developers, and the fact that FAHQT has not been 
reached after years of effort indicates its remoteness, although not its theoretical unattainability 
(for discursive texts). True, where source text is especially well written and preparatory 
terminology work is complete, output has sometimes already approached near-human quality.  
But generally, the number of linguistic situations that require attention to achieve such quality, 
and that have yet to be attended to, seems endless.  A key question then poses itself, viz., whether 
an MT system could be designed to accommodate the endless growth in knowledge implied in 
any quest for FAHQT. 

 
 
                              (See Figures on following pages) 
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Fig. 1 - Major components of the complete Logos Model.  (Undated elements were part of the 
original 1971 system.)  Translation process is as follows: (1) Language-neutral software Engine 
presents NL input stream to lexicon, converting NL string into a symbolic string. (2) Engine then 
seeks to match symbolic string with symbolic data patterns in rule bases. (Symbols are semantico-
syntactic.)  (3) Upon match, software engine interprets action portion of fired rule, driving progressive 
source analysis in bottom-up manner. Notations pertinent to target equivalences are recorded as 
analysis of each source constituent is completed, in contrastive linguistic (tree-to-tree) fashion.  (4) 
Target is generated upon completion of source analysis.  Steps 2 through 4 are accomplished 
incrementally over a cascade of modules called a pipeline (See Fig. 2). Source and target lexicons are 
actually integrated, as are morphology tables. TermBuilder and RuleBuilder are developer/user tools.  
Semantic Tables comprise deep-structure rules that (i) support deterministic parsing and (ii) effect 
context-sensitive target transfers. Pattern Matcher allows users to effect global string edits in source 
input or target output via Regular Expressions.  System has been interfaced with several leading TM 
products.  New targets can be added to an existing source language by linking target data modules (for 
morphology, lexicon and semantico-syntactic rule bases).   (N.B. Not all elements, e.g.,  
RuleBuilder, are available in the current version of OpenLogos). 
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Fig. 2 – Incremental, Pipeline Architecture of the Logos Model.   Architecture of the 
Logos Model resembles a pipeline. (The 1971 system had only RES1 and the first two Parse/Tran 
modules)  NL text enters at the top where formatting is analyzed and stripped out, and sentence 
boundaries identified.  For each sentence, NL string is next converted to a symbolic, semantico-
syntactic string via lexical substitution. Symbolic string passes down pipeline and interacts with rule 
bases, effecting a single, bottom-up parse.  Rules consist of semantico-syntactic patterns which, when 
matching some portion of symbolic input stream, become active and compete for right to fire. Target 
transfer is accomplished as a tree-to-tree equivalencing at four parse-tree levels, reflecting an 
incremental, compositional approach. Level 1: Parse1/Tran1 analyzes and transfers simple NPs.  Level 
2: compound NP’s and NP complementation.  Level 3: intra-clausal structures, esp. predicate/argument 
analysis.  Level 4: inter-clausal relationships.  Process is not purely deterministic in that early 
parsing/transfer decisions can be modified at higher levels (within strict limits).  
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Fig.  3 - Written Language Bandwidth Suitable for Effective MT.  MT potentially applies to a 
broad spectrum of written language as suggested in the above figure. Translation quality will 
always tend to be better in texts with a natural but conventionalized writing style and will become 
progressively less so as idiosyncratic content increases.  Successful MT necessarily presupposes 
well-written text and diligent user maintenance of the lexicon 

.    
 
3.0  Addressing the Problems  
Someone has aptly said that natural language is the most complex event in the universe.  What makes 
for this complexity of course is NL’s fuzzy richness, an immense, open-ended composite of elements 
much of which have no univocal signification or grammatical function except as provisionally 
granted by the context, which context itself shares these same characteristics.  NL’s complexity and 
ambiguity therefore pose a daunting challenge for a binary, yes/no machine, as ALPAC rightly saw 
and every developer knows full well.  Moreover, in a computer, the complexity and ambiguity of NL 
interact in such a way that any attempt to cope with the one normally exacerbates the other.  For 
example, add information to cope with ambiguity and you increase complexity.  Relieve complexity 
by lessening this information load and you weaken the power to disambiguate. This circumstance 
forms the horns of a true computational dilemma for the developer.  
 
3.1 THE COMPLEXITY PROBLEM   
Despite the fundamental importance of linguistics, the computational problem posed by 
complexity was deemed to be the more critical, the more telling issue--how to cope with 
complexity effects that must inevitably arise in unconstrained, general-purpose MT. And by 
complexity here is meant not so much the classic difficulties of complexity theory relating to 
compute time and space requirements, but rather what one may call cognitive complexity, 
complexity relating to the difficulties humans experience in maintaining logic in maturing 
systems as that logic becomes increasingly more complex.  
 



 6

Cognitive complexity will not be obvious at the prototype stage, and many MT projects have 
been undertaken without providing for complexity. But complexity effects become a major 
headache when scaling up to a working system, where one must now deal not just with the 
regularities of a language, but with its countless exceptions, and exceptions to exceptions, all in 
endless quantity. The typical experience of the developer of an English parser, for example, goes 
like this: generalized logic introduced to resolve a N/V homograph in one context backfires in 
another, requiring refinements to the knowledge base (logic). This refinement in turn now 
unwittingly undoes a resolution of an entirely unforeseen kind elsewhere, something that used to 
work and now does not. After a great deal more of this, the logic and/or strategies involved may 
become so complex as to become virtually unmanageable, i.e. unimprovable. The old adage about 
the developer who bends over to pick up one marble and finds that in the process he or she has 
dropped two well illustrates cognitive complexity and the developmental stasis to which it tends.  
All seasoned developers recognize this problem. 
 
Foreseeing this in some dim way, our approach to machine translation would be defensive from 
the very beginning, driven not so much by a desire to instantiate theory as to avoid a 
developmental cul-de-sac by whatever principled means it took. In sum, what was needed was a 
computational approach that would effectively minimize complexity effects. As we saw it, the 
attainability of industrial strength MT hinged precisely on this. 
  
3.2  THE LACK OF PROVEN MODELS 
There were no proven translation models to guide our efforts when we began this work some 
thirty years ago.  The only proven translation system in sight was the human brain, about which 
little was understood.  Chomsky’s view of human language processing was well known but his 
“syntactocentrism” eschewed semantics (Jackendorf, 2002) and it was abundantly clear, after 
ALPAC, that without semantics, MT had little prospect of success (Hutchins, 1986).  It is easy to 
understand why language was initially approached in terms of syntax alone: language qua syntax 
was amenable to systematic analysis in ways that semantics was not, as people like Harris (1968) 
and Chomsky (1965) well understood in those days.  Yet, as Chomsky (1957) famously noted, 
children easily master language, and (to stress what Chomsky more or less elected to ignore) 
children do so despite language’s tangled web of irregularities and ambiguities.  It seemed to us 
then that we would do well to examine whether something from human sentence processing could 
be inferred and then imitated in the computer. 
 
3.3  MENTAL MODEL  
We proceeded to make certain assumptions about human sentence processing and, in particular, 
how the brain manages to cope so well with natural language complexity.  These assumptions 
were purely intuitive and can be considered pre-scientific, but they nevertheless proved 
fundamental to the design of the Logos Model with beneficial effect.  
 
Key properties of the hypothesized mental model are summarized here, along with their 
implications for the Logos Model (See Fig. 4 for graphic depiction): 
 

 Opportunistic, non-algorithmic processing.  The language processor in the brain is an 
algorithm-free, associative memory network. The process does not rely on some sort of 
homunculus or supervisory logic controlling processes and decisions along the way. Nor 
is this mental process anything like the analysis performed by transition networks 
designed to prove well-formedness, and therefore where only explicitly specified 
decision branches are permitted.  Rather, analysis simply emerges in unpredictable ways 
from stored memory associations reacting opportunistically to input signals, well-formed 
or otherwise. The process is controlled by the input stream itself, as the brain reacts to 
input and seeks to assimilate its import.  In effect, then, sentences themselves constitute 
the controlling algorithm. The principal implication for the Logos Model is that 
associative memory networks, being non-algorithmic in this sense, would be relatively 
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immune to logic saturation as developers expand language coverage. (See Sections 4.2 
and 4.3 and Section 7 for fuller discussion.) 

 
 Incremental processing. Sentence processing (analysis) is done in incremental stages 

across a series of modules, very loosely analogous to the brain’s visual pathway. This 
assumption translated into a pipeline architecture whereby compositional parsing 
decisions can be made “as early as possible and as late as necessary,” depending on the 
circumstances (Scott, 1989).  (See Fig. 2.) 

   
 Integration of syntax and semantics.  Syntax and semantics constitute a representational 

continuum.  Because human sentence analysis, we felt, had to be deterministic, producing 
a single analysis (even if sometimes initially a wrong one), both syntactic and semantic 
information had to be available at every decision point along the linguistic pathway, 
contrary to the “syntactocentrism” of the generative school (and their resultant parse 
forests).  For the Logos Model this assumption led to the creation of an ontology-based, 
semantico-syntactic representation language exhibiting such integration.  (See Section 
4.1) 

 
 Use of abstraction.  Abstraction is a principal means employed for controlling 

complexity, i.e., for keeping things simple.  It is arguable, we felt, that abstraction is 
fundamental to brain function.  This at least is suggested by the very structure of the brain 
cell--a neuron with many dendrites for input and typically a single axon (with collaterals) 
for output. The prevalence of fan-in circuitry in the brain further suggests a structure 
designed for abstraction. For the Logos Model, this required that the semantico-syntactic 
representation language we created consist of second-order abstractions (natural 
language being deemed to comprise first-order abstractions.)  (See Figs. 5-7.) 
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Fig. 4  -  Mental Model Assumptions, as Basis for the Logos Model .  
Key assumptions about human sentence processing (from a neurophysiological perspective) underlay 
the design of the Logos Model.  Chief among these are:   

• processor is associative memory itself, its organization and interconnections. Analysis is 
effected by memory associations (rather than controlling decision  
logic), responding to input signals in opportunistic fashion. 

• syntactic and semantic aspects of language are integrated (as in a continuum). 
• language is treated as second-order abstractions (e.g., table qua ‘support  

surface’). Abstraction (via fan-in circuits) was thought to be the principal means  
used by the brain to reduce complexity, illustrating nature’s law of least effort. 

• memory is content-addressable (blank cells suggest the vast number of cells that  
are not made active by input signals shown).  This is understood to explain why increase of 
stored knowledge does not have complexity effects in humans. 

Stage 1 employs associative semantics to resolve the meaning of table (collocation with kitchen.).  In 
Stage 2, table qua ‘support surface,’ in turn, allows process to resolve meaning of the preposition from 
to ‘off of.’  In Stage 3, the association of the verb take with the preposition ‘off of’ provides for that 
verb’s resolution to remove.  Concatenation via fan-in circuitry produces a more abstract (i.e. simpler) 
representation of the expression.  Many  
operations, of course, are not accounted for here (morphological analysis, homograph resolution, etc.).  
The prevalence of fan-in and fan-out circuitry in the brain was deemed to corroborate these analysis 
(fan-out) and abstraction (fan-in) functions, as illustrated. 
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 Content-addressable memory. Information stored in memory is content-addressable.  
This well-established property of neurophysiology (McClelland, Rumelhart, and 
Hinton,1986) explains why, out of the brain’s billions of cells, relatively few cells are 
ever activated by any given stimulus.  Such specificity invited new thinking as to how 
linguistic knowledge is to be stored and applied in an information-rich MT system, and 
this new thinking became a key factor in shaping the design of the Logos Model.  (See 
Section 4.3.2)  

 
4.0  Fundamental Design Decisions 
Translating this hypothesized mental model into a model for machine translation entailed 
decisions regarding four fundamental design questions:  

 How do you represent natural language internally to the computer? 
 How do you store that knowledge? 
 How do you apply that knowledge to the input stream 
 How do you deal with complexity issues? 

 
4.1   HOW  DO YOU REPRESENT NATURAL LANGUAGE? 
Semantics for MT and for NLP in general was as yet largely uncharted territory and it was far 
from clear in those days how to characterize the meaning of words to a machine. But the ability to 
deal with meaning was imperative: ALPAC attributed the failure of MT to the “semantic barrier” 
that all MT systems had thus far run up against (Yngve,1964). Two routes of exploration lay 
open: one could devise a list of semantic primitives and apply them to words as appropriate, or 
one could develop a semantic taxonomy (ontology), in which case NL words are mapped into 
abstract semantic entities.  We elected the latter option. 
 
Logos developers chose to build a taxonomy but one that was sematico-syntactic rather than 
purely semantic.  What we were looking for in words were semantic features that had syntactic 
implications, i.e., the point in words where semantics and syntax seemed to intersect.  This 
decision was motivated in part by our intention to build a deterministic parser (where a single 
parse is produced).  To do this, one had somehow to integrate semantics and syntax so that both 
would be available to essentially irreversible parsing decisions at every stage of analysis.  
 
The resulting semantico-syntactic representation language, developed in the 1970’s, was built 
inductively from analysis of countless output errors and consideration of what the computer 
needed to know in order to avoid such errors.  We dubbed the language SAL (semantico-syntactic 
abstraction language), an acronym actually suggested to the author by Jaime Carbonell upon his 
review of the effort.  The language is open-ended but has continued to evolve in only minor ways 
since the 70’s. (For examples of the SAL taxonomy, see Figs. 5-7 and Appendix A.)   
 
4.1.1   Semantico-Syntactic Abstraction Language  (SAL) 
A number of special considerations motivated SAL.  

 SAL was to look and function like a natural language (at a more abstract level) such that 
any NL string could be readily expressed by an equivalent SAL string, thus enabling 
developers and users alike to map easily from NL to SAL in lexical work. For example, 
the noun highchair maps to the SAL subset ‘support surface.’  This subset, of course, 
inherits its superordinate classifications (‘functional device’ for set, and ‘concrete noun’ 
for superset).  

 
 Semantics and syntax were to be seen as a continuum from literal string to word class.  

For example, the input string highchair could be dealt with during pipeline analysis at 
any of the following representational levels: 

o Literal level:    highchair 
o Head morpheme chair 
o SAL subset  COsupp (‘concrete noun’, ‘support surface’) 
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o SAL set    COfunc (‘concrete noun’, ‘functional device’) 
o SAL superset  CO (‘concrete noun’) 
o Word Class  N 
 

 Except where literalness is required, everything having to do with NL internal to the 
Logos Model was to be expressed in SAL, both in the input stream and in the knowledge 
store. Such representational monotonicity between input stream and knowledge store was 
fundamental to the Model’s matching strategy. 
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Fig. 5 - SAL Noun Superset:  Aspectives.  SAL Word Class for nouns comprises ten noun 
supersets, as shown above. The ‘aspectives’ (AS) superset typically occurs in N1 of N2 patterns 
where the morphology of N1 defines the resultant NP, but N2 provides its semantics (e.g., row of 
houses, pieces of pie, etc.). (NP’s derived from this combination have the morphology of N1 and 
the semantics of N2.)  Note that the ‘aspective’ superset has sets but no subsets.  Most SAL noun 
supersets entail both. 

 
 
Further characteristics of SAL:  

 SAL is an abstraction language organized hierarchically as a taxonomy. There  
are roughly 1000 SAL elements for all parts of speech combined. Nouns and verbs each 
comprise about 100 of these SAL elements.  As an internal language, SAL allows 
processing at a level that is two orders of magnitude richer than pure syntax (c. 10 
elements) and two orders of magnitude leaner than NL (c. 100,000+ elements).    
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 All SAL elements are characterized by the triplet: WC(Type; Form), where Type is 
expressed as one of three levels (semantico-syntactic superset, set, and in many cases, 
subset). Figs. 5-7 show Type codes for several of the noun supersets.  Appendix A shows 
Type codes for the entire adjective word class.  

 
 SAL verbs, deverbal nouns, and certain of the SAL adjectives (see Appendix A) have set 

or subset codes that denote governance.  For example, the NL deverbals egress, 
deliverance, rescue, absence are all subsumed under a SAL deverbal element that 
signifies from governance.  Similarly, NL verbs like furnish, supply, provide, are 
represented by a SAL di-transitive verb element that governs the set of argument 
structures: furnish  x with y = furnish y to x = furnish x y.  Although developed purely 
inductively, SAL bears obvious kinship here to Valency and Case grammars. 
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Fig. 6  –  SAL Noun Superset:  Place.  Note the role of agentiveness here.  Agentiveness can 
sometimes have a bearing on resolution of noun/verb homographs in English. For example, the string 
the beach plans, because beach is non-agentive, would bias analysis away from plans as a verb, unlike 
the string the city plans.  In the expression from the pantry, the SAL code for pantry as ‘enclosed 
space’ allows sense resolution of the preposition from to ‘out of.’  SAL differentiation between 
‘countries’ and ‘cities’ supports needs of some targets, e.g., French, when transferring the English 
preposition in before such ‘place’ nouns:   
in  N(PLcity)   à  N(PLcity),  as in à Paris;  in  N(PLcoun)  en N(PLcoun), as in en France. 
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Fig.  7 -  SAL Noun Superset:  Information.  The ‘information’ noun superset comprises a broad 
class of nouns that denote information, knowledge, symbols, data, rules, games, rituals and other such 
concepts where communication is a primary implication of the noun’s meaning (excluding deverbal 
nouns). This noun superset also includes the storage medium or format in which informative 
expression is recorded, represented, or communicated.  Certain of these ‘information’ Type nouns  
(e.g., INdata) followed by the preposition on generally cause this preposition to have the meaning of 
‘concerning,’ provided the noun following the preposition is not a ‘support surface’ Type noun (e.g., a 
book on the presidency versus a book on the shelf). 

 
 

 SAL was developed as a numeric language and remains so internally, although 
mnemonics are available to the developer and are used in this paper.   

 
 SAL is not a true metalanguage or interlingua but does approximate one in certain of its 

word classes.  SAL noun elements, for example, are common to all languages.  This is 
only slightly less so the case with pronouns, determiners, prepositions, adverbs and 
conjunctions.  On the other hand, SAL verbs and adjectives are interlingual only at the 
superset level.  

 
Thus far, SAL has been fully developed only for English and German.   The complete SAL 
taxonomy for English adjectives is given in Appendix A.  
 
4.1.2 Effectiveness of SAL for Deterministic Parsing 
Because of its levels of abstraction, SAL allows developers to deal with meaning in a relatively 
manageable way.  In the following examples, we illustrate how SAL is used to resolve (with 
varying degrees of success) certain classic parsing problems where English is the source 
language.  Raw, unedited output is provided to show SAL’s effectiveness in resolving structural 
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ambiguities. (You are reminded that the source analysis being conducted here is common to both 
the French and German target translations shown here.)   
 
  Case One 
SAL codes are used in analyzing syntactic patterns like ‘N and/or N N’, as in (1a) and (1b), below.  
Effects of analysis are illustrated in the unedited French and German output which follows: 

(1a)     I like the ham and cheese sandwiches. 
(1a’)     J'aime les sandwichs de jambon et de fromage.  
(1a”)    Mir gefallen Schinken- und Käsestullen.  
(1b)     I never go to that bank or TV store. 
(1b’)     Je ne vais jamais à cette banque ou à ce magasin télévision. 
(1b”)    Ich gehe nie zu jener Bank oder Fernseh Lager. 
 

In (1a), unlike (1b), ham and cheese are both members of the same ‘edible’ noun set (MAedib) 
under the ‘mass’ noun superset (MA). The semantic homogeneity between N1 and N2 allows a 
generalized Parse1 rule, comprising the SAL pattern ‘N(X;SG) CJ(CRD;u) N(X;SG) ∗  N(u;u)’, to 
see both ham and cheese as attributive to N3 (sandwiches) and thus to concatenate the string as 
NP. (The X signifies any SAL Type shared between N1 and N2. The u in N3 signifies universal 
Form in the case of N3, or non-relevance in CJ.  SG signifies singular morphology. The ∗ in the 
SAL pattern is a constrained Kleene star.)  In writing rules like that applying to (1a), the 
developer specifies whether the semantic commonality constraint associated with X must be at 
the SAL superset, set, or subset level.  Because SAL’s semantic granularity is fairly coarse, its 
effectiveness in these situations is limited; more consistently correct parsing results await a much 
finer-grained taxonomy.  (A new semantic taxonomy is currently under consideration for this 
purpose, and if installed will be supplemental to the present semantico-syntactic SAL taxonomy 
(See Section 8). 
 

Case Two 
An important noun property captured via SAL classification is agentiveness.  The following will 
illustrate its use in typical Parse1 parsing (shown with unedited French and German output, any 
defects of which are unrelated to source analysis): 

(2a)     corn eating insects    
(2b) insects eating corn   
(2a’)     Les insectes qui mangent le maïs     
(2b’)     Les insectes qui mangent du maïs   
(2a’’)    Maisessen-Insekten   
(2b’’)    Insekten, die Mais fraßen   

 
In (2a), the ING form is bounded on the left by a non-agentive (corn = MAedib, ‘edible’ Type 
‘mass’ noun), on the right by an agentive (insects = ANbugs, ‘bugs’ Type ‘animate’ noun). 
Constraints for the rule that handles the pattern in (2a) require that N1 have a non-agentive SAL 
classification and that N2 have an agentive SAL classification.  All constraints being satisfied, the 
rule will parse the SAL pattern as NP. The rule cannot apply to (2b), causing the ING N string to 
be seen by other rules as an elided relative clause.  (Note, in the unedited French translations (2a’) 
and (2b’), how the analysis has allowed the target to see (2a) and (2b) as semantic near 
equivalents.) 
 

 Case Three 
In the following, we illustrate typical use of SAL classifications for resolving ambiguities 
involving verbal elements.  The ambiguity here concerns the attachment of the participial phrases 
effected/affected by digitalis.  (The unedited French translations shown are raw output from an 
earlier release of the Logos System. (For uninvestigated reasons, the Parse3 rule effecting this 
analysis has been removed in the current release.)  Again, any flaws in translation are unrelated to 
analysis.   
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 (3a)   changes in tissue effected by digitalis. 
 (3b)   changes in tissue affected by digitalis. 
 (3a’)  changements de tissu effectués par la digitaline.  
 (3b’)  changements de tissu affecté par la digitaline. 
 
In (3a) the verb effect belongs to a SAL Type set that must have as object a noun deverbal 
(process noun).  The noun changes is a process noun in SAL and alone satisfies this condition in 
the given pattern, thus causing effected by digitalis to be attached to it.   In (3b) the SAL Type set 
for affect offers no reason to attach affected by digitalis to anything but the left-adjacent noun, 
tissue, the default action. 
 

Case Four 
Many verbs have multiple meanings and attendant argument structures, only one of which can 
serve as the basis for a verb’s SAL code.  The SAL code is usually chosen to reflect a verb’s most 
complex complementation pattern, on the grounds that this will afford maximum parsing benefit.  
It is the function of the Semantic Table to compensate for this single-code limitation.  Rules in the 
Semantic Table will analyze a verb’s actual sentential context and revise the SAL code and 
transfer accordingly.   
 
We illustrate this using the multifaceted verb keep. (The verb keep has 39 rules in the Semantic 
Table, which though seemingly many actually represent still rather incomplete coverage).  In (4a), 
below, we see operative the sense of keep for which it was SAL-coded.  In (4b)-(4d), we begin to 
see variations in argument structure and attendant shifts in verb meaning, made evident here in 
the unedited translations.  In (4c), the classic Chomskian PP attachment ambiguity, John kept the 
car in the garage, is resolved by a Semantic Table rule designed to capture the sense of keep when 
complemented by a locative PP, thereby also causing the PP to be parsed as converbal to kept 
rather than connominal to car.  (See 4.2.4 for more on the Semantic Table.) 
 (4a) John kept driving the old car. 

(4a’) John fuhr das alte Auto weiter. 
(4b) John kept the old car.   
(4b’) John behielt das alte Auto.   
(4c) John kept the new car in the garage.     
(4c’) John bewahrte das neue Auto in der Garage auf.  
(4d)  He did not try to keep his children from driving the old car, but he told    

them to keep the old car away from the new car in the garage. 
(4d’)     Er versuchte nicht, zu verhindern, dass seine Kinder das alte Auto  

fuhren, aber er wies sie an, das alte Auto vom neuen Auto in der    
  Garage fernzuhalten.  
(4d’’) Il n'a pas tenté d'empêcher ses enfants de conduire la vieille voiture,  

mais il leur a dit de garder la vieille voiture hors de portée de la nouvelle  
voiture dans le garage. 

 
Case Five 

Noun phrases analyzed as SAL patterns may benefit target.  In the experimental work below 
involving the N N noun phrase pattern, we show (i) three literal strings, (ii) the SAL patterns to 
which they are converted, and (iii) the analyses that source rules that are specified for these SAL 
combinations are able to pass on to the target module.  The final, generated target results are 
illustrated for French. (The default rendering in French for the N N pattern, of course, is N2 de 
N1.) 
 

o gold watch  
                      N1(MAmetal) + N2(COmeter)  

          N2 made of N1 (implicit analysis) 
          montre en or   
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o computer tape 
  N1(COmach) + N2(MAfunc)  
  N2 used by N1 (implicit analysis) 
  bande pour ordinateur 

o wine glass 
 N1(MAliqu) + N2 (COrecp) 
 N2 for containing N1 (implicit analysis) 
 verre à vin   

 
In the SAL patterns above, MA and CO stand for the ‘mass’ and ‘concrete’ noun supersets, 
respectively.  The string in lower case represents either the set or subset within the superset, as 
the case may be.  Note that although the Logos Model is multi-target and thus one source analysis 
supports multiple targets, rules having applicability only to French, for example, can be ignored 
by other targets.  The above work is purely experimental:  exceptions to such rules are not 
uncommon and while some of these exceptions can be lexicalized, the feasibility of handling N N 
constructions in general at this level of semantic abstraction has not yet been established.  If 
feasible, exceptions that are not lexicalizable would then be handled via the Semantic Table. 
 
4.2 HOW DO YOU STORE LINGUISTIC KNOWLEDGE? 
Generally, linguistic knowledge is stored in two principal places:  lexicon and rule base.  
Conventionally, the lexicon is the principal repository of linguistic detail and it is here that 
whatever semantic information a system will have tends to reside.  The lexicon will commonly 
contain codes or instructions to assist in syntactic and sometimes also semantic disambiguation. 
In “radical lexicalism” (Karttunen, 1987), such as in so-called ‘Shake and Bake’ systems 
(Beaven, 1992), virtually all linguistic information is stored lexically.  Lexicons thus tend to be 
information-rich, and because they are by nature indexable, can grow to very large size with 
negligible performance impact.  But because lexical entries are word-specific, the lack of 
generality in lexically driven operations can be considered a drawback. Another drawback 
concerns the cost and difficulty users may experience in building and maintaining information-
rich lexicons.  Historically, some otherwise effective systems have been known to founder largely 
on these grounds (e.g, TAUM Aviation (Juola, 1989)). 
 
Rule bases, by contrast, are largely confined to syntactic information whereby generality is 
realizable.  Because of their inherent generality, syntactic rules can also be relatively few in 
number, considered a sought-after virtue with respect to system performance.  There are 
drawbacks as well, chief among which is the parse-forest approach to parsing that “syntax alone” 
entails, requiring subsequent pruning. This separation of syntax and semantics (and the functions 
they support) advances an approach to language quite distinct from the assumptions about human 
sentence processing we have been describing in this paper. 
  
4.2.1 Linguistic Storage in the Logos Model. 
Knowledge store in the Logos Model differs rather considerably from the conventional 
distribution mentioned in the preceding section.  The Logos lexicon, for example, has 
exceptionally lean information content, considering that the lexicon must support semantic 
processing and the distant, ultimate goal of FAHQT.  Lexical information for a given entry is 
confined to (i) SAL classification for the part of speech (POS code plus three SAL codes for 
superset/set/subset); (ii) codes denoting morphological class and properties, to support analysis 
and/or generation; (iii) optional domain codes and user ID’s used to guide lexical selection at run 
time; (iv) pointers to target transfers (any number of target languages). This informational 
leannesswas motivated by the perceived need to keep lexical work as simple as possible for the 
commercial user.    
 
The following properties of the lexicon will be of interest:  

 Lexical entries are stored in a relational data base (Oracle, since 1995).  
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 There is no distinction between source and target entries in the lexicon:  the same entry in 

a given language will serve both source and target purposes.  This is also true of all 
morphological tables. 

 
 Morphological data required for a new lexical entry (including stem generation) is 

derived automatically by language-specific logic (and exception tables) in the 
TermBuilder software, freeing the user of this concern.  

 
 Syntactic homographs also need not concern the user. When making a new entry, users 

do not need to consider whether or not the entry entails more than one part of speech.  
Assuming the lexicon already possesses these other parts of speech, TermBuilder 
automatically links associated homographs to the new entry. 

 
 SAL codes are automatically assigned (since 1997) via an expert knowledge base 

wherein all possible meanings of all nouns are defined (i.e. SAL-encoded).  However, 
accuracy here is far from optimal and users are urged to review SAL assignments and 
correct them as necessary.  (So-called “prompts” are provided for this purpose, making it 
unnecessary for users to become familiar with the SAL coding scheme.)  The automatic 
SAL-coding provision was designed to accommodate users’ rush jobs and can be 
considered an adequate accuracy/expediency tradeoff in such circumstances.       

  
 Entries are also optionally encodable for subject matter domain and user ID. Users can 

create their own domain hierarchy or employ one supplied by the system.  Lexical 
matching logic gives priority to domains and ID’s specified by the user at run time. 

 
 Provision has been made in the Oracle implementation of the lexicon to include 

additional semantic codes, SAL or otherwise, for the full range of meaning that a word 
has.  At present, however, the meaning assigned an entry is limited to (i) a meaning 
associated with a subject matter or company code; or (ii) a default meaning.  It is the 
function of the Semantic Table to detect other meanings, fairly easily accomplished in the 
case of verbs and prepositions, but far more problematic in the case of adjectives and 
nouns (See Section 8 and Fig. 18). 

 
The relatively high degree of automation available in lexical work allows users to dump pre-
existing user glossaries into the lexicon quickly and easily, assuming they are rationally 
organized.  Users are advised however that, with regard to SAL code assignments, interactive 
processes will yield significantly better results.  It may be difficult to persuade the user of this 
since the impact of less than optimum lexical work is not always evident in the short term though, 
doubtless, it would become evident over time. Considerable internal debate has taken place 
regarding the relative business advantages of offering full automation with its appeal of speed and 
effort-reduction versus the imposition of labor-intensive interactive processes for the sake of their 
positive, long-term effects on translation quality.  Given the option, one can foresee a majority of 
users choosing the route of least effort.  Indeed, user psychology here may prove to be the 
ultimate limiting factor in the developer’s quest for FAHQT.  
 
4.2.2. Logos Model Rule Bases:  Source Rules 
Although the lexicon is obviously foundational to translation, in the Logos Model the 
informational richness needed for effective, industrial strength MT lies primarily in the Model’s 
rule base, not the lexicon.  This is accounted for by the fact that source rules are not syntactic but 
semantico-syntactic. To support deterministic parsing, rules must be prepared to deal with both 
syntax and semantics as these variously affect decisions regarding both structure and meaning.  
The advantage in such an arrangement is clear:  because these semantico-syntactic rules are 
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abstract (a consequence of the second-order abstractions of SAL), rule-based semantic processing 
can avail itself of the advantages of generality as well as specificity.   
 
A second implication for informational richness concerns the size of the rule base, which 
traditionally must be kept small for performance reasons.  In the Model we are describing, the 
rule base can grow to any size, with such growth having generally sub-linear impact on 
performance.  In the current Logos System for English, there are well over twenty thousand 
semantico-syntactic source rules distributed across the eight rule modules of the pipeline (Fig. 2). 
(The overall rule base size for German source is slightly smaller.)  In a 25-word English source 
sentence, on average about 257 rules will contribute in some way to its deterministic analysis: c. 
21 for Res1, 32 for Res2, 43 for Parse1, 54 for Parse2, 34 for Parse3, 62 for Parse4, and 11 for the 
two Semantic Tables.   
 
The following features of these rules will be of interest:  
 

 Source rules are extremely shallow, functionally speaking.  Each rule typically deals with 
a single NL phenomenon, and accomplishes with respect to that phenomenon some small, 
standardized function or set of functions. The severe restriction on rule scope accounts 
for their large number.  Strict, standardized functionality is imposed on rule writers 
intentionally: to keep source rules reasonably simple and transparent. Although the set of 
functions available to the rule writer is fairly extensive, rule writers do not have access to 
general-purpose programming facilities for specifying rule constraints or actions.   

 
 Source rules almost always presuppose other rules, and work in free conjunction with 

rules presumed to fire before or after the current rule. Thus a number of rules, each 
presupposing the other, are typically needed to accomplish what a single rule in another 
system might do. This rule conjunction is considered free because rule sequence is not 
legislated either by the rules themselves or by any supervisory logic.  (Chiefly, what 
controls rule sequence is the logic of the input stream itself, although rule writers can 
influence the sequence in a general way be re-labeling some aspect of the input (e.g., 
Type field) and then re-examining it, causing a different set of rules to become invoked.  
Carried to an extreme, this could begin to resemble an algorithm, but that level of control 
is hardly ever employed.) One advantage of this arrangement (many simple rules versus a 
single complex rule) is that developers, when debugging, can more readily identify the 
effect of any given rule. The main motivation, however, was the need to address natural 
language’s richness--the endless, often idiomatic details of natural language--in a way 
that was both effective and efficient.  A system with a performance-restricted number of 
large, powerful rules (only one small portion of which rule might be relevant in a given 
situation), seemed less likely to support these ends, and more prone to the previously 
cited problem of logic saturation.   

   
 Source rules have three parts:  

o Semantico-syntactic pattern expressed as a SAL string.  Patterns can comprise up 
to ten SAL elements and can have up to three Kleene stars. (Kleene stars can be 
constrained in a variety of ways.)  Patterns in most rules tend to be quite short.  
Each element in the pattern is expressed by the WC(Type;Form) triplet.  Patterns 
obviously can and do include literal words where necessary (expressed by a hash 
code in the Type field). 

o Constraint satisfaction.  Constraints which must be met for a rule to fire may 
relate to (i) some semantic feature or set of features of an element or elements in 
the SAL pattern that is not expressible in the element’s Type field, e.g. something 
that could have been learned about the element earlier in the pipeline; (ii) some 
previous event in the clause or entire sentence, such as the earlier occurrence of a 
certain SAL element or ad hoc set of elements (e.g., certain verb Types); (iii) 
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some SAL element or set of such elements which must be found (or not found) at 
some distance to the right; (iv) some condition of the clausal state which must be 
true, such as clause or sentence type.  In short, constraints can pertain to virtually 
any kind of top-down or bottom-up information that could be relevant to 
analysis, whether semantic, syntactic or morphological.   

o Source action:  Actions consist of the string of functions specified by the rule 
writer, drawn from a library of fixed functions.  Actions can be made conditional 
on various testable linguistic conditions, but are otherwise limited to the library 
repertoire.  Principal action typically is re-write (and concatenation) of the SAL 
input pattern at a still more abstract level.  However, re-writing is not a necessary 
function of a rule and many rules exist merely to analyze and re-label some part 
of the SAL signature of an input element, or in some other way to pass on 
notational information regarding that element for the benefit of some subsequent 
rule.  More rarely, rules may also override decisions of previous rules. Although 
the ability to do this is rather limited, this provision allows for correction of a 
false, previously made N/V homograph resolution. Target actions, if any, are 
accomplished in separate, optional target rules parasitically linked to the source 
rule so as to make use of source rule analysis.  Target rules from any number of 
target languages may be so linked. 

 
    Source rules accomplish analysis in bottom-up, left-to-right fashion, as the SAL string 

passes down the six modules of the pipeline.  Information about the input string captured 
by the initial macro parse of the two Res modules is made available as top-down data to 
the later Tran modules and accounts for the presence of top-down constraints in these 
Tran modules. (The provision of top-down information during bottom-up analysis will be 
further accounted for in discussion of the Res pipeline modules, Section 4.3.2.)   

  
 Source rule bases in the Logos Model can be viewed as SAL pattern dictionaries 

indexable on their SAL pattern.  Such indexing accounts for the sublinear performance 
impact of rule growth in the Logos Model.  In effect, the SAL input string serves as 
search argument to the rule base qua SAL pattern dictionary, analogous to the way NL 
words are looked up in a NL lexicon.  This is how the Logos Model emulates the 
“content-addressable” memory feature of the mental model. (This feature will be further 
accounted for in Section 7). 

 
 Rules are self-ordering.  Developers do not have to think about where to put a new rule in 

a given module, or how to insure its being matched.  Obviously, developers’ parsing 
strategy will determine which rule base module in the pipeline is to house a given rule.   

 
 All three parts of a rule are in the form of data, interpreted by the language-neutral 

software of the corresponding pipeline module. 
 
 
4.2.3  Logos Model Rule Bases:  Target Rules 
Target rules in the Logos Model, where such rules are present, are linked to source rules, and are 
confined to a contrastive linguistic function vis à vis the input segment the source rule is dealing 
with. Target rules therefore only have an action component.  The functions available to target 
linguists nevertheless allow them to implement very effective contrastive linguistic strategies, as 
the translations in this paper hopefully make evident.  Target functions can entail additional 
analysis of the relevant source pattern, making target actions contingent on source factors left 
unanalyzed by the parent source rule. 
 
In the previous section on source rules, we stated that simple noun phrases are parsed as NP via a 
sequence of source rules.  Target equivalences are effected under this arrangement by a 
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progressive filling of slots in a target NP template, as elements are handled, one by one, in the 
source rules.  In some cases, new elements not in the source (e.g., a preposition or an article) are 
added to a template slot, or a source element may be suppressed, etc. Thus, once a target rule 
(linked to a source rule handling the linguistic element) determines that the target equivalent of, 
say, an AJ in the SAL string should be post-posed in the target, that target adjective is placed in a 
post-posed adjective slot within the target NP template.  For example, source analysis of the 
English input string a tall, white horse, coupled with linked target rules for French, would yield 
the source NP and equivalent target NP, below. Note that the French NP rewrite here is top-down, 
acting on the bottom-up NP of the English analysis. 
 

o Parse1 source rewrite action:  DET  AJ1  PUNC  AJ2  N  NP  
 (A tall, white horse)  

o Tran1 target rewrite action:      NP  DET AJ1  N AJ2  
 (Un grand cheval blanc) 

 
In the above example, target slot unloading takes place immediately following creation of the 
source NP and the associated target rule is called. Target action here unloads the target NP 
template slots, in effect creating the contrastive sub-tree structure for the target constituent.  
Target action also includes annotation of this sub-tree node for data (case, gender, number) 
needed in generation of the literal target noun phrase at the tail end of the translation process. In 
general, target templates for NP, VP, clause, and sentence are the keys to structure transfer in this 
Model. These templates are powerful and allow for slot nesting, and for loading of functions to be 
executed at slot-unload time.  
 
Target rule characteristics: 

 
 Source rules invite target rules to fire (any number of targets) whenever some source 

analysis is deemed to have potential target implications.     
 

 Target work conducted can be thought of as tree-to-tree transfer. In effect, as each node 
in the source tree is built, in bottom-up fashion, at successively more abstract levels, a 
linked target rule acts upon the SAL pattern comprising that node and establishes the 
target equivalent, in contrastive linguistic fashion. 

 
 Target actions are also limited to a standard repertoire of actions.  As in the case for 

source rules, target rules do not support general-purpose programming logic. 
 

 Target rules that transfer source verb constructions (in the Parse4/Tran4 modules) are 
designed to be multi-source, i.e., common to any source module.  In the case of such 
multi-source target rules, source parameters (for tense, voice, aspect, etc.) that are needed 
to drive these verb rules are expressed meta-linguistically.  Thus, for example, verb 
formation rules in Parse4/Tran4 for French, can be linked to any source (currently 
German or English). This multi-source feature is not true of target rules in general. 

 
 Because they must often effect radical transformations in narrow confines, target rules in 

this Model tend to be somewhat more complex than source rules and relatively more 
difficult to maintain (i.e. less free of complexity effects). 

 
 
4.2.4  Semantic Tables 
The Semantic Table (Semtab) is a knowledge resource called upon by rules in the four Parse/Tran 
modules for purposes of finer analysis. (A similar but separate Semantic Table is available to the 
two Res modules.)  Rules in the Semantic Table, called Semtab rules, are conceptual, deep 
structure rules invokable by regular source and/or target rules at any stage of pipeline analysis or 
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transfer. These deep structure rules can be applied to virtually any relevant surface structure, 
regardless of word order, passive/active voice construction, etc.  Semtab properties include the 
following: 
 

 Resolution of parsing problems.  For example, a Semtab rule would be invoked in the 
Res2 pipeline module to resolve the attachment of the PP to his brother in the following 
sentences (shown with raw German output): 

(6a)   John gave the car that he bought to his brother.  
(6b)   John repaired the car that he gave to his brother. 
(6a’)  John gab seinem Bruder das Auto, das er kaufte. 
(6b’)  John reparierte das Auto, das er seinem Bruder gab. 
 

In the foregoing, a generic Semtab rule applying to any SAL di-transitive verb with 
governance of the preposition to, causes the PP to his brother to be labeled as converbal 
to the di-transitive verb, in whatever clause it is found.  The di-transitive give is in the 
main clause in (6a), and in the relative clause in (6b), an analysis reflected in translations 
(6a’) and (6b’).  This labeling has the effect of inhibiting the firing of any subsequent rule 
that would want to keep the PP in the current clause by default, which would work 
serendipitously for (6b), but not (6a).  
 

 Resolution of semantic ambiguities.  Semtab rules resolve verb polysemy, usually on the 
basis of their argument structure.  Using the verb raise, we illustrate various French 
transfers effected by Semtab, based on argument structure.  In these rules, AN stands for 
‘animate’ noun superset, ME for ‘measure’ superset, and MA for ‘mass.’  The lower case 
string stands for set or subset under the respective superset.  These rules would typically 
be invoked in Parse3/Tran3. 

(7a) raise a child     V(‘raise’) N(ANhum)  élever . . .  
(7b) raise the rent     V(‘raise’) N(ME)   augmenter . . .                                     
(7c) raise corn     V(‘raise’) N(MAedib)  cultiver . . . 

 
 Rules are conceptual (deep structure).  Semtab rules are conceptual in nature and can be 

invoked to resolve verbal elements without consideration as to actual part of speech. We 
illustrate this with the Semtab rule:  V(‘raise’) + N(ME)  augmenter. This deep structure 
rule is applied to all surface forms of raise, and augmenter in turn is automatically given 
its own appropriate surface form. 

(8a) he raised the rent          il a augmenté le loyer 
(8b)   the raising of the rent         l’augmentation du loyer.  
(8c)   the rent, raised by. . .       le loyer, augmenté de . . . 
(8d)   a rent raise        une augmentation de loyer 

All of this contrastive transfer was effected by the single Semtab rule abstracted above, 
invoked at various stages of the pipeline: (Parse1/Tran1 for (8d), Parse2/Tran2 for (8b, 
8c), Parse3/Tran3 for (8a)). (Users of the Logos System can readily create such rules via 
the RuleBuilder tool (previously called Semantha).) 

 
 Target transformations.  Semtab rules analyze the meaning of the source and effect target 

equivalents, not infrequently involving structural changes.  Typical examples follow: 
(9a)  He is afraid of the dark.     
(9a’)  Il a peur de l’obscurité. 
(9b)  They are competing against local companies. 
(9b’) Ils font concurrence aux sociétés locales. 
(9c)  Try to keep him busy. 
(9c’) Tentez de l’occuper. 
(9d) He swam across the river. 
(9d’) Il a traversé la fleuve à la nage.  
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(9e)  If the light goes on, be sure to turn it off. 
(9e’) Si la lumière s'allume, soyez sûr de l'éteindre. 
(9f) The conflagration may go on for many days before they put it out. 
(9f’) La conflagration peut continuer pendant beaucoup de jours    

avant qu'ils ne l'aient éteint. 
(9g) He lived down the bad reputation that had been following him. 
(9g’) Il a fait oublier la mauvaise réputation qui l’avait suivi. 

  (9h)   His good name will live on. 
(9h’) Son bon nom survivra. 
(9i)  The new product did not live up to expectations. 
(9i’) Le nouveau produit n’a pas répondu aux espérances. 
(9j) The family lived through the storm. 
(9j’) La famille a survécu à la tempête. 
(9k)  He lived out the war in a small town far from the conflict. 
(9k’) Il a passé la guerre dans une petite ville éloingée du conflit. 

 
 Semantic Tables are language-pair specific. There is a separate Semantic Table for each 

source and target language combination.  (All other source modules in the Logos Model 
are target-independent in nature and multi-target in effect.)  Plans to separate out purely 
source-related rules into a separate, target-independent module have never been 
implemented. Until this happens, current implementations of the Logos Model can only 
execute one language combination at a time, i.e., cannot execute in actual multi-target 
mode.   

 
 Semtab has over 12,000 rules in the English system. The verb raise has 26 rules affecting 

analysis and transfer, the verb take has 130 rules.  Semtab is expected to grow many 
times over as the English system continues to mature. (Semtab in the present German 
system is already somewhat larger.)  

 
4.3 HOW DO YOU APPLY THE RULE BASE TO THE INPUT STREAM? 
We treat this question in two parts.  First we discuss the various ways rules can be applied to the 
input stream. Then we present a functional overview of input stream/rule base interaction in the 
Logos Model, as analysis proceeds along the pipeline.   
 
4.3.1 Applying the Knowledge Store.    
David Hays, one of the early MT pioneers, claimed that perhaps the most critical and troublesome 
aspect of machine translation concerned the method by which the knowledge base is to be applied 
to the input stream2, a claim that few developers would care to dispute. In very general terms, the 
possibilities for this knowledge base/input stream interaction are as follows: 
 

 One-to-Many Relationship (Traditional Lexicon). The one-to-many relationship is 
typified by lexical lookup where an input term serves as search argument to the stored 
lexicon.  This relationship is made possible because of the representational monotonicity 
shared by input and stored knowledge, viz., literal words. The one- to-many relationship 
furthermore presupposes an index which efficiently connects search argument to stored 
knowledge.  The finer the index, the smaller the ‘many’ that must be looked at.  As a 
result of these factors, increases in the size of the lexicon have strictly sublinear impact 
on system performance.  Hence growth in lexicon size need never become an issue. 

 
 Many-to-One Relationship (Traditional Rule Base). The principal difference here is that, 

in traditional models, rule bases and input stream generally do not share strict 
representational monotonicity, i.e., one is usually attempting to compare apples and 
oranges. In effect, one starts with the rule base (the many) and attempts to find a match 
on the input (the one).  This raises the question of how to accomplish rule matching 
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efficiently.  Matching strategies generally entail supervisory logic, often in the form of 
metarules or discrimination networks designed to narrow down the number of rules that 
need to be applied.  Whatever the case, the relationship is many-to-one and for this 
reason, system performance issues exert great pressure to keep the size of the “many” 
small. 

 
 Logos Model Rule Base: One-to-Many Relationship.  The Logos Model conceives of its 

rule bases as indexable pattern dictionaries, with the effect that the relationship is one-to-
many, as in the case of the traditional lexicon. The nature of the index is such that the 
one-to-many relationship, in certain contexts, begins to approach one-to-one.  It is not 
unusual, for example, that an input segment will find its appropriate rule match by 
directly consulting a single rule.  As in the case of the lexicon, this one-to-many 
relationship means that growth in rule base size has strictly sublinear impact on system 
performance.  And as in the case of the lexicon, this advantage is made possible because 
of the representational monotonicity which SAL affords between input stream and 
knowledge store, thus allowing the SAL input stream to serve as search argument to the 
series of SAL pattern dictionaries (rule bases) as the SAL input stream passes down the 
pipeline from module to module.     

 
4.3.2   Pipeline Modules and their Functions (Fig. 8) 
Each software module in the pipeline, in succession, take segments of the SAL input stream 
(working left to right) and, using them as search arguments, seeks the highest scoring match in 
the module’s rule base.  Scores are calculated on the basis of pattern length and semantic 
specificity (in Res some additional factors are used).  A successful match occurs when a source 
rule (i) matches the search argument (SAL input segment), (ii) satisfies all rule constraints, (iii) 
wins out over competing rules, (iv) and thus wins the right to fire, which means in effect that the 
action component of the rule is then executed, i.e., the software module interprets and carries out 
the various functions specified.  Depending on where we are in the pipeline, actions may entail 
any or all of the following:  (i) analysis and resolution of syntactic homographs, grammatical 
relationships, semantic homographs; (ii) concatenation of elements under the head element and 
creation of a bottom-up parse tree node; (iii) annotating parse nodes by means of a one-hundred-
cell array linked to each such node; (iv) recording of both top-down (overview) and bottom-up 
(local) intelligence for the benefit of subsequent rules; (v) calling linked target rule (for any 
number of targets) optionally to avail itself of source rule’s analysis. 
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Fig. 8  -  Incremental Pipeline Analysis.  Res modules accomplish a macro parse (1) of the input 
sentence, resolving syntactic homographs and clausal transitions. This macro parse affords a top-
down view of the sentence that is used to guide the bottom-up micro parse by the four Parse 
modules.  Micro parse is accomplished incrementally, each Parse module dealing with a specific set 
of parsing tasks, as illustrated in (3) to (6). 

  
 
Pipeline modules (Figs. 3 and 8) and their analysis functions are as follows: 
 

 Format  - This module extracts all mark-up commands from input text (HTML, Interleaf, 
etc) for subsequent re-application to target output.  In some cases, mark-up information is 
made use of during analysis, e.g., bold facing in a string such as ‘Insert key’ helps 
analysis see Insert as a label rather than as an in-line verb.  This module also segments 
text into discrete sentences. (There is as yet no extra-sentential handling, i.e., no sentence 
carry).  Sentence length is arbitrarily set at 70 elements (including punctuation).  
Sentences exceeding this limit are automatically broken up into smaller sentences at 
semicolons or other potential breakpoints.  

 
 Lex  -  Words of NL sentence are looked up in this module (on longest match principle) 

and are immediately converted to their corresponding SAL element (or elements, where 
entry is syntactically ambiguous).  Functional characteristics of lexicon are as follows:  

o no practical limit on word length in a lexical entry. 
o no limit on number of words in a lexical entry. However, an arbitrary ten-word 

matching limit is currently imposed by the Lex software module. 
o no limit on number of parts-of-speech associated with a given  
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entry.  However, a Res limitation (see below) requires that only three parts of 
speech can be extracted for analysis purposes, a limitation meant to be 
compensated for by various stratagems involving Semtab.  (The word building 
concerns seven parts of speech.) 

o no limit on number of meanings associated with a given part-of- 
speech of a given entry, insofar as such entries are differentiated by subject 
matter domain or user ID.  However, there is only one default entry that will 
automatically be selected if no other selectional criterion is found to apply.  This 
can be a serious limitation in the case of polysemous common nouns, one that is 
only very partially overcome by recourse to Semtab (See Section 8 and Fig. 18). 

o domain codes are hierarchical, allowing matching logic to favor the more  
specific codes in a selectional list and to default to the more generic. 

o part-of-speech disambiguation on morphological grounds immediately  
eliminates certain word classes from further consideration for a given  
entry. 

o In German source, compound nouns that have no lexical match are  
decomposed and separate elements are looked up. Nothing comparable is done 
for composite nouns in English source.   

 
 Res1, Res2  -  Each Res module accomplishes a single pass of the sentence, from left to 

right, collectively effecting a macro parse.  No parse tree is formed (no concatenation) 
but homographs are resolved and all clausal boundaries and clausal relationships are 
identified.  Information regarding the macro parse is passed on to subsequent Parse 
modules to serve as top-down guide for the progressive, bottom-up micro parse effected 
by these modules.  This top-down picture enables the micro parse, when looking at a 
noun, for example, to know the structural context of that noun, e.g., what sort of clause 
the noun is in (e.g., a relative clause inside a dependent clause), whether the noun 
precedes or follows the verb of the clause, the SAL class of that verb, etc.  

 
For English source analysis, the principal work of the Res modules is homograph 
resolution.  The SAL information coming out of Lex shows all possible parts-of-speech 
that the original NL word was found to have and that remained unresolved after 
morphological analysis.  It is the task of Res1 and Res2 to resolve such ambiguous forms 
to a single part-of-speech. The following are typical examples of the work of these Res 
modules.  Two sentences of similar construction are shown. Note that both have ‘ADV 
ING N’ strings at the end which have to be resolved quite differently.  We show the effect 
of this resolution on unedited machine output for French, other translation flaws 
notwithstanding. 

(10a)  We spent time doing tasks such as systematically classifying         
                       documents.   
  (10b)  We spent money eating things such as really satisfying pastry.   
 (10a’)  Nous avons passé le temps à accomplir des tâches telles que la                 
 classification systématique des documents. 

(10b’)  Nous avons dépensé de l’argent en mangeant des choses tels  
         que la pâtisserie vraiment satisfaisante. 
 
In (10a) the ING form classifying is to be resolved to a verb, in (10b) satisfying must be 
resolved to an adjective.  Both ING’s came into the Res modules as two parts of speech 
(second infinitive and verbal adjective). In (10a), the key to resolution was provided by 
tasks SAL-coded as a member of a ‘verbal abstract’ noun grouping that anticipates verbal 
complementation.   When a Res2 rule encounters this Type of noun in the input stream, a 
top-down verb-expectation bias is established which allows a subsequent rule to interpret 
the ING form as a verb.  In (10b), the absence of any such bias (or other determinant) 
allows the default resolution to obtain, namely to the adjectival form of the ING.     
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Res2 affords limited look-ahead capability for avoiding garden path situations.  In the 
case of the classic garden path construction in (11b), below, a rule attempting to resolve 
the syntactically ambiguous form, run, to the main verb of the sentence must first invoke 
a look-ahead function to insure that no unambiguous main verb is to be found to the right.  
Such search-ahead logic is also pattern-rule based, and while generally effective in 
shorter sentences, may run into difficulties in longer constructions.  Notice, in the raw 
French output below, how run has been resolved to an intransitive verb in (11a) and to a 
transitive verb in (11b). 

(11a)   The horses run by the barn. 
(11b)   The horses run by the barn are tired. 
(11a’)   Les chevaux courent par la grange.   
(11b’)   Les chevaux dirigés par la grange sont fatigués.   

 
Res modules share a dedicated Semantic Table which supports a variety of resolution 
strategies.  For example, a selectional restriction rule in this table helps resolve the 
noun/verb homograph loan to a noun in the context of words like office, form, value, 
officer, etc, as may be seen in (12a) and (12a’), below.  

(12a)  We sold everything from desks to loan office furniture.  
12a’)  Wir verkauften alles von Schreibtischen zu Darlehensbüro-Möbeln. 
 

While the number of rules in this table is in the thousands, relatively few actually deal 
with selectional restrictions, this stratagem never having been found to be particularly 
efficient or effective in our experience.  Selectional restriction rules generally have weak 
authority, as may be seen in (12b) and (12b’), below. 

(12b)  We do not allow our employees to loan office furniture. 
(12b’)  Wir ermöglichen unseren Angestellten nicht, Büromöbel zu leihen. 

 
In (12b), the Res rule that registers allow as ‘pre-verbal’ causes a subsequent Res rule to 
outbid the Semantic Table’s selectional restriction rule otherwise applying, causing loan 
to be resolved to a verb, as the leihen in (12b’) shows.   
 
In German source analysis, the contribution of the Res modules to the parse is more 
restricted, addressing primarily (i) the ambiguity of noun case markings; (ii) die, der, das 
part-of-speech resolution (to the extent possible).  Given the nature of German 
morphology, it may take the entire pipeline analysis to resolve certain ambiguities.  For 
example, Res can readily resolve the part of speech and case of der in der Mann, but must 
defer final resolution of das in das Bier to a subsequent pipeline module. For example, in 
das Mädchen, das Bier bringt, resolution is not effected until the relative clause handling 
done in Parse2. 
 
A graphic illustration of the Res macro parse may be seen in Fig. 11. 

 
 Parse1 - The four Parse modules effect a micro parse of the SAL input stream, building 

on the output of Res and producing a final, single, bottom-up parse tree.  Although Parse 
software modules are almost identical programmatically speaking, the compositional 
approach implied in pipeline architecture presupposes that each Parse module will 
perform a specific range of bottom-up parse functions. The output of each Parse module 
serves as input to the next, affording a progressively more abstract analysis of the 
sentence.  

  
Typical operations that Parse1 accomplishes (not always successfully): 

o Simple NP formation (excluding noun series, REL and PP  
    attachments).  Parse tree nodes for NP are annotated for NP properties       
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   (definite, indefinite, SAL Type of adjective modifier if any, etc.).  
 

o Scoping of adjectives.  Scoping of AJ in AJ N N, e.g., is achieved by sending the 
adjective and each noun in turn to the Semantic Table.  In the noun phrases below, 
with unedited translations, note that the adjective in (13a) applies to the modifier 
noun, boys/garçons.  In (13b) and (13c), the adjective applies to the head noun. 
Default scoping is to head noun. Adjective scoping remains a relatively weak 
area in Parse1 analysis.   

(13a)   Smart boys school  
(13a’)  École de garçons intelligents 
(13b)   Large boys school  
(13b’)  Grande école de garcons 
(13c) Smart language students 
(13c’) Élèves de langue intelligents 

 
o Auxiliary verb phrase analysis, concatenation and labeling.  For example: 

ought to have [+ verb, past t.]    AUX(MOD;psma) [Form = past subjunctive 
modal active]. 
       (14)   He ought to have gone home.  
       (14’)  Er hätte nach Hause gehen sollen. 

 
o Adverbial phrase recognition and concatenation.  For example:  

 in general  AV(SENT) [sentential adverb]  (Note that in general is 
not lexicalizable. Cp., in general terms, in general quarters.) 

 all morning/day//year/etc. long  AV(TIME)   toute la journée/etc. 
 

o Resolution of ING forms.  Res determines when an ING form is to be seen as 
nominal, but leaves it to Parse1 to decide whether, in the case of some forms, the 
ING is a concrete noun or gerund.  Source analysis and target transfer of ING 
forms are effected by close interaction between Parse1 and Semtab. This remains 
a still largely unexploited area of Parse1/Semantic Table interaction but the 
examples below, with unedited output, at least show the current possibilities: 

  (15a)   He saw a building.   
  (15a’)   Il a vu un bâtiment. 

(15b)   He witnessed the building of the dam.  
(15b’)   Il a vu la construction du barrage. 
(15c)   The device has a variable speed setting. 
(15c’)   L'appareil a un réglage de vitesse variable.    
(15d)   A new diamond setting technique has been developed.  
(15d’)   Une nouvelle technique de positionnement de diamant a     
            été développée. 
  

o Re-labeling of should, provided, etc. at beginning of declarative sentences.  For 
example:   
  (16)  Should the situation call for such action, we are prepared to    

   act.   
  (16’)  Si la situation réclame telle action, nous sommes prêts à    

   agir. 
 

o Analysis of as.  The form as is in the dictionary only as a CJ(SUB), it being left 
to source analysis to determine its exact grammatical function, especially when 
used to introduce a non-lexicalizable phrase.  A great many such phrases are 
handled by Parse1, e.g., as a whole; as AV as; as AJ as, etc.  Parse1 analysis 
concatenates these phrases, labels them as appropriate (ADV, PP, DET, CJ(SUB)), 
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and affords targets opportunity to override the default lexical transfer.  For 
example: 

(17a)  as of April  ab April 
(17b)  as few as five   nur fünf  
(17c)  as many as five  bis zu fünf 
(17d)  as to …   Im Bezug auf … 
(17e)  as long as possible  so lange wie möglich 
(17f)   as long as you insist, I will come  solange Sie bestehen,    
           komme ich. 
(17g)  four times as fast  viermal so schnell 
 

o Analysis of any. Translation for any commonly depends on analysis of the entire 
clause, as illustrated in the following: 

(18a)   I do not have any book.  Any book will suffice. 
(18a’)   Je n’ai pas de livre.  Tout livre suffira. 
(18a’’)  Ich habe kein Buch.  Jedes Buch genügt. 

 
The context available to Parse1 is limited and Parse1 translation for any can often 
be wrong, despite the top-down picture afforded by the macro parse.  In (18b), 
we see that the Parse1 transfer for any has necessarily been overridden by 
subsequent pipeline analysis.   

   (18b)  If you do not wish to have any supper tonight, please tell the  
       cook. 

(18b’)  Si vous ne souhaitez pas dîner ce soir, veuillez dire au  
      cuisinier. 
   

Deficiency in target work can also be a source of error, as the French in (18c’). 
Note that the German in (18c’’) treats any more correctly. 

  (18c)   Do you want any supper tonight?   
(18c’)  *Voulez-vous tout dîner ce soir? 
(18c’’)  Wollten Sie kein Abendessen heute abend? 

  
o Reversing a parsing decision made by Res.  Though infrequently invoked,  

Parse1 possesses the means to reverse Res, usually regarding N/V homograph 
resolution. To this limited extent, the pipeline parse is not purely deterministic. 

 
 See Fig. 13 for a graphic illustration of Parse1 parsing. 
 

 Parse2  -  The second Parse module builds upon the output of Parse1.  Among its principal 
tasks are: 

o Detecting, and effecting connominal PP attachments to NP.   Here the Parse2 rule 
generally has the form shown below, where x is any preposition or class of 
prepositions.   
 SAL Pattern:  NP(GOVx)  PRP(x)  NP   

Constraints:        (i) The verb of the clause, if one has occurred, has  
not made a strong prior governance claim on PRP; (ii) the 
NP governs the PRP.  

Actions:  (i)  Preposition is labeled connominal. 
 (ii) prepositional phrase is attached to NP at left. 
Targets:             Targets typically alter lexical transfer for the PRP  at this 
point, as in (19b’), below.   
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In (19a’), below, notice that the gender of the German relative pronoun die refers 
to revulsion rather than money, reflecting a probabilistic assumption regarding 
which noun to attach it to. 

(19a)   He has a revulsion to money that cannot be overcome.     
        (19a’)  Er hat eine Revulsion zu Geld, die nicht überwunden  
    werden kann.   

 (19b)    He wrote a book about the room.   
(19b’)   Er schrieb ein Buch über den Raum.   
(19c)    He placed some flowers about the room.                
(19c’)   Er stellte einige Blumen um den Raum. 

  In (19c), above, the prepositional phrase about the room is not seen  
 as connominal (to flowers) in Parse2.  Rather, the converbal attachment of the PP 

and the target transfer um are effected in Parse3, as seen in (19c’), 
 

o    Extraction of relative clauses, embedded absolute constructions,  
parenthetical material, etc.  In all cases, these are removed from the clause in 
which they appear, leaving behind a trace marker.  Extracted materials are 
processed through Parse2-Parse4 as separate sentences.  (See Fig. 14 for graphic 
illustration of clause extraction.) 

 
o Discrimination between relative clauses and th-clauses.  For example: 

(20a)   The hope that he had was very strong. 
(20a’)   Die Hoffnung, die er hatte, war sehr stark. 
(20b)   The hope that he would win the race was very strong. 
(20b’)   Die Hoffnung, dass er das Rennen gewinnen würde, war  

      sehr stark. 
 

See Fig. 14 for a graphic illustration of Parse2 parsing. 
 

 Parse3  -  The third Parse module builds upon the output of Parse2.  It will be  
 noted in what follows that much of the work in Parse3 is accomplished via   
 interaction with Semtab.  Among phenomena dealt with in Parse3 are:  
 

o Verbs and non-contiguous verb particles. The rule abstracted below is  
typical:  a SAL pattern consisting of an undifferentiated verb (V) stretching (∗) 
over any number of non-verbal clause elements to a particle (PART) which is 
following immediately by clausal punctuation (PUNC(CB)). Note that up to this 
point analysis has not yet connected the verb and particle. 

  SAL Pattern:    V(u;u)  ∗  PART  PUNC(CB) 
  Constraints: None. 

Action: (i)  Send Pattern to Semantic Table for match;  
(ii) re-label PART, and backspace all the way for next 
match (re-labeling forestalls rematching).   

Semtab Action:     (i)   If match on V  PART is found, verb and particle  
 are re-labeled with appropriate new SAL code. 

  Target Action:      Target assigns new transfer to re-labeled verb (this   
                                                           is also done in action portion of Semtab rule). 
 

In (21) and (22), below, we see the discriminating power of the Parse3/Semantic 
Table interaction, in particular, and of the pipeline parsing strategy in general.  
Sentence (21) is artificial but serves to illustrate Parse3 analysis.   

  (21)   Please take the cover of the box, put on by my brother, off. 
  (21’)  Veuillez retirer la couverture de la boîte, mise par mon frère. 
  (21”) Nehmen Sie bitte die Haube der Kiste, die von meinem  
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      Bruder angeschaltet wird, ab. 
    

Below are further examples of Parse3/Semtab interaction, all initiated by the 
single Parse3 rule abstracted above: 

(22)  Take the unit down, take the unit out, take the unit away, take  
 the unit apart,  take the work on,  take the items back. 
(22’) Baissez l'unité, sortez l'unité, retirez l'unité, démantelez l'unité,  
 entreprenez le travail, reprenez les articles. 

 
o Verb argument structure analysis and labeling.  The Parse3 rule effecting  
 the analysis and transformations in the examples below is even simpler: 

  SAL Pattern:    V(u;u)  ∗  PUNC(CB) 
  Constraints: None 

  Action: (i)  Send Pattern, including all elements covered by   
Kleene star, to Semtab for match; (ii) inhibit this rule and 
backspace all the way for next match. 

Semtab Action:      (i)  If match on V + verb arguments occurs,    
 constituents are re-labeled where appropriate. 

  Target Action:       Target may assign new transfer to verb, converbal 
preposition, object of verb, subject, etc. (also done in 
action portion of Semtab rule). 

 
The following illustrate typical Parse3/Semtab interactions invoked by the above 
Parse3 rule and the sort of target work that Semtab can effect. 

  (23a)   Please let me know the result.   
  (23a’)  Lassen Sie mich bitte das Ergebnis wissen.   
  (23b)   Please let me have the book.   
  (23b’)  Erlauben Sie mir bitte, das Buch zu haben.   

 
o NP series concatenation. Rule constraints in series rules allow match only  

where commas and coordinating conjunctions are non-clausal, as established by 
the earlier Res macro parse.  For example:  

SAL Pattern: NP(u;u)  PUNC(COM)  NP(u;u)  CJ(CRD)  NP(u;u)   
Constraints: PUNC and CJ (conjunction) are not clause boundaries. 
Actions:  (i) Concatenate as NP, using SAL code of NP1; (ii)  

re-label last NP with end of series marker; (iii) backspace 1 
element. 

Targets:  (i) Chain articles and preposition series (for French);  
(ii) Make case assignments (for German), etc.  

The unedited French translation (24’) of sentence (24) well illustrates the effect 
of this Parse3 rule, and a shorter Parse3 rule just like it: 

(24)    My father gave his house, car and boat jointly to his sons and  
    daughters. 

(24’)   Mon père a donné sa maison, sa voiture et son bateau en  
    commun à ses fils et à ses filles. 
 

o Analysis and concatenation of hitherto unattached prepositional phrases  
as adverbial PP.  Adverbial PP’s are labeled PP(SENT), PP(LOC), PP(MANNER), 
etc., according to PRP and NP Type combination. 
 

o Interclausal chaining.  The following depicts a Parse3 rule designed to handle 
ING series in dependent clause, whether chained by comma or coordinating 
conjunction. Labeling of the ING form in the first dependent clause is 
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communicated to ING forms of the subsequent clauses. Note that the one rule 
handles ING series of any length, as illustrated below. 

SAL Pattern:   V(u;ING)  ∗  PUNC(COM) /or/ CJ(CRD)   V(u;ING)   
Constraints:    PUNC or CJ must be clause boundaries.  
Actions:  (i) Previous re-labeling of 1st ING, denoting  

 presence of a subordinate clause, is communicated  
 to 2nd; (ii) backspace all the way.  

      Targets:  Effect series chaining for ING verb forms.  
      Comments:  (i) Rule applies to series chained either by commas or  

 coordinating conjunctions; (ii) re-labeling and  
 backspacing all the way is typical of Parse3 rules.     

Backspacing allows for multiple looks at a given pattern, 
each for a different purpose (as in (26)).    

             
The unedited French (25’) illustrates the effect of the above Parse3 rule: 

(25) When operating the unit, debugging the unit or performing  
     maintenance tests, be sure to check power levels. 
(25’)  En commandant l'unité, en mettant au point l'unité ou en  
         effectuant les essais d'entretien, soyez sûr de vérifier les    
         niveaux de pouvoir.  
 

In (26’), below, we see the joint effect of the two very different Parse3 rules 
associated with (22) and (25) respectively, executed sequentially over the same 
pattern.  (Note gender error in pronominal reference):    

(26)   When putting the cover on,  taking it off, or adjusting it in any  
   way, be sure the power is off.        

(26’)  En mettant la couverture, en le retirant ou en l'ajustant de toute  
façon, assurez-vous que le pouvoir est coupé. 
 

 See Fig. 16 for a graphic illustration of Parse3 parsing.  
 

 Parse4  -  The final Parse module builds upon the output of Parse3.  All sentence 
elements have now been reduced to just five SAL entities: NP, PP, AUX, V, PUNC, plus 
place markers for materials extracted earlier in Parse2.  Earlier modules have already 
analyzed and labeled constituents for intraclausal grammatical function (e.g., re-labeling 
NP for subject, object, indirect object, etc.). Now, a principal  work of Parse4 is verb 
tense analysis, both intra- and interclausal.  

  
            Functions include: 

o Intraclausal tense assignments:  Punctuation (PUNC) and subordinating 
conjunctions (CJ(SUB)) have been concatenated and re-labeled in Parse3.  These 
re-labeled elements now trigger tense assignments in Parse4. 

(27) Unless he receives instructions to the contrary, he is going to go  
     home. 
(27’)  À moins qu'il ne reçoive les instructions au contraire, il va aller  
      à la maison. 

o Interclausal verb tense/mood coordination.  In the following, the treatment of the 
complementary infinitive clause is a function of verb SAL Type and verb tense in 
the principal clause. 

(28a)  They want John to do it 
       (28a’)  Ils veulent que John le fasse. 

(28b)  They do not want him to succeed. 
(28b’) Sie wollen nicht, dass er Erfolg hat. 
(28c)  They did not want him to succeed. 
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(28c’)  Sie wollten nicht, dass er Erfolg hatte. 
 

o Pronoun resolution. Without extra-sentential processing, pronoun resolution 
obviously remains a weak area.  Handling is somewhat better when the 
antecedent is intrasentential, as in (29):  

(29)   We buy a house that catches our fancy and then resell it the  
          next year. 
(29’)  Nous achetons une maison qui attrape notre fantaisie et  
     ensuite la revendons l'année prochaine. 
 

But, even here, overly complex structures typically cause the pronoun/antecedent 
relationship to be lost, as in (30): 

(30)   We buy a house that catches our fancy and live in it until  
     we are tired of it, and then we sell it again, usually within a few  
     years. 
(30’)  Nous achetons une maison qui attrape notre fantaisie et  
          vivons dans elle jusqu'à ce que nous soyons fatigués de lui, et    

    ensuite nous le vendons de nouveau, d'habitude dans quelques  
    années. 

 
The above functions notwithstanding, the principal work of Parse4 is directed toward 
support of targets.  It accomplishes this by presenting these abstract source constituents 
(NP, VP, AUX, PUNC), one by one, to linked target rules.  Target rules load these 
constituents in the appropriate slots of a final, high-level target template for each clause 
and finally for the sentence as a whole.  At this point, everything that must be known 
about the source string is now available to the target, thus allowing targets to place the by 
now virtually meta-linguistic constituents into the desired target order, effecting such 
stylistic transformations as is deemed appropriate and possible. At the end of Parse4 
source analysis, target template slots are unloaded and the resultant target parse 
(bracketed target string) is input to Tgt Gen, for generation of literal target output. 
 
See Fig. 17 for a graphic illustration of Parse4 parsing 
 

5.0  Target Transfer and Generation  
In this paper we have focused almost exclusively on source analysis, reflecting a belief that the 
power to decode source is the more fundamental and more difficult aspect of MT. Target work is 
far from trivial, however, and obviously poses its own set of challenges and difficulties, treatment 
of which requires appropriate skill. But whenever Logos developers responsible for target work 
are asked what is most needed to improve translation quality, invariably the answer has to do with 
improving source analysis.  
 
5.1  TARGET RULES  
Sets of target rules make up the Tran modules of the pipeline. Target rules presuppose the source 
rules to which they are linked and therefore do not have a SAL pattern component of their own.  
In other respects they resemble source rules: i.e., they have their own variety of constraint 
conditions and, most fundamentally, an action component.  A target rule can perform additional 
source analysis of a nested kind when needed by a particular target language, but the principal 
actions concern contrastive morphological, syntactic and semantic transfer of the elements 
comprising the source-rule SAL pattern.  All target actions in the Parse/Trans pipeline take the 
form of symbolic target parse-tree notations. These notations subsequently drive actions on literal 
strings in the final generation phrase of machine translation, performed by the Tgt Gen module. 
 
5.2  TARGET TRANSFER    
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As evident in Fig. 2, transfer is effected incrementally, in compositional fashion, at the point 
where each source constituent is considered to have been analyzed in full (consistent with the 
system’s capabilities).  Thus, for example, when a descriptive adjective in Parse1 has been 
analyzed in relationship to the noun it modifies, each target will make decisions regarding (a) its 
transfer (e.g. whether to use the default lexical transfer or to overlay it with a transfer derived 
from Semtab), and (b) its syntactic placement in the target language.  Target rules in Parse4 will 
decide how and where each constituent of the source clause is to be transferred in the target (e.g., 
where to position a prepositional phrase analyzed as an adverb of time). Template slots in a 
clause-level target template are thus gradually filled and ultimately arranged in target sentence 
order, the target equivalent (mutatis mutandi) to constituents directly below S in the source parse.  
At the end of the analysis pipeline, all slots are then unloaded and the output (now essentially an 
ordered string of pointers to target words in the lexicon, with annotation for morphology) is 
passed on to the Tgt Gen module which, as we have said, then takes this data and synthesizes the 
literal target sentence.   
 
5.3 STYLISTIC TRANSFORMATIONS 
Things expressed one way in the source are often not expressible that way in the target, calling 
for syntactic transformations of various kinds.  To a limited but not insignificant degree, the 
Logos Model supports the requirements of proper target style, as the examples in (31), (32), and 
(33) illustrate (showing unedited output).  Transformations are the result of rule interaction 
throughout the pipeline, but chiefly to source/target rule interaction in Parse4/Tran4. 

(31)   The situation was alluded to by my friend in his letter. 
(31’)   Mon ami a fait allusion à la situation dans sa lettre.   
(32)   The situation was alluded to in their letter. 
(32’)  On a fait allusion à la situation dans leur lettre. 

 
In (33), below, we see French and German output with radically different stylistic treatment, both 
from each other and from the English original.  This shows the limited but real extent to which 
target linguists working with this Model have been able to overcome the so-called “structure 
preserving” tendencies said to be inherent in MT (Somers, 1992/3).  In particular, note how the 
English ellipsis in (33) “… and their information input directly…” is handled by each of the 
targets.  Note also the German ‘subjectless clause’ treatment of the main clause in (33’’).  All 
output is unedited. 

(33)  Other forms of storage media, such as magnetic cards and computer tape, can also 
be accessed through optional devices, and their information input directly to the 
system. 

(33’)  On peut également accéder à d'autres formes du support d'information, comme les 
cartes magnétiques et la bande pour ordinateur, par des appareils facultatifs et on 
peut introduire leur information directement dans le système. 

(33’’) Auf andere Speichermedienarten, wie magnetische Karten und Magnetband kann 
auch durch beliebige Geräte zugegriffen werden und ihre Informationen können 
direkt in das System eingegeben werden. 

6.0  How Do You Deal with Complexity Issues? 
We now need to review our original question regarding complexity.  Complexity effects in MT 
concern two issues: system performance and system improvability (a function, we argue, of 
system maintainability).  While performance will always remain an issue, steady increases in raw 
computer power tend to make system performance a secondary matter.  Far more critical is the 
system improvability and maintainability issue.  How strong can an MT system become?  Can a 
system, for example, handle the many thousands of content-sensitive verb transfers to be found in 
any good, bi-lingual desk-top dictionary?  If not, is it because of complexity effects posed when 
trying to make effective use of such quantities of data? The requisite linguistic knowledge is 
certainly available: what remains at issue is a computational approach able to deal with it. 
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To illustrate this complexity problem more concretely, consider what is involved in correctly 
translating the English word as.  In (34), below, we see five different senses of this word, each 
triggered by a variety of contextual clues, and each with its own implication for German.  How is 
such context to be specified, where are these specifications to be stored, and how are they to be 
applied? Can one burden a lexical entry for as with logic of the complexity needed in order to 
handle examples such as these? Can a single rule be written to cope with such phenomena?  At 
what point in the parsing process would this lengthy rule be applied? How efficient and effective 
would it be?  How maintainable?  More than likely, because of the difficulties involved, such 
phenomena will simply not be dealt with beyond a certain point.  This barrier typifies what we 
mean by complexity and how complexity limits machine translation.  
 
German translations below are unedited output of the current commercial E-G system: 

(34a)   As you can see, he is sick.   
(34a’)  Wie Sie sehen können, ist er krank.    .  
(34b)   As he is sick, we cannot ask him to work.    
(34b’)  Weil er krank ist, können wir ihn nicht bitten, zu arbeiten.  
(34c)   As he was being given his medicine, he began to choke.  
(34c’)  Während ihm seine Medizin gegeben wurde, fing er an, zu ersticken 
(34d)   As he began to recover his health, he realized that his wife had stood by  

him through difficult times. 
(34d’)  Als er anfing, seine Gesundheit zurückzubekommen, erkannte er, dass  

seine Frau ihm durch schwere Zeiten beigestanden hatte. 
(34e)   As a patient, he was very cooperative. 
(34e’)  Als Patient war er sehr kooperativ. 
 

There are 80 patterns (rules) indexed on as in Parse1, 52 in Parse2, 5 in Parse3, and 11 in Parse4.  
All of the sentences above were dealt with at various times along the pipeline by one or more of 
these rules (See additional treatment of as in discussion of Parse1 in 4.3.2). The examples above 
were chosen because they are handled relatively successfully. It is quite easy to find other as 
sentences that translate poorly, and that would require additional rules somewhere in the pipeline.   
 
We have argued in this paper that, for all the obvious importance of linguistics, it is the 
computational approach that will ultimately determine how good an MT system will be--the 
computational approach regarding representation, storage, and rule application. We have 
described an approach which we feel copes optimally with these three fundamentals.  We focused 
on the Model’s computational methodology relating specifically to the question of rule 
application, viz., how an exceedingly rich knowledge store is to be applied, effectively and 
efficiently, to an unconstrained input stream without giving rise to complexity effects.  It is here, 
perhaps, that the Model we are discussing becomes most novel. 
 
7.0  New Version of the Logos Model (Fig. 18)  
The incremental, compositional approach to analysis and transfer that characterizes this Model 
has meant that decisions must sometimes be made before micro-analysis of the entire sentence is 
compete.  This can occasionally result in faulty translation.  For this and other reasons, an 
upgraded version of the Logos Model has been under development where target transfer will not 
commence until source analysis is fully completed.  In effect, there will be three successive 
parses of the sentence:  (i) the macro-parse accomplished by Res; (ii) the micro-parse 
accomplished by the Parse modules, producing a quasi-interlingual parse tree; and finally (iii) a 
separate parse by the Tran modules, operating on this tree for the sake of each target translation. 
 
This new arrangement will allow for improvements to source analysis independent of target 
considerations, and will allow targets to develop at different paces. It also anticipates introduction 
of a Semantic Dictionary that has been long under development.  This new semantic resource 
has a much finer-grained, purely semantic taxonomy designed to supplement SAL. It will be 
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accessible from any point in the pipeline and its introduction should substantially improve the 
Model’s semantic power.  Finally, provision is also made for the eventual introduction of extra-
sentential processing (discourse analysis).  
 
8.0  Drawbacks and Limitations   
We have described the Logos Model as a relatively effective method of coping with the 
complexity of natural language.  But one might accuse this Model of a certain complexity in its 
own right. The Model’s implementation, with its many thousands of rules, while not difficult to 
work with or maintain, seems to defy formal description. There are simply too many rules and 
their interplay is too multifaceted to keep total track of or to allow for easy characterization, as 
this paper might be said to demonstrate.  One works with the system but one does not exactly 
master it, not in its entirety.  If I may say so, it’s somewhat like working with a colleague: you 
don’t understand the colleague completely, but you figure out over time what works and what 
does not work, resulting in effective teamwork.  When it comes to a system, complexity of this 
sort has sometimes been described as a state or condition residing somewhere between order and 
chaos. And that may be apt, but what keeps chaos in check in this Model, we may argue, is that 
there is an underlying, fundamental simplicity at play, the proof of which is that linguistic tasks 
are accomplished fairly easily and normally with good results.  And generally speaking, it pleases 
linguists to work with such a system.  When a linguist sees a problem, he or she can run the 
offending sentence with diagnostics and quite readily determine where the problem or deficiency 
lies and also, generally, how to fix it.  The linguist then writes or corrects a rule or perhaps a 
group of rules to address the matter, often doing so more in the space of minutes than hours.  And 
these rules, it may be recalled, find their own appropriate place in the knowledge base.  To be 
sure, the number of new problems that arise when dealing with real world language, and thus the 
number of new rules needed, is literally endless, but it is rare for a developer to encounter a 
situation that cannot be handled in this straightforward way.  In any case, if the Model exhibits a 
certain complexity, such complexity rarely translates into cognitive complexity for the seasoned 
developer. 
 
If the Model strikes the reader as somewhat inelegant, in a formalistic sense, one might observe 
that language itself is not elegant and one might well question whether elegance is the right 
quality to look for in natural language processing.  No one, I think, claims elegance as a 
characterizing feature of human sentence processing.  Indeed, some claim that Chomsky (1990) 
himself has abandoned his original, more formalistic agenda.  On our part, we have not 
approached natural language as a formal object for good reason; dealing with the complexity and 
ambiguity of natural language in the real world is like Odysseus making passage between 
Charybdis and Skylla, an experience one survives only with great cunning and succor from on 
high.  
 
Regarding the question of how good a system based on this Model can ever get to be, we offer the 
following.  If one in fact has a system that can absorb endless amounts of linguistic data without 
indigestion and can apply this knowledge effectively, then it seems likely that over time, perhaps 
as much as several generations, under ideal development conditions, the goal of FAHQT could 
eventually be reached, at least in a significant portion of the discursive language spectrum.  Of 
course, it is not likely that this will ever happen. The many factors that must be present for it to 
occur−availability of money, talent, the proper sociological environment and team dedication, 
wise and patient management, to say nothing of the amount of time it would take, are all too 
problematic in themselves, quite apart from any consideration of model design and methodology.  
It is true that the Logos System got as far as it did precisely because, in patches of its 30-year 
history, many of these factors were more or less present, mirabile dictu.  But those happy 
circumstances have ended, still short of the goal, and these conditions are unlikely to be repeated 
again.  In sum, the sought-after FAHQT summit will likely always remain a distant, ultimately 
unrealizable goal. 
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 Multi-Target Logos Model with Advanced Features
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Fig. 18 – New Version of Logos Model under Development.  In this new version of the 
pipeline, target transfer does not begin until source analysis is entirely complete.  In effect, target 
transfer aspect of the pipeline will have as input a completed, quasi-interlingual parse tree of the 
source. The new version of the Logos Model has already been implemented and tested for 
English-German.  A Semantic Dictionary is also planned to be introduced. This dictionary 
converts natural language words to a finer-grained semantic taxonomy.  Designed to supplement 
SAL, this finer-grained taxonomy is needed for such functions as adjective and common noun 
disambiguation. This finer-grained taxonomy will also be accessible from any point in the 
pipeline. A prototype of the dictionary already exists for English and German source (each with c. 
80,000 canonical entries) but software changes to pipeline modules to allow for its utilization 
have yet to be made. The new Model also envisions extra-sentential processing, although at 
present no work has yet been started in this regard.  Discourse analysis will allow for handling of 
such issues as anaphora, ellipsis, and common noun disambiguation.    
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Notes 

 
1  Pyatt, Everett (1973), personal communication referring to Dr. John Foster’s classified 1972 

Annual Report of the Director, Defense Research and Engineering. Pyatt was Assistant 
Secretary of the U.S. Navy. 

2  David Hays (1964), personal communication.   
 


