
 1

 The Logos Model: Principles and Motivations
 Underlying the OpenLogos MT System

 Bernard (Bud) Scott
 AMDG

 Chief Architect, Logos System

Keywords: rule-based MT, semantico-syntactic abstraction language (SAL),
associative semantics, mental model, pipeline architecture, human sentence
processing, FAHQT

Abstract.
The Logos Model underlying OpenLogos is described. The Logos Model is characterized with
respect to four fundamental issues: (1) how natural language is to be represented; (2) how
linguistic knowledge is to be stored, (3) how this knowledge store is to be applied to the input
stream, (4) how complexity effects are to be dealt with as the knowledge store grows, year after
year, in the quest for fully automatic, high-quality translation (FAHQT). The Model reflects
principles derived from assumptions about human sentence processing, which are described.
Using the metaphor of a biological neural net, a complex, 57-word sentence is tracked as it
proceeds along a pipeline architecture, simulating an hypothesized human model. Limitations of
the Logos Model are also discussed.

1.0 HISTORICAL BACKGROUND
Logos Corporation and the Logos Machine Translation System came into being in 1970, in
response to a sudden national requirement to translate massive quantities of U.S. military manuals
into Vietnamese. This requirement was triggered by a presidential decision to turn the materiel
and conduct of the war over to the South Vietnamese, and was compounded by the critical lack of
human translation resources to implement this new policy. This all took place only a few years
after ALPAC, and officials of the US Government were understandably skeptical of help from
machine translation. But when our newly formed Logos Corporation insisted it could build a
machine translation system able to address this requirement, we were given a chance to prove
ourselves. Feasibility was to entail an ability to machine translate some twenty pages of a
previously unseen helicopter manual. We were given three months to prepare for this.

The results of the trial were judged sufficiently promising and the Company was awarded an
emergency contract to develop a full-scale, production system. This effort proved quite
successful. In his annual report for 1972, Dr. John Foster, Director of Defense Research and
Engineering (DDR&E), stated that the Logos System had now “established the feasibility of
large-scale machine translation”1. This was the first positive word accorded MT since the advent
of the ALPAC winter six years earlier.

1.0 Design Objectives of the Logos Model
From the outset, Logos developers elected to build a general-purpose system that could be used
for any language combination. Major components of the Model are shown in Fig. 1. Fig. 2
shows the model’s pipeline architecture.

2.1 ARCHITECTURAL DESIGN
Logos Model implementation was guided by the following design objectives:

 Language-Neutral Software: A physically common, language-neutral body of
software serves all language combinations (except for language-specific I/O
functions). Apart from I/O, all language-specific operations (morphological,
syntactic, semantic) are accomplished by means of tables (for morphology) and rules
(for everything else), all in the form of data.

 2

 Software Modularity: The system is highly modular. A fully implemented,

operational version of the model, running in megabytes of main memory, has also
been implemented in memory environments as small as 64K (1981 implementation
on a Wang OIS microchip).

 Declarativeness: Semantico-syntactic representation of an input sentence is passed

down a pipeline (Fig. 2) where the symbolic input string itself now drives rule base
interaction. (Input stream and rules are expressed in the same symbolic representation
language). How input stream and rule base interact is a fundamental, characterizing
aspect of the Logos Model (See 4.3).

 Multi-target Functionality: New targets (any number) are added to an existing source

by linking target data modules (morphological tables, lexicon, rule bases). No new
programming is required (except for target-specific I/O).

Extendibility and Improvability: The system is open-ended, designed to absorb
endless extensions and improvements. Two considerations were paramount: (1)
there should be no inherent risk of logic saturation as the knowledge base grows in
size, leading to developmental stasis; (2) nothing in the design should preclude
fully automatic, high quality translation (FAHQT) long-term. In sum, translation
quality shortfall should be attributable to knowledge base deficiencies, never to
design decisions.

2.2 FAHQT
The long-term objective of FAHQT, of course, can only apply to discursive texts, i.e., texts
intended for information transfer. And such texts must be reasonably well written. Texts written
for edification, where style is paramount, thus are ruled out. Fig. 3 illustrates the areas of written
language where the Logos Model (and MT in general) can expect cost-effective application.
(Quantitative indications are pure estimates.)

FAHQT remains a far-off goal for Logos developers, and the fact that FAHQT has not been
reached after years of effort indicates its remoteness, although not its theoretical unattainability
(for discursive texts). True, where source text is especially well written and preparatory
terminology work is complete, output has sometimes already approached near-human quality.
But generally, the number of linguistic situations that require attention to achieve such quality,
and that have yet to be attended to, seems endless. A key question then poses itself, viz., whether
an MT system could be designed to accommodate the endless growth in knowledge implied in
any quest for FAHQT.

 (See Figures on following pages)

 3

French
Morpholog

y

Source
Lexicon

Source
 Rule Base

TermBuilder

LOGOS
Engine

TARGET
TEXT

Target
MorphologySource

Morphology

SOURCE
TEXT

Translation
Memory

Translation
Memory

Source
Semantic

Table

RuleBuilder

Target

Lexicon

Target

Rulebase

Target
Semantic

Table

Pattern
Matcher

Pattern
Matcher

1981

1986

1993

1992

1979

Fig. 1 - Major components of the complete Logos Model. (Undated elements were part of the
original 1971 system.) Translation process is as follows: (1) Language-neutral software Engine
presents NL input stream to lexicon, converting NL string into a symbolic string. (2) Engine then
seeks to match symbolic string with symbolic data patterns in rule bases. (Symbols are semantico-
syntactic.) (3) Upon match, software engine interprets action portion of fired rule, driving progressive
source analysis in bottom-up manner. Notations pertinent to target equivalences are recorded as
analysis of each source constituent is completed, in contrastive linguistic (tree-to-tree) fashion. (4)
Target is generated upon completion of source analysis. Steps 2 through 4 are accomplished
incrementally over a cascade of modules called a pipeline (See Fig. 2). Source and target lexicons are
actually integrated, as are morphology tables. TermBuilder and RuleBuilder are developer/user tools.
Semantic Tables comprise deep-structure rules that (i) support deterministic parsing and (ii) effect
context-sensitive target transfers. Pattern Matcher allows users to effect global string edits in source
input or target output via Regular Expressions. System has been interfaced with several leading TM
products. New targets can be added to an existing source language by linking target data modules (for
morphology, lexicon and semantico-syntactic rule bases). (N.B. Not all elements, e.g.,
RuleBuilder, are available in the current version of OpenLogos).

 4

Logos Model as an Incremental
 Pipeline Analyzer-Generator

Lex
Res1

Res2

Parse1

Parse2

Parse3

Parse4

NL
Input

Tgt Gen

Format

Rules

Rules

Rules

Rules

Rules

Rules

Rules

Dict

Rules

Tran1

Tran2

Tran3

Format

Tran4

SS

Rules

Rules

Rules

Rules
Rules

Lex

partial transfer effected compositionally

semantic tables

semantic dict

Begin
Analysis

Begin
Generation

(not currently installed)

semantic tables
NL Output

Fig. 2 – Incremental, Pipeline Architecture of the Logos Model. Architecture of the
Logos Model resembles a pipeline. (The 1971 system had only RES1 and the first two Parse/Tran
modules) NL text enters at the top where formatting is analyzed and stripped out, and sentence
boundaries identified. For each sentence, NL string is next converted to a symbolic, semantico-
syntactic string via lexical substitution. Symbolic string passes down pipeline and interacts with rule
bases, effecting a single, bottom-up parse. Rules consist of semantico-syntactic patterns which, when
matching some portion of symbolic input stream, become active and compete for right to fire. Target
transfer is accomplished as a tree-to-tree equivalencing at four parse-tree levels, reflecting an
incremental, compositional approach. Level 1: Parse1/Tran1 analyzes and transfers simple NPs. Level
2: compound NP’s and NP complementation. Level 3: intra-clausal structures, esp. predicate/argument
analysis. Level 4: inter-clausal relationships. Process is not purely deterministic in that early
parsing/transfer decisions can be modified at higher levels (within strict limits).

 5

to inform to edify

artificial
language

contrived
language

natural language

mind mind + heart

objective subjective
greatest clarity

least clarity

• logic
• program-
 ming
 languages

• contracts
• legal briefs

• scientific
• technical
• academic

• newspapers
• papers
• memos

• essays
• letters
• email

fiction plays humor poetry experimental
avant garde

97% of written language

Opportunity for MT in the Spectrum of Written Language

best
quality

MT

lowest
quality
MT

stylistic
idiosyncratic

formalistic
conventional

 © 2002 Bernard E. Scott
Fig. 3 - Written Language Bandwidth Suitable for Effective MT. MT potentially applies to a
broad spectrum of written language as suggested in the above figure. Translation quality will
always tend to be better in texts with a natural but conventionalized writing style and will become
progressively less so as idiosyncratic content increases. Successful MT necessarily presupposes
well-written text and diligent user maintenance of the lexicon

.

3.0 Addressing the Problems
Someone has aptly said that natural language is the most complex event in the universe. What makes
for this complexity of course is NL’s fuzzy richness, an immense, open-ended composite of elements
much of which have no univocal signification or grammatical function except as provisionally
granted by the context, which context itself shares these same characteristics. NL’s complexity and
ambiguity therefore pose a daunting challenge for a binary, yes/no machine, as ALPAC rightly saw
and every developer knows full well. Moreover, in a computer, the complexity and ambiguity of NL
interact in such a way that any attempt to cope with the one normally exacerbates the other. For
example, add information to cope with ambiguity and you increase complexity. Relieve complexity
by lessening this information load and you weaken the power to disambiguate. This circumstance
forms the horns of a true computational dilemma for the developer.

3.1 THE COMPLEXITY PROBLEM
Despite the fundamental importance of linguistics, the computational problem posed by
complexity was deemed to be the more critical, the more telling issue--how to cope with
complexity effects that must inevitably arise in unconstrained, general-purpose MT. And by
complexity here is meant not so much the classic difficulties of complexity theory relating to
compute time and space requirements, but rather what one may call cognitive complexity,
complexity relating to the difficulties humans experience in maintaining logic in maturing
systems as that logic becomes increasingly more complex.

 6

Cognitive complexity will not be obvious at the prototype stage, and many MT projects have
been undertaken without providing for complexity. But complexity effects become a major
headache when scaling up to a working system, where one must now deal not just with the
regularities of a language, but with its countless exceptions, and exceptions to exceptions, all in
endless quantity. The typical experience of the developer of an English parser, for example, goes
like this: generalized logic introduced to resolve a N/V homograph in one context backfires in
another, requiring refinements to the knowledge base (logic). This refinement in turn now
unwittingly undoes a resolution of an entirely unforeseen kind elsewhere, something that used to
work and now does not. After a great deal more of this, the logic and/or strategies involved may
become so complex as to become virtually unmanageable, i.e. unimprovable. The old adage about
the developer who bends over to pick up one marble and finds that in the process he or she has
dropped two well illustrates cognitive complexity and the developmental stasis to which it tends.
All seasoned developers recognize this problem.

Foreseeing this in some dim way, our approach to machine translation would be defensive from
the very beginning, driven not so much by a desire to instantiate theory as to avoid a
developmental cul-de-sac by whatever principled means it took. In sum, what was needed was a
computational approach that would effectively minimize complexity effects. As we saw it, the
attainability of industrial strength MT hinged precisely on this.

3.2 THE LACK OF PROVEN MODELS
There were no proven translation models to guide our efforts when we began this work some
thirty years ago. The only proven translation system in sight was the human brain, about which
little was understood. Chomsky’s view of human language processing was well known but his
“syntactocentrism” eschewed semantics (Jackendorf, 2002) and it was abundantly clear, after
ALPAC, that without semantics, MT had little prospect of success (Hutchins, 1986). It is easy to
understand why language was initially approached in terms of syntax alone: language qua syntax
was amenable to systematic analysis in ways that semantics was not, as people like Harris (1968)
and Chomsky (1965) well understood in those days. Yet, as Chomsky (1957) famously noted,
children easily master language, and (to stress what Chomsky more or less elected to ignore)
children do so despite language’s tangled web of irregularities and ambiguities. It seemed to us
then that we would do well to examine whether something from human sentence processing could
be inferred and then imitated in the computer.

3.3 MENTAL MODEL
We proceeded to make certain assumptions about human sentence processing and, in particular,
how the brain manages to cope so well with natural language complexity. These assumptions
were purely intuitive and can be considered pre-scientific, but they nevertheless proved
fundamental to the design of the Logos Model with beneficial effect.

Key properties of the hypothesized mental model are summarized here, along with their
implications for the Logos Model (See Fig. 4 for graphic depiction):

 Opportunistic, non-algorithmic processing. The language processor in the brain is an
algorithm-free, associative memory network. The process does not rely on some sort of
homunculus or supervisory logic controlling processes and decisions along the way. Nor
is this mental process anything like the analysis performed by transition networks
designed to prove well-formedness, and therefore where only explicitly specified
decision branches are permitted. Rather, analysis simply emerges in unpredictable ways
from stored memory associations reacting opportunistically to input signals, well-formed
or otherwise. The process is controlled by the input stream itself, as the brain reacts to
input and seeks to assimilate its import. In effect, then, sentences themselves constitute
the controlling algorithm. The principal implication for the Logos Model is that
associative memory networks, being non-algorithmic in this sense, would be relatively

 7

immune to logic saturation as developers expand language coverage. (See Sections 4.2
and 4.3 and Section 7 for fuller discussion.)

 Incremental processing. Sentence processing (analysis) is done in incremental stages

across a series of modules, very loosely analogous to the brain’s visual pathway. This
assumption translated into a pipeline architecture whereby compositional parsing
decisions can be made “as early as possible and as late as necessary,” depending on the
circumstances (Scott, 1989). (See Fig. 2.)

 Integration of syntax and semantics. Syntax and semantics constitute a representational

continuum. Because human sentence analysis, we felt, had to be deterministic, producing
a single analysis (even if sometimes initially a wrong one), both syntactic and semantic
information had to be available at every decision point along the linguistic pathway,
contrary to the “syntactocentrism” of the generative school (and their resultant parse
forests). For the Logos Model this assumption led to the creation of an ontology-based,
semantico-syntactic representation language exhibiting such integration. (See Section
4.1)

 Use of abstraction. Abstraction is a principal means employed for controlling

complexity, i.e., for keeping things simple. It is arguable, we felt, that abstraction is
fundamental to brain function. This at least is suggested by the very structure of the brain
cell--a neuron with many dendrites for input and typically a single axon (with collaterals)
for output. The prevalence of fan-in circuitry in the brain further suggests a structure
designed for abstraction. For the Logos Model, this required that the semantico-syntactic
representation language we created consist of second-order abstractions (natural
language being deemed to comprise first-order abstractions.) (See Figs. 5-7.)

 8

John took the things from the kitchen table.

thefrom kitch-
en

table

NP

support
surface

ledge

remove
accept

appro-
priate

etc

out of

off
of

away
from

etc

PP
off of

support
surface

VP
remove
off of

support
surface

syntactic fan-in
circuit

semantic fan-in
 circuit

ambiguity
fan-out
circuits

floor

1

2

3

ambiguity
fan-out
circuit

take

support
surface

geolog.
location

inform-
ation

Mental Model Serving as basis for Logos Model
 © 2003 Bernard E. Scott

Fig. 4 - Mental Model Assumptions, as Basis for the Logos Model .
Key assumptions about human sentence processing (from a neurophysiological perspective) underlay
the design of the Logos Model. Chief among these are:

• processor is associative memory itself, its organization and interconnections. Analysis is
effected by memory associations (rather than controlling decision
logic), responding to input signals in opportunistic fashion.

• syntactic and semantic aspects of language are integrated (as in a continuum).
• language is treated as second-order abstractions (e.g., table qua ‘support

surface’). Abstraction (via fan-in circuits) was thought to be the principal means
used by the brain to reduce complexity, illustrating nature’s law of least effort.

• memory is content-addressable (blank cells suggest the vast number of cells that
are not made active by input signals shown). This is understood to explain why increase of
stored knowledge does not have complexity effects in humans.

Stage 1 employs associative semantics to resolve the meaning of table (collocation with kitchen.). In
Stage 2, table qua ‘support surface,’ in turn, allows process to resolve meaning of the preposition from
to ‘off of.’ In Stage 3, the association of the verb take with the preposition ‘off of’ provides for that
verb’s resolution to remove. Concatenation via fan-in circuitry produces a more abstract (i.e. simpler)
representation of the expression. Many
operations, of course, are not accounted for here (morphological analysis, homograph resolution, etc.).
The prevalence of fan-in and fan-out circuitry in the brain was deemed to corroborate these analysis
(fan-out) and abstraction (fan-in) functions, as illustrated.

 9

 Content-addressable memory. Information stored in memory is content-addressable.
This well-established property of neurophysiology (McClelland, Rumelhart, and
Hinton,1986) explains why, out of the brain’s billions of cells, relatively few cells are
ever activated by any given stimulus. Such specificity invited new thinking as to how
linguistic knowledge is to be stored and applied in an information-rich MT system, and
this new thinking became a key factor in shaping the design of the Logos Model. (See
Section 4.3.2)

4.0 Fundamental Design Decisions
Translating this hypothesized mental model into a model for machine translation entailed
decisions regarding four fundamental design questions:

 How do you represent natural language internally to the computer?
 How do you store that knowledge?
 How do you apply that knowledge to the input stream
 How do you deal with complexity issues?

4.1 HOW DO YOU REPRESENT NATURAL LANGUAGE?
Semantics for MT and for NLP in general was as yet largely uncharted territory and it was far
from clear in those days how to characterize the meaning of words to a machine. But the ability to
deal with meaning was imperative: ALPAC attributed the failure of MT to the “semantic barrier”
that all MT systems had thus far run up against (Yngve,1964). Two routes of exploration lay
open: one could devise a list of semantic primitives and apply them to words as appropriate, or
one could develop a semantic taxonomy (ontology), in which case NL words are mapped into
abstract semantic entities. We elected the latter option.

Logos developers chose to build a taxonomy but one that was sematico-syntactic rather than
purely semantic. What we were looking for in words were semantic features that had syntactic
implications, i.e., the point in words where semantics and syntax seemed to intersect. This
decision was motivated in part by our intention to build a deterministic parser (where a single
parse is produced). To do this, one had somehow to integrate semantics and syntax so that both
would be available to essentially irreversible parsing decisions at every stage of analysis.

The resulting semantico-syntactic representation language, developed in the 1970’s, was built
inductively from analysis of countless output errors and consideration of what the computer
needed to know in order to avoid such errors. We dubbed the language SAL (semantico-syntactic
abstraction language), an acronym actually suggested to the author by Jaime Carbonell upon his
review of the effort. The language is open-ended but has continued to evolve in only minor ways
since the 70’s. (For examples of the SAL taxonomy, see Figs. 5-7 and Appendix A.)

4.1.1 Semantico-Syntactic Abstraction Language (SAL)
A number of special considerations motivated SAL.

 SAL was to look and function like a natural language (at a more abstract level) such that
any NL string could be readily expressed by an equivalent SAL string, thus enabling
developers and users alike to map easily from NL to SAL in lexical work. For example,
the noun highchair maps to the SAL subset ‘support surface.’ This subset, of course,
inherits its superordinate classifications (‘functional device’ for set, and ‘concrete noun’
for superset).

 Semantics and syntax were to be seen as a continuum from literal string to word class.

For example, the input string highchair could be dealt with during pipeline analysis at
any of the following representational levels:

o Literal level: highchair
o Head morpheme chair
o SAL subset COsupp (‘concrete noun’, ‘support surface’)

 10

o SAL set COfunc (‘concrete noun’, ‘functional device’)
o SAL superset CO (‘concrete noun’)
o Word Class N

 Except where literalness is required, everything having to do with NL internal to the
Logos Model was to be expressed in SAL, both in the input stream and in the knowledge
store. Such representational monotonicity between input stream and knowledge store was
fundamental to the Model’s matching strategy.

Aspectives

bearing surfaces member/portion/partfunctional aspects aggregates

receptacles

seat
top
ledge
bottom

tooth
arm
lip
tab
blade

content
area
leg
stage
step
half
segment
unit
phase

layer
fraction
remainder
piece
trace
section
module
sample
deposit

group
pair
set
ensemble
threesome
majority
couple
molecule

cavity
enclosure

numeric aspects
tens
twenties
millions

thresholds/ focal points, barriers model/copy configurations

conduits

axis
blank
blindspot
hub
exit
joint

front
center
entrance
horizon
gap
hole

image
facsimile
variant
version
mock-up
prototype

net
row
array
series
mass
mixture
world

link
span

ASsurf ASfunc ASaggr

ASrecp
ASnum

ASbarr AScopy ASconf

AScond

AS

face
cover
base
nucleus
intersect
target

NOUNS

Nconcrete

mass

abstract

deverbal animate information

measure

place

time
CO

MA

AB

PN AN IN

TI

ME

PL

ASmem

Fig. 5 - SAL Noun Superset: Aspectives. SAL Word Class for nouns comprises ten noun
supersets, as shown above. The ‘aspectives’ (AS) superset typically occurs in N1 of N2 patterns
where the morphology of N1 defines the resultant NP, but N2 provides its semantics (e.g., row of
houses, pieces of pie, etc.). (NP’s derived from this combination have the morphology of N1 and
the semantics of N2.) Note that the ‘aspective’ superset has sets but no subsets. Most SAL noun
supersets entail both.

Further characteristics of SAL:

 SAL is an abstraction language organized hierarchically as a taxonomy. There
are roughly 1000 SAL elements for all parts of speech combined. Nouns and verbs each
comprise about 100 of these SAL elements. As an internal language, SAL allows
processing at a level that is two orders of magnitude richer than pure syntax (c. 10
elements) and two orders of magnitude leaner than NL (c. 100,000+ elements).

 11

 All SAL elements are characterized by the triplet: WC(Type; Form), where Type is
expressed as one of three levels (semantico-syntactic superset, set, and in many cases,
subset). Figs. 5-7 show Type codes for several of the noun supersets. Appendix A shows
Type codes for the entire adjective word class.

 SAL verbs, deverbal nouns, and certain of the SAL adjectives (see Appendix A) have set

or subset codes that denote governance. For example, the NL deverbals egress,
deliverance, rescue, absence are all subsumed under a SAL deverbal element that
signifies from governance. Similarly, NL verbs like furnish, supply, provide, are
represented by a SAL di-transitive verb element that governs the set of argument
structures: furnish x with y = furnish y to x = furnish x y. Although developed purely
inductively, SAL bears obvious kinship here to Valency and Case grammars.

Place

paths
enclosed

spaces
functional
location

undifferenti-
ated

non-agentive
proper

geo. entities

bodies of
watercountries, states

provinces

agentive
common-noun

geo. entities

agentive func-
tional location

continents

 non-agentive
common-noun
geo. locations

 agentive geo.
entities

cities
other non-agentive
proper geo. entities

English
 Channel
Gulf of
 Mexico

North America
Africa
Europe

borough
city
country
precinct

London
Paris
Rome
Tokyo

France
Nigeria
Sicily
Normandy

beach
forest
sky
neighborhood
ocean

apartment
lobby
pantry
vault

airport
bank
post office
university

arena
battlefield
gymnasium
theater

Swiss Alps
Mt. Fuji
Cape Horn

river
corridor
orbit

PL

PLundif

PLenclPLfunc

PLagfunc

PLcont

PLnagpropPLnagcom

PLagcomPLcity

PLcoun

PLaggeo

PLothprop

PLwater

PLpath

Fig. 6 – SAL Noun Superset: Place. Note the role of agentiveness here. Agentiveness can
sometimes have a bearing on resolution of noun/verb homographs in English. For example, the string
the beach plans, because beach is non-agentive, would bias analysis away from plans as a verb, unlike
the string the city plans. In the expression from the pantry, the SAL code for pantry as ‘enclosed
space’ allows sense resolution of the preposition from to ‘out of.’ SAL differentiation between
‘countries’ and ‘cities’ supports needs of some targets, e.g., French, when transferring the English
preposition in before such ‘place’ nouns:
in N(PLcity) à N(PLcity), as in à Paris; in N(PLcoun) en N(PLcoun), as in en France.

 12

Information

evidence
symptoms

symbolic

instructional
legal

undifferenti-
ated

storage media
for recorded

data

the artsgames, rituals

recorded data fields of
knowledge

ballet
poetry
drama
jazz
judo
opera

radio program
TV show
postlude
recital
movie
speech
operetta

manual
picture
message
map

language
letter
code
address
digit

chess
dominoes
hockey
Mass
vespers

law
rule
prophecy
contract
Declaration of
Independence

evidence
symptom
indications
sign

IN

technology
chemistry
agriculture
religion
ballistics

memory
store
disk

INundif

INstor

INartsINevent

INknow

INgame

INdataINsymbINinst

scripted events

INsymp

Fig. 7 - SAL Noun Superset: Information. The ‘information’ noun superset comprises a broad
class of nouns that denote information, knowledge, symbols, data, rules, games, rituals and other such
concepts where communication is a primary implication of the noun’s meaning (excluding deverbal
nouns). This noun superset also includes the storage medium or format in which informative
expression is recorded, represented, or communicated. Certain of these ‘information’ Type nouns
(e.g., INdata) followed by the preposition on generally cause this preposition to have the meaning of
‘concerning,’ provided the noun following the preposition is not a ‘support surface’ Type noun (e.g., a
book on the presidency versus a book on the shelf).

 SAL was developed as a numeric language and remains so internally, although
mnemonics are available to the developer and are used in this paper.

 SAL is not a true metalanguage or interlingua but does approximate one in certain of its

word classes. SAL noun elements, for example, are common to all languages. This is
only slightly less so the case with pronouns, determiners, prepositions, adverbs and
conjunctions. On the other hand, SAL verbs and adjectives are interlingual only at the
superset level.

Thus far, SAL has been fully developed only for English and German. The complete SAL
taxonomy for English adjectives is given in Appendix A.

4.1.2 Effectiveness of SAL for Deterministic Parsing
Because of its levels of abstraction, SAL allows developers to deal with meaning in a relatively
manageable way. In the following examples, we illustrate how SAL is used to resolve (with
varying degrees of success) certain classic parsing problems where English is the source
language. Raw, unedited output is provided to show SAL’s effectiveness in resolving structural

 13

ambiguities. (You are reminded that the source analysis being conducted here is common to both
the French and German target translations shown here.)

 Case One
SAL codes are used in analyzing syntactic patterns like ‘N and/or N N’, as in (1a) and (1b), below.
Effects of analysis are illustrated in the unedited French and German output which follows:

(1a) I like the ham and cheese sandwiches.
(1a’) J'aime les sandwichs de jambon et de fromage.
(1a”) Mir gefallen Schinken- und Käsestullen.
(1b) I never go to that bank or TV store.
(1b’) Je ne vais jamais à cette banque ou à ce magasin télévision.
(1b”) Ich gehe nie zu jener Bank oder Fernseh Lager.

In (1a), unlike (1b), ham and cheese are both members of the same ‘edible’ noun set (MAedib)
under the ‘mass’ noun superset (MA). The semantic homogeneity between N1 and N2 allows a
generalized Parse1 rule, comprising the SAL pattern ‘N(X;SG) CJ(CRD;u) N(X;SG) ∗ N(u;u)’, to
see both ham and cheese as attributive to N3 (sandwiches) and thus to concatenate the string as
NP. (The X signifies any SAL Type shared between N1 and N2. The u in N3 signifies universal
Form in the case of N3, or non-relevance in CJ. SG signifies singular morphology. The ∗ in the
SAL pattern is a constrained Kleene star.) In writing rules like that applying to (1a), the
developer specifies whether the semantic commonality constraint associated with X must be at
the SAL superset, set, or subset level. Because SAL’s semantic granularity is fairly coarse, its
effectiveness in these situations is limited; more consistently correct parsing results await a much
finer-grained taxonomy. (A new semantic taxonomy is currently under consideration for this
purpose, and if installed will be supplemental to the present semantico-syntactic SAL taxonomy
(See Section 8).

Case Two
An important noun property captured via SAL classification is agentiveness. The following will
illustrate its use in typical Parse1 parsing (shown with unedited French and German output, any
defects of which are unrelated to source analysis):

(2a) corn eating insects
(2b) insects eating corn
(2a’) Les insectes qui mangent le maïs
(2b’) Les insectes qui mangent du maïs
(2a’’) Maisessen-Insekten
(2b’’) Insekten, die Mais fraßen

In (2a), the ING form is bounded on the left by a non-agentive (corn = MAedib, ‘edible’ Type
‘mass’ noun), on the right by an agentive (insects = ANbugs, ‘bugs’ Type ‘animate’ noun).
Constraints for the rule that handles the pattern in (2a) require that N1 have a non-agentive SAL
classification and that N2 have an agentive SAL classification. All constraints being satisfied, the
rule will parse the SAL pattern as NP. The rule cannot apply to (2b), causing the ING N string to
be seen by other rules as an elided relative clause. (Note, in the unedited French translations (2a’)
and (2b’), how the analysis has allowed the target to see (2a) and (2b) as semantic near
equivalents.)

 Case Three
In the following, we illustrate typical use of SAL classifications for resolving ambiguities
involving verbal elements. The ambiguity here concerns the attachment of the participial phrases
effected/affected by digitalis. (The unedited French translations shown are raw output from an
earlier release of the Logos System. (For uninvestigated reasons, the Parse3 rule effecting this
analysis has been removed in the current release.) Again, any flaws in translation are unrelated to
analysis.

 14

 (3a) changes in tissue effected by digitalis.
 (3b) changes in tissue affected by digitalis.
 (3a’) changements de tissu effectués par la digitaline.
 (3b’) changements de tissu affecté par la digitaline.

In (3a) the verb effect belongs to a SAL Type set that must have as object a noun deverbal
(process noun). The noun changes is a process noun in SAL and alone satisfies this condition in
the given pattern, thus causing effected by digitalis to be attached to it. In (3b) the SAL Type set
for affect offers no reason to attach affected by digitalis to anything but the left-adjacent noun,
tissue, the default action.

Case Four
Many verbs have multiple meanings and attendant argument structures, only one of which can
serve as the basis for a verb’s SAL code. The SAL code is usually chosen to reflect a verb’s most
complex complementation pattern, on the grounds that this will afford maximum parsing benefit.
It is the function of the Semantic Table to compensate for this single-code limitation. Rules in the
Semantic Table will analyze a verb’s actual sentential context and revise the SAL code and
transfer accordingly.

We illustrate this using the multifaceted verb keep. (The verb keep has 39 rules in the Semantic
Table, which though seemingly many actually represent still rather incomplete coverage). In (4a),
below, we see operative the sense of keep for which it was SAL-coded. In (4b)-(4d), we begin to
see variations in argument structure and attendant shifts in verb meaning, made evident here in
the unedited translations. In (4c), the classic Chomskian PP attachment ambiguity, John kept the
car in the garage, is resolved by a Semantic Table rule designed to capture the sense of keep when
complemented by a locative PP, thereby also causing the PP to be parsed as converbal to kept
rather than connominal to car. (See 4.2.4 for more on the Semantic Table.)
 (4a) John kept driving the old car.

(4a’) John fuhr das alte Auto weiter.
(4b) John kept the old car.
(4b’) John behielt das alte Auto.
(4c) John kept the new car in the garage.
(4c’) John bewahrte das neue Auto in der Garage auf.
(4d) He did not try to keep his children from driving the old car, but he told

them to keep the old car away from the new car in the garage.
(4d’) Er versuchte nicht, zu verhindern, dass seine Kinder das alte Auto

fuhren, aber er wies sie an, das alte Auto vom neuen Auto in der
 Garage fernzuhalten.
(4d’’) Il n'a pas tenté d'empêcher ses enfants de conduire la vieille voiture,

mais il leur a dit de garder la vieille voiture hors de portée de la nouvelle
voiture dans le garage.

Case Five

Noun phrases analyzed as SAL patterns may benefit target. In the experimental work below
involving the N N noun phrase pattern, we show (i) three literal strings, (ii) the SAL patterns to
which they are converted, and (iii) the analyses that source rules that are specified for these SAL
combinations are able to pass on to the target module. The final, generated target results are
illustrated for French. (The default rendering in French for the N N pattern, of course, is N2 de
N1.)

o gold watch
 N1(MAmetal) + N2(COmeter)

 N2 made of N1 (implicit analysis)
 montre en or

 15

o computer tape
 N1(COmach) + N2(MAfunc)
 N2 used by N1 (implicit analysis)
 bande pour ordinateur

o wine glass
 N1(MAliqu) + N2 (COrecp)
 N2 for containing N1 (implicit analysis)
 verre à vin

In the SAL patterns above, MA and CO stand for the ‘mass’ and ‘concrete’ noun supersets,
respectively. The string in lower case represents either the set or subset within the superset, as
the case may be. Note that although the Logos Model is multi-target and thus one source analysis
supports multiple targets, rules having applicability only to French, for example, can be ignored
by other targets. The above work is purely experimental: exceptions to such rules are not
uncommon and while some of these exceptions can be lexicalized, the feasibility of handling N N
constructions in general at this level of semantic abstraction has not yet been established. If
feasible, exceptions that are not lexicalizable would then be handled via the Semantic Table.

4.2 HOW DO YOU STORE LINGUISTIC KNOWLEDGE?
Generally, linguistic knowledge is stored in two principal places: lexicon and rule base.
Conventionally, the lexicon is the principal repository of linguistic detail and it is here that
whatever semantic information a system will have tends to reside. The lexicon will commonly
contain codes or instructions to assist in syntactic and sometimes also semantic disambiguation.
In “radical lexicalism” (Karttunen, 1987), such as in so-called ‘Shake and Bake’ systems
(Beaven, 1992), virtually all linguistic information is stored lexically. Lexicons thus tend to be
information-rich, and because they are by nature indexable, can grow to very large size with
negligible performance impact. But because lexical entries are word-specific, the lack of
generality in lexically driven operations can be considered a drawback. Another drawback
concerns the cost and difficulty users may experience in building and maintaining information-
rich lexicons. Historically, some otherwise effective systems have been known to founder largely
on these grounds (e.g, TAUM Aviation (Juola, 1989)).

Rule bases, by contrast, are largely confined to syntactic information whereby generality is
realizable. Because of their inherent generality, syntactic rules can also be relatively few in
number, considered a sought-after virtue with respect to system performance. There are
drawbacks as well, chief among which is the parse-forest approach to parsing that “syntax alone”
entails, requiring subsequent pruning. This separation of syntax and semantics (and the functions
they support) advances an approach to language quite distinct from the assumptions about human
sentence processing we have been describing in this paper.

4.2.1 Linguistic Storage in the Logos Model.
Knowledge store in the Logos Model differs rather considerably from the conventional
distribution mentioned in the preceding section. The Logos lexicon, for example, has
exceptionally lean information content, considering that the lexicon must support semantic
processing and the distant, ultimate goal of FAHQT. Lexical information for a given entry is
confined to (i) SAL classification for the part of speech (POS code plus three SAL codes for
superset/set/subset); (ii) codes denoting morphological class and properties, to support analysis
and/or generation; (iii) optional domain codes and user ID’s used to guide lexical selection at run
time; (iv) pointers to target transfers (any number of target languages). This informational
leannesswas motivated by the perceived need to keep lexical work as simple as possible for the
commercial user.

The following properties of the lexicon will be of interest:

 Lexical entries are stored in a relational data base (Oracle, since 1995).

 16

 There is no distinction between source and target entries in the lexicon: the same entry in

a given language will serve both source and target purposes. This is also true of all
morphological tables.

 Morphological data required for a new lexical entry (including stem generation) is

derived automatically by language-specific logic (and exception tables) in the
TermBuilder software, freeing the user of this concern.

 Syntactic homographs also need not concern the user. When making a new entry, users

do not need to consider whether or not the entry entails more than one part of speech.
Assuming the lexicon already possesses these other parts of speech, TermBuilder
automatically links associated homographs to the new entry.

 SAL codes are automatically assigned (since 1997) via an expert knowledge base

wherein all possible meanings of all nouns are defined (i.e. SAL-encoded). However,
accuracy here is far from optimal and users are urged to review SAL assignments and
correct them as necessary. (So-called “prompts” are provided for this purpose, making it
unnecessary for users to become familiar with the SAL coding scheme.) The automatic
SAL-coding provision was designed to accommodate users’ rush jobs and can be
considered an adequate accuracy/expediency tradeoff in such circumstances.

 Entries are also optionally encodable for subject matter domain and user ID. Users can

create their own domain hierarchy or employ one supplied by the system. Lexical
matching logic gives priority to domains and ID’s specified by the user at run time.

 Provision has been made in the Oracle implementation of the lexicon to include

additional semantic codes, SAL or otherwise, for the full range of meaning that a word
has. At present, however, the meaning assigned an entry is limited to (i) a meaning
associated with a subject matter or company code; or (ii) a default meaning. It is the
function of the Semantic Table to detect other meanings, fairly easily accomplished in the
case of verbs and prepositions, but far more problematic in the case of adjectives and
nouns (See Section 8 and Fig. 18).

The relatively high degree of automation available in lexical work allows users to dump pre-
existing user glossaries into the lexicon quickly and easily, assuming they are rationally
organized. Users are advised however that, with regard to SAL code assignments, interactive
processes will yield significantly better results. It may be difficult to persuade the user of this
since the impact of less than optimum lexical work is not always evident in the short term though,
doubtless, it would become evident over time. Considerable internal debate has taken place
regarding the relative business advantages of offering full automation with its appeal of speed and
effort-reduction versus the imposition of labor-intensive interactive processes for the sake of their
positive, long-term effects on translation quality. Given the option, one can foresee a majority of
users choosing the route of least effort. Indeed, user psychology here may prove to be the
ultimate limiting factor in the developer’s quest for FAHQT.

4.2.2. Logos Model Rule Bases: Source Rules
Although the lexicon is obviously foundational to translation, in the Logos Model the
informational richness needed for effective, industrial strength MT lies primarily in the Model’s
rule base, not the lexicon. This is accounted for by the fact that source rules are not syntactic but
semantico-syntactic. To support deterministic parsing, rules must be prepared to deal with both
syntax and semantics as these variously affect decisions regarding both structure and meaning.
The advantage in such an arrangement is clear: because these semantico-syntactic rules are

 17

abstract (a consequence of the second-order abstractions of SAL), rule-based semantic processing
can avail itself of the advantages of generality as well as specificity.

A second implication for informational richness concerns the size of the rule base, which
traditionally must be kept small for performance reasons. In the Model we are describing, the
rule base can grow to any size, with such growth having generally sub-linear impact on
performance. In the current Logos System for English, there are well over twenty thousand
semantico-syntactic source rules distributed across the eight rule modules of the pipeline (Fig. 2).
(The overall rule base size for German source is slightly smaller.) In a 25-word English source
sentence, on average about 257 rules will contribute in some way to its deterministic analysis: c.
21 for Res1, 32 for Res2, 43 for Parse1, 54 for Parse2, 34 for Parse3, 62 for Parse4, and 11 for the
two Semantic Tables.

The following features of these rules will be of interest:

 Source rules are extremely shallow, functionally speaking. Each rule typically deals with
a single NL phenomenon, and accomplishes with respect to that phenomenon some small,
standardized function or set of functions. The severe restriction on rule scope accounts
for their large number. Strict, standardized functionality is imposed on rule writers
intentionally: to keep source rules reasonably simple and transparent. Although the set of
functions available to the rule writer is fairly extensive, rule writers do not have access to
general-purpose programming facilities for specifying rule constraints or actions.

 Source rules almost always presuppose other rules, and work in free conjunction with

rules presumed to fire before or after the current rule. Thus a number of rules, each
presupposing the other, are typically needed to accomplish what a single rule in another
system might do. This rule conjunction is considered free because rule sequence is not
legislated either by the rules themselves or by any supervisory logic. (Chiefly, what
controls rule sequence is the logic of the input stream itself, although rule writers can
influence the sequence in a general way be re-labeling some aspect of the input (e.g.,
Type field) and then re-examining it, causing a different set of rules to become invoked.
Carried to an extreme, this could begin to resemble an algorithm, but that level of control
is hardly ever employed.) One advantage of this arrangement (many simple rules versus a
single complex rule) is that developers, when debugging, can more readily identify the
effect of any given rule. The main motivation, however, was the need to address natural
language’s richness--the endless, often idiomatic details of natural language--in a way
that was both effective and efficient. A system with a performance-restricted number of
large, powerful rules (only one small portion of which rule might be relevant in a given
situation), seemed less likely to support these ends, and more prone to the previously
cited problem of logic saturation.

 Source rules have three parts:

o Semantico-syntactic pattern expressed as a SAL string. Patterns can comprise up
to ten SAL elements and can have up to three Kleene stars. (Kleene stars can be
constrained in a variety of ways.) Patterns in most rules tend to be quite short.
Each element in the pattern is expressed by the WC(Type;Form) triplet. Patterns
obviously can and do include literal words where necessary (expressed by a hash
code in the Type field).

o Constraint satisfaction. Constraints which must be met for a rule to fire may
relate to (i) some semantic feature or set of features of an element or elements in
the SAL pattern that is not expressible in the element’s Type field, e.g. something
that could have been learned about the element earlier in the pipeline; (ii) some
previous event in the clause or entire sentence, such as the earlier occurrence of a
certain SAL element or ad hoc set of elements (e.g., certain verb Types); (iii)

 18

some SAL element or set of such elements which must be found (or not found) at
some distance to the right; (iv) some condition of the clausal state which must be
true, such as clause or sentence type. In short, constraints can pertain to virtually
any kind of top-down or bottom-up information that could be relevant to
analysis, whether semantic, syntactic or morphological.

o Source action: Actions consist of the string of functions specified by the rule
writer, drawn from a library of fixed functions. Actions can be made conditional
on various testable linguistic conditions, but are otherwise limited to the library
repertoire. Principal action typically is re-write (and concatenation) of the SAL
input pattern at a still more abstract level. However, re-writing is not a necessary
function of a rule and many rules exist merely to analyze and re-label some part
of the SAL signature of an input element, or in some other way to pass on
notational information regarding that element for the benefit of some subsequent
rule. More rarely, rules may also override decisions of previous rules. Although
the ability to do this is rather limited, this provision allows for correction of a
false, previously made N/V homograph resolution. Target actions, if any, are
accomplished in separate, optional target rules parasitically linked to the source
rule so as to make use of source rule analysis. Target rules from any number of
target languages may be so linked.

 Source rules accomplish analysis in bottom-up, left-to-right fashion, as the SAL string

passes down the six modules of the pipeline. Information about the input string captured
by the initial macro parse of the two Res modules is made available as top-down data to
the later Tran modules and accounts for the presence of top-down constraints in these
Tran modules. (The provision of top-down information during bottom-up analysis will be
further accounted for in discussion of the Res pipeline modules, Section 4.3.2.)

 Source rule bases in the Logos Model can be viewed as SAL pattern dictionaries

indexable on their SAL pattern. Such indexing accounts for the sublinear performance
impact of rule growth in the Logos Model. In effect, the SAL input string serves as
search argument to the rule base qua SAL pattern dictionary, analogous to the way NL
words are looked up in a NL lexicon. This is how the Logos Model emulates the
“content-addressable” memory feature of the mental model. (This feature will be further
accounted for in Section 7).

 Rules are self-ordering. Developers do not have to think about where to put a new rule in

a given module, or how to insure its being matched. Obviously, developers’ parsing
strategy will determine which rule base module in the pipeline is to house a given rule.

 All three parts of a rule are in the form of data, interpreted by the language-neutral

software of the corresponding pipeline module.

4.2.3 Logos Model Rule Bases: Target Rules
Target rules in the Logos Model, where such rules are present, are linked to source rules, and are
confined to a contrastive linguistic function vis à vis the input segment the source rule is dealing
with. Target rules therefore only have an action component. The functions available to target
linguists nevertheless allow them to implement very effective contrastive linguistic strategies, as
the translations in this paper hopefully make evident. Target functions can entail additional
analysis of the relevant source pattern, making target actions contingent on source factors left
unanalyzed by the parent source rule.

In the previous section on source rules, we stated that simple noun phrases are parsed as NP via a
sequence of source rules. Target equivalences are effected under this arrangement by a

 19

progressive filling of slots in a target NP template, as elements are handled, one by one, in the
source rules. In some cases, new elements not in the source (e.g., a preposition or an article) are
added to a template slot, or a source element may be suppressed, etc. Thus, once a target rule
(linked to a source rule handling the linguistic element) determines that the target equivalent of,
say, an AJ in the SAL string should be post-posed in the target, that target adjective is placed in a
post-posed adjective slot within the target NP template. For example, source analysis of the
English input string a tall, white horse, coupled with linked target rules for French, would yield
the source NP and equivalent target NP, below. Note that the French NP rewrite here is top-down,
acting on the bottom-up NP of the English analysis.

o Parse1 source rewrite action: DET AJ1 PUNC AJ2 N NP
 (A tall, white horse)

o Tran1 target rewrite action: NP DET AJ1 N AJ2
 (Un grand cheval blanc)

In the above example, target slot unloading takes place immediately following creation of the
source NP and the associated target rule is called. Target action here unloads the target NP
template slots, in effect creating the contrastive sub-tree structure for the target constituent.
Target action also includes annotation of this sub-tree node for data (case, gender, number)
needed in generation of the literal target noun phrase at the tail end of the translation process. In
general, target templates for NP, VP, clause, and sentence are the keys to structure transfer in this
Model. These templates are powerful and allow for slot nesting, and for loading of functions to be
executed at slot-unload time.

Target rule characteristics:

 Source rules invite target rules to fire (any number of targets) whenever some source

analysis is deemed to have potential target implications.

 Target work conducted can be thought of as tree-to-tree transfer. In effect, as each node
in the source tree is built, in bottom-up fashion, at successively more abstract levels, a
linked target rule acts upon the SAL pattern comprising that node and establishes the
target equivalent, in contrastive linguistic fashion.

 Target actions are also limited to a standard repertoire of actions. As in the case for

source rules, target rules do not support general-purpose programming logic.

 Target rules that transfer source verb constructions (in the Parse4/Tran4 modules) are
designed to be multi-source, i.e., common to any source module. In the case of such
multi-source target rules, source parameters (for tense, voice, aspect, etc.) that are needed
to drive these verb rules are expressed meta-linguistically. Thus, for example, verb
formation rules in Parse4/Tran4 for French, can be linked to any source (currently
German or English). This multi-source feature is not true of target rules in general.

 Because they must often effect radical transformations in narrow confines, target rules in

this Model tend to be somewhat more complex than source rules and relatively more
difficult to maintain (i.e. less free of complexity effects).

4.2.4 Semantic Tables
The Semantic Table (Semtab) is a knowledge resource called upon by rules in the four Parse/Tran
modules for purposes of finer analysis. (A similar but separate Semantic Table is available to the
two Res modules.) Rules in the Semantic Table, called Semtab rules, are conceptual, deep
structure rules invokable by regular source and/or target rules at any stage of pipeline analysis or

 20

transfer. These deep structure rules can be applied to virtually any relevant surface structure,
regardless of word order, passive/active voice construction, etc. Semtab properties include the
following:

 Resolution of parsing problems. For example, a Semtab rule would be invoked in the
Res2 pipeline module to resolve the attachment of the PP to his brother in the following
sentences (shown with raw German output):

(6a) John gave the car that he bought to his brother.
(6b) John repaired the car that he gave to his brother.
(6a’) John gab seinem Bruder das Auto, das er kaufte.
(6b’) John reparierte das Auto, das er seinem Bruder gab.

In the foregoing, a generic Semtab rule applying to any SAL di-transitive verb with
governance of the preposition to, causes the PP to his brother to be labeled as converbal
to the di-transitive verb, in whatever clause it is found. The di-transitive give is in the
main clause in (6a), and in the relative clause in (6b), an analysis reflected in translations
(6a’) and (6b’). This labeling has the effect of inhibiting the firing of any subsequent rule
that would want to keep the PP in the current clause by default, which would work
serendipitously for (6b), but not (6a).

 Resolution of semantic ambiguities. Semtab rules resolve verb polysemy, usually on the
basis of their argument structure. Using the verb raise, we illustrate various French
transfers effected by Semtab, based on argument structure. In these rules, AN stands for
‘animate’ noun superset, ME for ‘measure’ superset, and MA for ‘mass.’ The lower case
string stands for set or subset under the respective superset. These rules would typically
be invoked in Parse3/Tran3.

(7a) raise a child V(‘raise’) N(ANhum) élever . . .
(7b) raise the rent V(‘raise’) N(ME) augmenter . . .
(7c) raise corn V(‘raise’) N(MAedib) cultiver . . .

 Rules are conceptual (deep structure). Semtab rules are conceptual in nature and can be

invoked to resolve verbal elements without consideration as to actual part of speech. We
illustrate this with the Semtab rule: V(‘raise’) + N(ME) augmenter. This deep structure
rule is applied to all surface forms of raise, and augmenter in turn is automatically given
its own appropriate surface form.

(8a) he raised the rent il a augmenté le loyer
(8b) the raising of the rent l’augmentation du loyer.
(8c) the rent, raised by. . . le loyer, augmenté de . . .
(8d) a rent raise une augmentation de loyer

All of this contrastive transfer was effected by the single Semtab rule abstracted above,
invoked at various stages of the pipeline: (Parse1/Tran1 for (8d), Parse2/Tran2 for (8b,
8c), Parse3/Tran3 for (8a)). (Users of the Logos System can readily create such rules via
the RuleBuilder tool (previously called Semantha).)

 Target transformations. Semtab rules analyze the meaning of the source and effect target

equivalents, not infrequently involving structural changes. Typical examples follow:
(9a) He is afraid of the dark.
(9a’) Il a peur de l’obscurité.
(9b) They are competing against local companies.
(9b’) Ils font concurrence aux sociétés locales.
(9c) Try to keep him busy.
(9c’) Tentez de l’occuper.
(9d) He swam across the river.
(9d’) Il a traversé la fleuve à la nage.

 21

(9e) If the light goes on, be sure to turn it off.
(9e’) Si la lumière s'allume, soyez sûr de l'éteindre.
(9f) The conflagration may go on for many days before they put it out.
(9f’) La conflagration peut continuer pendant beaucoup de jours

avant qu'ils ne l'aient éteint.
(9g) He lived down the bad reputation that had been following him.
(9g’) Il a fait oublier la mauvaise réputation qui l’avait suivi.

 (9h) His good name will live on.
(9h’) Son bon nom survivra.
(9i) The new product did not live up to expectations.
(9i’) Le nouveau produit n’a pas répondu aux espérances.
(9j) The family lived through the storm.
(9j’) La famille a survécu à la tempête.
(9k) He lived out the war in a small town far from the conflict.
(9k’) Il a passé la guerre dans une petite ville éloingée du conflit.

 Semantic Tables are language-pair specific. There is a separate Semantic Table for each

source and target language combination. (All other source modules in the Logos Model
are target-independent in nature and multi-target in effect.) Plans to separate out purely
source-related rules into a separate, target-independent module have never been
implemented. Until this happens, current implementations of the Logos Model can only
execute one language combination at a time, i.e., cannot execute in actual multi-target
mode.

 Semtab has over 12,000 rules in the English system. The verb raise has 26 rules affecting

analysis and transfer, the verb take has 130 rules. Semtab is expected to grow many
times over as the English system continues to mature. (Semtab in the present German
system is already somewhat larger.)

4.3 HOW DO YOU APPLY THE RULE BASE TO THE INPUT STREAM?
We treat this question in two parts. First we discuss the various ways rules can be applied to the
input stream. Then we present a functional overview of input stream/rule base interaction in the
Logos Model, as analysis proceeds along the pipeline.

4.3.1 Applying the Knowledge Store.
David Hays, one of the early MT pioneers, claimed that perhaps the most critical and troublesome
aspect of machine translation concerned the method by which the knowledge base is to be applied
to the input stream2, a claim that few developers would care to dispute. In very general terms, the
possibilities for this knowledge base/input stream interaction are as follows:

 One-to-Many Relationship (Traditional Lexicon). The one-to-many relationship is
typified by lexical lookup where an input term serves as search argument to the stored
lexicon. This relationship is made possible because of the representational monotonicity
shared by input and stored knowledge, viz., literal words. The one- to-many relationship
furthermore presupposes an index which efficiently connects search argument to stored
knowledge. The finer the index, the smaller the ‘many’ that must be looked at. As a
result of these factors, increases in the size of the lexicon have strictly sublinear impact
on system performance. Hence growth in lexicon size need never become an issue.

 Many-to-One Relationship (Traditional Rule Base). The principal difference here is that,

in traditional models, rule bases and input stream generally do not share strict
representational monotonicity, i.e., one is usually attempting to compare apples and
oranges. In effect, one starts with the rule base (the many) and attempts to find a match
on the input (the one). This raises the question of how to accomplish rule matching

 22

efficiently. Matching strategies generally entail supervisory logic, often in the form of
metarules or discrimination networks designed to narrow down the number of rules that
need to be applied. Whatever the case, the relationship is many-to-one and for this
reason, system performance issues exert great pressure to keep the size of the “many”
small.

 Logos Model Rule Base: One-to-Many Relationship. The Logos Model conceives of its

rule bases as indexable pattern dictionaries, with the effect that the relationship is one-to-
many, as in the case of the traditional lexicon. The nature of the index is such that the
one-to-many relationship, in certain contexts, begins to approach one-to-one. It is not
unusual, for example, that an input segment will find its appropriate rule match by
directly consulting a single rule. As in the case of the lexicon, this one-to-many
relationship means that growth in rule base size has strictly sublinear impact on system
performance. And as in the case of the lexicon, this advantage is made possible because
of the representational monotonicity which SAL affords between input stream and
knowledge store, thus allowing the SAL input stream to serve as search argument to the
series of SAL pattern dictionaries (rule bases) as the SAL input stream passes down the
pipeline from module to module.

4.3.2 Pipeline Modules and their Functions (Fig. 8)
Each software module in the pipeline, in succession, take segments of the SAL input stream
(working left to right) and, using them as search arguments, seeks the highest scoring match in
the module’s rule base. Scores are calculated on the basis of pattern length and semantic
specificity (in Res some additional factors are used). A successful match occurs when a source
rule (i) matches the search argument (SAL input segment), (ii) satisfies all rule constraints, (iii)
wins out over competing rules, (iv) and thus wins the right to fire, which means in effect that the
action component of the rule is then executed, i.e., the software module interprets and carries out
the various functions specified. Depending on where we are in the pipeline, actions may entail
any or all of the following: (i) analysis and resolution of syntactic homographs, grammatical
relationships, semantic homographs; (ii) concatenation of elements under the head element and
creation of a bottom-up parse tree node; (iii) annotating parse nodes by means of a one-hundred-
cell array linked to each such node; (iv) recording of both top-down (overview) and bottom-up
(local) intelligence for the benefit of subsequent rules; (v) calling linked target rule (for any
number of targets) optionally to avail itself of source rule’s analysis.

 23

Macro-parse

• clausal
 segmentation
• homograph
 resolution

Micro-parse

• bank and appliance store
 computer and TV store
• smart boys and girls
 blue sky and sunshine

• book on war
• REL clauses

• keep NP
 keep NP away from NP
• to NP of NP and NP

• interclausal
 analysis

semantico-syntactic
pattern rulebase

input
stream

• ways of cooking lentils
• types of cooking utensils

S

R1
R2

P3

P1

P4

P2
(1)

(2)
(4)

(5)

(3)

(6)

Fig. 8 - Incremental Pipeline Analysis. Res modules accomplish a macro parse (1) of the input
sentence, resolving syntactic homographs and clausal transitions. This macro parse affords a top-
down view of the sentence that is used to guide the bottom-up micro parse by the four Parse
modules. Micro parse is accomplished incrementally, each Parse module dealing with a specific set
of parsing tasks, as illustrated in (3) to (6).

Pipeline modules (Figs. 3 and 8) and their analysis functions are as follows:

 Format - This module extracts all mark-up commands from input text (HTML, Interleaf,
etc) for subsequent re-application to target output. In some cases, mark-up information is
made use of during analysis, e.g., bold facing in a string such as ‘Insert key’ helps
analysis see Insert as a label rather than as an in-line verb. This module also segments
text into discrete sentences. (There is as yet no extra-sentential handling, i.e., no sentence
carry). Sentence length is arbitrarily set at 70 elements (including punctuation).
Sentences exceeding this limit are automatically broken up into smaller sentences at
semicolons or other potential breakpoints.

 Lex - Words of NL sentence are looked up in this module (on longest match principle)

and are immediately converted to their corresponding SAL element (or elements, where
entry is syntactically ambiguous). Functional characteristics of lexicon are as follows:

o no practical limit on word length in a lexical entry.
o no limit on number of words in a lexical entry. However, an arbitrary ten-word

matching limit is currently imposed by the Lex software module.
o no limit on number of parts-of-speech associated with a given

 24

entry. However, a Res limitation (see below) requires that only three parts of
speech can be extracted for analysis purposes, a limitation meant to be
compensated for by various stratagems involving Semtab. (The word building
concerns seven parts of speech.)

o no limit on number of meanings associated with a given part-of-
speech of a given entry, insofar as such entries are differentiated by subject
matter domain or user ID. However, there is only one default entry that will
automatically be selected if no other selectional criterion is found to apply. This
can be a serious limitation in the case of polysemous common nouns, one that is
only very partially overcome by recourse to Semtab (See Section 8 and Fig. 18).

o domain codes are hierarchical, allowing matching logic to favor the more
specific codes in a selectional list and to default to the more generic.

o part-of-speech disambiguation on morphological grounds immediately
eliminates certain word classes from further consideration for a given
entry.

o In German source, compound nouns that have no lexical match are
decomposed and separate elements are looked up. Nothing comparable is done
for composite nouns in English source.

 Res1, Res2 - Each Res module accomplishes a single pass of the sentence, from left to

right, collectively effecting a macro parse. No parse tree is formed (no concatenation)
but homographs are resolved and all clausal boundaries and clausal relationships are
identified. Information regarding the macro parse is passed on to subsequent Parse
modules to serve as top-down guide for the progressive, bottom-up micro parse effected
by these modules. This top-down picture enables the micro parse, when looking at a
noun, for example, to know the structural context of that noun, e.g., what sort of clause
the noun is in (e.g., a relative clause inside a dependent clause), whether the noun
precedes or follows the verb of the clause, the SAL class of that verb, etc.

For English source analysis, the principal work of the Res modules is homograph
resolution. The SAL information coming out of Lex shows all possible parts-of-speech
that the original NL word was found to have and that remained unresolved after
morphological analysis. It is the task of Res1 and Res2 to resolve such ambiguous forms
to a single part-of-speech. The following are typical examples of the work of these Res
modules. Two sentences of similar construction are shown. Note that both have ‘ADV
ING N’ strings at the end which have to be resolved quite differently. We show the effect
of this resolution on unedited machine output for French, other translation flaws
notwithstanding.

(10a) We spent time doing tasks such as systematically classifying
 documents.
 (10b) We spent money eating things such as really satisfying pastry.
 (10a’) Nous avons passé le temps à accomplir des tâches telles que la
 classification systématique des documents.

(10b’) Nous avons dépensé de l’argent en mangeant des choses tels
 que la pâtisserie vraiment satisfaisante.

In (10a) the ING form classifying is to be resolved to a verb, in (10b) satisfying must be
resolved to an adjective. Both ING’s came into the Res modules as two parts of speech
(second infinitive and verbal adjective). In (10a), the key to resolution was provided by
tasks SAL-coded as a member of a ‘verbal abstract’ noun grouping that anticipates verbal
complementation. When a Res2 rule encounters this Type of noun in the input stream, a
top-down verb-expectation bias is established which allows a subsequent rule to interpret
the ING form as a verb. In (10b), the absence of any such bias (or other determinant)
allows the default resolution to obtain, namely to the adjectival form of the ING.

 25

Res2 affords limited look-ahead capability for avoiding garden path situations. In the
case of the classic garden path construction in (11b), below, a rule attempting to resolve
the syntactically ambiguous form, run, to the main verb of the sentence must first invoke
a look-ahead function to insure that no unambiguous main verb is to be found to the right.
Such search-ahead logic is also pattern-rule based, and while generally effective in
shorter sentences, may run into difficulties in longer constructions. Notice, in the raw
French output below, how run has been resolved to an intransitive verb in (11a) and to a
transitive verb in (11b).

(11a) The horses run by the barn.
(11b) The horses run by the barn are tired.
(11a’) Les chevaux courent par la grange.
(11b’) Les chevaux dirigés par la grange sont fatigués.

Res modules share a dedicated Semantic Table which supports a variety of resolution
strategies. For example, a selectional restriction rule in this table helps resolve the
noun/verb homograph loan to a noun in the context of words like office, form, value,
officer, etc, as may be seen in (12a) and (12a’), below.

(12a) We sold everything from desks to loan office furniture.
12a’) Wir verkauften alles von Schreibtischen zu Darlehensbüro-Möbeln.

While the number of rules in this table is in the thousands, relatively few actually deal
with selectional restrictions, this stratagem never having been found to be particularly
efficient or effective in our experience. Selectional restriction rules generally have weak
authority, as may be seen in (12b) and (12b’), below.

(12b) We do not allow our employees to loan office furniture.
(12b’) Wir ermöglichen unseren Angestellten nicht, Büromöbel zu leihen.

In (12b), the Res rule that registers allow as ‘pre-verbal’ causes a subsequent Res rule to
outbid the Semantic Table’s selectional restriction rule otherwise applying, causing loan
to be resolved to a verb, as the leihen in (12b’) shows.

In German source analysis, the contribution of the Res modules to the parse is more
restricted, addressing primarily (i) the ambiguity of noun case markings; (ii) die, der, das
part-of-speech resolution (to the extent possible). Given the nature of German
morphology, it may take the entire pipeline analysis to resolve certain ambiguities. For
example, Res can readily resolve the part of speech and case of der in der Mann, but must
defer final resolution of das in das Bier to a subsequent pipeline module. For example, in
das Mädchen, das Bier bringt, resolution is not effected until the relative clause handling
done in Parse2.

A graphic illustration of the Res macro parse may be seen in Fig. 11.

 Parse1 - The four Parse modules effect a micro parse of the SAL input stream, building

on the output of Res and producing a final, single, bottom-up parse tree. Although Parse
software modules are almost identical programmatically speaking, the compositional
approach implied in pipeline architecture presupposes that each Parse module will
perform a specific range of bottom-up parse functions. The output of each Parse module
serves as input to the next, affording a progressively more abstract analysis of the
sentence.

Typical operations that Parse1 accomplishes (not always successfully):

o Simple NP formation (excluding noun series, REL and PP
 attachments). Parse tree nodes for NP are annotated for NP properties

 26

 (definite, indefinite, SAL Type of adjective modifier if any, etc.).

o Scoping of adjectives. Scoping of AJ in AJ N N, e.g., is achieved by sending the
adjective and each noun in turn to the Semantic Table. In the noun phrases below,
with unedited translations, note that the adjective in (13a) applies to the modifier
noun, boys/garçons. In (13b) and (13c), the adjective applies to the head noun.
Default scoping is to head noun. Adjective scoping remains a relatively weak
area in Parse1 analysis.

(13a) Smart boys school
(13a’) École de garçons intelligents
(13b) Large boys school
(13b’) Grande école de garcons
(13c) Smart language students
(13c’) Élèves de langue intelligents

o Auxiliary verb phrase analysis, concatenation and labeling. For example:

ought to have [+ verb, past t.] AUX(MOD;psma) [Form = past subjunctive
modal active].
 (14) He ought to have gone home.
 (14’) Er hätte nach Hause gehen sollen.

o Adverbial phrase recognition and concatenation. For example:

 in general AV(SENT) [sentential adverb] (Note that in general is
not lexicalizable. Cp., in general terms, in general quarters.)

 all morning/day//year/etc. long AV(TIME) toute la journée/etc.

o Resolution of ING forms. Res determines when an ING form is to be seen as
nominal, but leaves it to Parse1 to decide whether, in the case of some forms, the
ING is a concrete noun or gerund. Source analysis and target transfer of ING
forms are effected by close interaction between Parse1 and Semtab. This remains
a still largely unexploited area of Parse1/Semantic Table interaction but the
examples below, with unedited output, at least show the current possibilities:

 (15a) He saw a building.
 (15a’) Il a vu un bâtiment.

(15b) He witnessed the building of the dam.
(15b’) Il a vu la construction du barrage.
(15c) The device has a variable speed setting.
(15c’) L'appareil a un réglage de vitesse variable.
(15d) A new diamond setting technique has been developed.
(15d’) Une nouvelle technique de positionnement de diamant a
 été développée.

o Re-labeling of should, provided, etc. at beginning of declarative sentences. For
example:
 (16) Should the situation call for such action, we are prepared to

 act.
 (16’) Si la situation réclame telle action, nous sommes prêts à

 agir.

o Analysis of as. The form as is in the dictionary only as a CJ(SUB), it being left
to source analysis to determine its exact grammatical function, especially when
used to introduce a non-lexicalizable phrase. A great many such phrases are
handled by Parse1, e.g., as a whole; as AV as; as AJ as, etc. Parse1 analysis
concatenates these phrases, labels them as appropriate (ADV, PP, DET, CJ(SUB)),

 27

and affords targets opportunity to override the default lexical transfer. For
example:

(17a) as of April ab April
(17b) as few as five nur fünf
(17c) as many as five bis zu fünf
(17d) as to … Im Bezug auf …
(17e) as long as possible so lange wie möglich
(17f) as long as you insist, I will come solange Sie bestehen,
 komme ich.
(17g) four times as fast viermal so schnell

o Analysis of any. Translation for any commonly depends on analysis of the entire
clause, as illustrated in the following:

(18a) I do not have any book. Any book will suffice.
(18a’) Je n’ai pas de livre. Tout livre suffira.
(18a’’) Ich habe kein Buch. Jedes Buch genügt.

The context available to Parse1 is limited and Parse1 translation for any can often
be wrong, despite the top-down picture afforded by the macro parse. In (18b),
we see that the Parse1 transfer for any has necessarily been overridden by
subsequent pipeline analysis.

 (18b) If you do not wish to have any supper tonight, please tell the
 cook.

(18b’) Si vous ne souhaitez pas dîner ce soir, veuillez dire au
 cuisinier.

Deficiency in target work can also be a source of error, as the French in (18c’).
Note that the German in (18c’’) treats any more correctly.

 (18c) Do you want any supper tonight?
(18c’) *Voulez-vous tout dîner ce soir?
(18c’’) Wollten Sie kein Abendessen heute abend?

o Reversing a parsing decision made by Res. Though infrequently invoked,

Parse1 possesses the means to reverse Res, usually regarding N/V homograph
resolution. To this limited extent, the pipeline parse is not purely deterministic.

 See Fig. 13 for a graphic illustration of Parse1 parsing.

 Parse2 - The second Parse module builds upon the output of Parse1. Among its principal
tasks are:

o Detecting, and effecting connominal PP attachments to NP. Here the Parse2 rule
generally has the form shown below, where x is any preposition or class of
prepositions.
 SAL Pattern: NP(GOVx) PRP(x) NP

Constraints: (i) The verb of the clause, if one has occurred, has
not made a strong prior governance claim on PRP; (ii) the
NP governs the PRP.

Actions: (i) Preposition is labeled connominal.
 (ii) prepositional phrase is attached to NP at left.
Targets: Targets typically alter lexical transfer for the PRP at this
point, as in (19b’), below.

 28

In (19a’), below, notice that the gender of the German relative pronoun die refers
to revulsion rather than money, reflecting a probabilistic assumption regarding
which noun to attach it to.

(19a) He has a revulsion to money that cannot be overcome.
 (19a’) Er hat eine Revulsion zu Geld, die nicht überwunden
 werden kann.

 (19b) He wrote a book about the room.
(19b’) Er schrieb ein Buch über den Raum.
(19c) He placed some flowers about the room.
(19c’) Er stellte einige Blumen um den Raum.

 In (19c), above, the prepositional phrase about the room is not seen
 as connominal (to flowers) in Parse2. Rather, the converbal attachment of the PP

and the target transfer um are effected in Parse3, as seen in (19c’),

o Extraction of relative clauses, embedded absolute constructions,
parenthetical material, etc. In all cases, these are removed from the clause in
which they appear, leaving behind a trace marker. Extracted materials are
processed through Parse2-Parse4 as separate sentences. (See Fig. 14 for graphic
illustration of clause extraction.)

o Discrimination between relative clauses and th-clauses. For example:

(20a) The hope that he had was very strong.
(20a’) Die Hoffnung, die er hatte, war sehr stark.
(20b) The hope that he would win the race was very strong.
(20b’) Die Hoffnung, dass er das Rennen gewinnen würde, war

 sehr stark.

See Fig. 14 for a graphic illustration of Parse2 parsing.

 Parse3 - The third Parse module builds upon the output of Parse2. It will be
 noted in what follows that much of the work in Parse3 is accomplished via
 interaction with Semtab. Among phenomena dealt with in Parse3 are:

o Verbs and non-contiguous verb particles. The rule abstracted below is
typical: a SAL pattern consisting of an undifferentiated verb (V) stretching (∗)
over any number of non-verbal clause elements to a particle (PART) which is
following immediately by clausal punctuation (PUNC(CB)). Note that up to this
point analysis has not yet connected the verb and particle.

 SAL Pattern: V(u;u) ∗ PART PUNC(CB)
 Constraints: None.

Action: (i) Send Pattern to Semantic Table for match;
(ii) re-label PART, and backspace all the way for next
match (re-labeling forestalls rematching).

Semtab Action: (i) If match on V PART is found, verb and particle
 are re-labeled with appropriate new SAL code.

 Target Action: Target assigns new transfer to re-labeled verb (this
 is also done in action portion of Semtab rule).

In (21) and (22), below, we see the discriminating power of the Parse3/Semantic
Table interaction, in particular, and of the pipeline parsing strategy in general.
Sentence (21) is artificial but serves to illustrate Parse3 analysis.

 (21) Please take the cover of the box, put on by my brother, off.
 (21’) Veuillez retirer la couverture de la boîte, mise par mon frère.
 (21”) Nehmen Sie bitte die Haube der Kiste, die von meinem

 29

 Bruder angeschaltet wird, ab.

Below are further examples of Parse3/Semtab interaction, all initiated by the
single Parse3 rule abstracted above:

(22) Take the unit down, take the unit out, take the unit away, take
 the unit apart, take the work on, take the items back.
(22’) Baissez l'unité, sortez l'unité, retirez l'unité, démantelez l'unité,
 entreprenez le travail, reprenez les articles.

o Verb argument structure analysis and labeling. The Parse3 rule effecting
 the analysis and transformations in the examples below is even simpler:

 SAL Pattern: V(u;u) ∗ PUNC(CB)
 Constraints: None

 Action: (i) Send Pattern, including all elements covered by
Kleene star, to Semtab for match; (ii) inhibit this rule and
backspace all the way for next match.

Semtab Action: (i) If match on V + verb arguments occurs,
 constituents are re-labeled where appropriate.

 Target Action: Target may assign new transfer to verb, converbal
preposition, object of verb, subject, etc. (also done in
action portion of Semtab rule).

The following illustrate typical Parse3/Semtab interactions invoked by the above
Parse3 rule and the sort of target work that Semtab can effect.

 (23a) Please let me know the result.
 (23a’) Lassen Sie mich bitte das Ergebnis wissen.
 (23b) Please let me have the book.
 (23b’) Erlauben Sie mir bitte, das Buch zu haben.

o NP series concatenation. Rule constraints in series rules allow match only

where commas and coordinating conjunctions are non-clausal, as established by
the earlier Res macro parse. For example:

SAL Pattern: NP(u;u) PUNC(COM) NP(u;u) CJ(CRD) NP(u;u)
Constraints: PUNC and CJ (conjunction) are not clause boundaries.
Actions: (i) Concatenate as NP, using SAL code of NP1; (ii)

re-label last NP with end of series marker; (iii) backspace 1
element.

Targets: (i) Chain articles and preposition series (for French);
(ii) Make case assignments (for German), etc.

The unedited French translation (24’) of sentence (24) well illustrates the effect
of this Parse3 rule, and a shorter Parse3 rule just like it:

(24) My father gave his house, car and boat jointly to his sons and
 daughters.

(24’) Mon père a donné sa maison, sa voiture et son bateau en
 commun à ses fils et à ses filles.

o Analysis and concatenation of hitherto unattached prepositional phrases
as adverbial PP. Adverbial PP’s are labeled PP(SENT), PP(LOC), PP(MANNER),
etc., according to PRP and NP Type combination.

o Interclausal chaining. The following depicts a Parse3 rule designed to handle
ING series in dependent clause, whether chained by comma or coordinating
conjunction. Labeling of the ING form in the first dependent clause is

 30

communicated to ING forms of the subsequent clauses. Note that the one rule
handles ING series of any length, as illustrated below.

SAL Pattern: V(u;ING) ∗ PUNC(COM) /or/ CJ(CRD) V(u;ING)
Constraints: PUNC or CJ must be clause boundaries.
Actions: (i) Previous re-labeling of 1st ING, denoting

 presence of a subordinate clause, is communicated
 to 2nd; (ii) backspace all the way.

 Targets: Effect series chaining for ING verb forms.
 Comments: (i) Rule applies to series chained either by commas or

 coordinating conjunctions; (ii) re-labeling and
 backspacing all the way is typical of Parse3 rules.

Backspacing allows for multiple looks at a given pattern,
each for a different purpose (as in (26)).

The unedited French (25’) illustrates the effect of the above Parse3 rule:

(25) When operating the unit, debugging the unit or performing
 maintenance tests, be sure to check power levels.
(25’) En commandant l'unité, en mettant au point l'unité ou en
 effectuant les essais d'entretien, soyez sûr de vérifier les
 niveaux de pouvoir.

In (26’), below, we see the joint effect of the two very different Parse3 rules
associated with (22) and (25) respectively, executed sequentially over the same
pattern. (Note gender error in pronominal reference):

(26) When putting the cover on, taking it off, or adjusting it in any
 way, be sure the power is off.

(26’) En mettant la couverture, en le retirant ou en l'ajustant de toute
façon, assurez-vous que le pouvoir est coupé.

 See Fig. 16 for a graphic illustration of Parse3 parsing.

 Parse4 - The final Parse module builds upon the output of Parse3. All sentence
elements have now been reduced to just five SAL entities: NP, PP, AUX, V, PUNC, plus
place markers for materials extracted earlier in Parse2. Earlier modules have already
analyzed and labeled constituents for intraclausal grammatical function (e.g., re-labeling
NP for subject, object, indirect object, etc.). Now, a principal work of Parse4 is verb
tense analysis, both intra- and interclausal.

 Functions include:

o Intraclausal tense assignments: Punctuation (PUNC) and subordinating
conjunctions (CJ(SUB)) have been concatenated and re-labeled in Parse3. These
re-labeled elements now trigger tense assignments in Parse4.

(27) Unless he receives instructions to the contrary, he is going to go
 home.
(27’) À moins qu'il ne reçoive les instructions au contraire, il va aller
 à la maison.

o Interclausal verb tense/mood coordination. In the following, the treatment of the
complementary infinitive clause is a function of verb SAL Type and verb tense in
the principal clause.

(28a) They want John to do it
 (28a’) Ils veulent que John le fasse.

(28b) They do not want him to succeed.
(28b’) Sie wollen nicht, dass er Erfolg hat.
(28c) They did not want him to succeed.

 31

(28c’) Sie wollten nicht, dass er Erfolg hatte.

o Pronoun resolution. Without extra-sentential processing, pronoun resolution
obviously remains a weak area. Handling is somewhat better when the
antecedent is intrasentential, as in (29):

(29) We buy a house that catches our fancy and then resell it the
 next year.
(29’) Nous achetons une maison qui attrape notre fantaisie et
 ensuite la revendons l'année prochaine.

But, even here, overly complex structures typically cause the pronoun/antecedent
relationship to be lost, as in (30):

(30) We buy a house that catches our fancy and live in it until
 we are tired of it, and then we sell it again, usually within a few
 years.
(30’) Nous achetons une maison qui attrape notre fantaisie et
 vivons dans elle jusqu'à ce que nous soyons fatigués de lui, et

 ensuite nous le vendons de nouveau, d'habitude dans quelques
 années.

The above functions notwithstanding, the principal work of Parse4 is directed toward
support of targets. It accomplishes this by presenting these abstract source constituents
(NP, VP, AUX, PUNC), one by one, to linked target rules. Target rules load these
constituents in the appropriate slots of a final, high-level target template for each clause
and finally for the sentence as a whole. At this point, everything that must be known
about the source string is now available to the target, thus allowing targets to place the by
now virtually meta-linguistic constituents into the desired target order, effecting such
stylistic transformations as is deemed appropriate and possible. At the end of Parse4
source analysis, target template slots are unloaded and the resultant target parse
(bracketed target string) is input to Tgt Gen, for generation of literal target output.

See Fig. 17 for a graphic illustration of Parse4 parsing

5.0 Target Transfer and Generation
In this paper we have focused almost exclusively on source analysis, reflecting a belief that the
power to decode source is the more fundamental and more difficult aspect of MT. Target work is
far from trivial, however, and obviously poses its own set of challenges and difficulties, treatment
of which requires appropriate skill. But whenever Logos developers responsible for target work
are asked what is most needed to improve translation quality, invariably the answer has to do with
improving source analysis.

5.1 TARGET RULES
Sets of target rules make up the Tran modules of the pipeline. Target rules presuppose the source
rules to which they are linked and therefore do not have a SAL pattern component of their own.
In other respects they resemble source rules: i.e., they have their own variety of constraint
conditions and, most fundamentally, an action component. A target rule can perform additional
source analysis of a nested kind when needed by a particular target language, but the principal
actions concern contrastive morphological, syntactic and semantic transfer of the elements
comprising the source-rule SAL pattern. All target actions in the Parse/Trans pipeline take the
form of symbolic target parse-tree notations. These notations subsequently drive actions on literal
strings in the final generation phrase of machine translation, performed by the Tgt Gen module.

5.2 TARGET TRANSFER

 32

As evident in Fig. 2, transfer is effected incrementally, in compositional fashion, at the point
where each source constituent is considered to have been analyzed in full (consistent with the
system’s capabilities). Thus, for example, when a descriptive adjective in Parse1 has been
analyzed in relationship to the noun it modifies, each target will make decisions regarding (a) its
transfer (e.g. whether to use the default lexical transfer or to overlay it with a transfer derived
from Semtab), and (b) its syntactic placement in the target language. Target rules in Parse4 will
decide how and where each constituent of the source clause is to be transferred in the target (e.g.,
where to position a prepositional phrase analyzed as an adverb of time). Template slots in a
clause-level target template are thus gradually filled and ultimately arranged in target sentence
order, the target equivalent (mutatis mutandi) to constituents directly below S in the source parse.
At the end of the analysis pipeline, all slots are then unloaded and the output (now essentially an
ordered string of pointers to target words in the lexicon, with annotation for morphology) is
passed on to the Tgt Gen module which, as we have said, then takes this data and synthesizes the
literal target sentence.

5.3 STYLISTIC TRANSFORMATIONS
Things expressed one way in the source are often not expressible that way in the target, calling
for syntactic transformations of various kinds. To a limited but not insignificant degree, the
Logos Model supports the requirements of proper target style, as the examples in (31), (32), and
(33) illustrate (showing unedited output). Transformations are the result of rule interaction
throughout the pipeline, but chiefly to source/target rule interaction in Parse4/Tran4.

(31) The situation was alluded to by my friend in his letter.
(31’) Mon ami a fait allusion à la situation dans sa lettre.
(32) The situation was alluded to in their letter.
(32’) On a fait allusion à la situation dans leur lettre.

In (33), below, we see French and German output with radically different stylistic treatment, both
from each other and from the English original. This shows the limited but real extent to which
target linguists working with this Model have been able to overcome the so-called “structure
preserving” tendencies said to be inherent in MT (Somers, 1992/3). In particular, note how the
English ellipsis in (33) “… and their information input directly…” is handled by each of the
targets. Note also the German ‘subjectless clause’ treatment of the main clause in (33’’). All
output is unedited.

(33) Other forms of storage media, such as magnetic cards and computer tape, can also
be accessed through optional devices, and their information input directly to the
system.

(33’) On peut également accéder à d'autres formes du support d'information, comme les
cartes magnétiques et la bande pour ordinateur, par des appareils facultatifs et on
peut introduire leur information directement dans le système.

(33’’) Auf andere Speichermedienarten, wie magnetische Karten und Magnetband kann
auch durch beliebige Geräte zugegriffen werden und ihre Informationen können
direkt in das System eingegeben werden.

6.0 How Do You Deal with Complexity Issues?
We now need to review our original question regarding complexity. Complexity effects in MT
concern two issues: system performance and system improvability (a function, we argue, of
system maintainability). While performance will always remain an issue, steady increases in raw
computer power tend to make system performance a secondary matter. Far more critical is the
system improvability and maintainability issue. How strong can an MT system become? Can a
system, for example, handle the many thousands of content-sensitive verb transfers to be found in
any good, bi-lingual desk-top dictionary? If not, is it because of complexity effects posed when
trying to make effective use of such quantities of data? The requisite linguistic knowledge is
certainly available: what remains at issue is a computational approach able to deal with it.

 33

To illustrate this complexity problem more concretely, consider what is involved in correctly
translating the English word as. In (34), below, we see five different senses of this word, each
triggered by a variety of contextual clues, and each with its own implication for German. How is
such context to be specified, where are these specifications to be stored, and how are they to be
applied? Can one burden a lexical entry for as with logic of the complexity needed in order to
handle examples such as these? Can a single rule be written to cope with such phenomena? At
what point in the parsing process would this lengthy rule be applied? How efficient and effective
would it be? How maintainable? More than likely, because of the difficulties involved, such
phenomena will simply not be dealt with beyond a certain point. This barrier typifies what we
mean by complexity and how complexity limits machine translation.

German translations below are unedited output of the current commercial E-G system:

(34a) As you can see, he is sick.
(34a’) Wie Sie sehen können, ist er krank. .
(34b) As he is sick, we cannot ask him to work.
(34b’) Weil er krank ist, können wir ihn nicht bitten, zu arbeiten.
(34c) As he was being given his medicine, he began to choke.
(34c’) Während ihm seine Medizin gegeben wurde, fing er an, zu ersticken
(34d) As he began to recover his health, he realized that his wife had stood by

him through difficult times.
(34d’) Als er anfing, seine Gesundheit zurückzubekommen, erkannte er, dass

seine Frau ihm durch schwere Zeiten beigestanden hatte.
(34e) As a patient, he was very cooperative.
(34e’) Als Patient war er sehr kooperativ.

There are 80 patterns (rules) indexed on as in Parse1, 52 in Parse2, 5 in Parse3, and 11 in Parse4.
All of the sentences above were dealt with at various times along the pipeline by one or more of
these rules (See additional treatment of as in discussion of Parse1 in 4.3.2). The examples above
were chosen because they are handled relatively successfully. It is quite easy to find other as
sentences that translate poorly, and that would require additional rules somewhere in the pipeline.

We have argued in this paper that, for all the obvious importance of linguistics, it is the
computational approach that will ultimately determine how good an MT system will be--the
computational approach regarding representation, storage, and rule application. We have
described an approach which we feel copes optimally with these three fundamentals. We focused
on the Model’s computational methodology relating specifically to the question of rule
application, viz., how an exceedingly rich knowledge store is to be applied, effectively and
efficiently, to an unconstrained input stream without giving rise to complexity effects. It is here,
perhaps, that the Model we are discussing becomes most novel.

7.0 New Version of the Logos Model (Fig. 18)
The incremental, compositional approach to analysis and transfer that characterizes this Model
has meant that decisions must sometimes be made before micro-analysis of the entire sentence is
compete. This can occasionally result in faulty translation. For this and other reasons, an
upgraded version of the Logos Model has been under development where target transfer will not
commence until source analysis is fully completed. In effect, there will be three successive
parses of the sentence: (i) the macro-parse accomplished by Res; (ii) the micro-parse
accomplished by the Parse modules, producing a quasi-interlingual parse tree; and finally (iii) a
separate parse by the Tran modules, operating on this tree for the sake of each target translation.

This new arrangement will allow for improvements to source analysis independent of target
considerations, and will allow targets to develop at different paces. It also anticipates introduction
of a Semantic Dictionary that has been long under development. This new semantic resource
has a much finer-grained, purely semantic taxonomy designed to supplement SAL. It will be

 34

accessible from any point in the pipeline and its introduction should substantially improve the
Model’s semantic power. Finally, provision is also made for the eventual introduction of extra-
sentential processing (discourse analysis).

8.0 Drawbacks and Limitations
We have described the Logos Model as a relatively effective method of coping with the
complexity of natural language. But one might accuse this Model of a certain complexity in its
own right. The Model’s implementation, with its many thousands of rules, while not difficult to
work with or maintain, seems to defy formal description. There are simply too many rules and
their interplay is too multifaceted to keep total track of or to allow for easy characterization, as
this paper might be said to demonstrate. One works with the system but one does not exactly
master it, not in its entirety. If I may say so, it’s somewhat like working with a colleague: you
don’t understand the colleague completely, but you figure out over time what works and what
does not work, resulting in effective teamwork. When it comes to a system, complexity of this
sort has sometimes been described as a state or condition residing somewhere between order and
chaos. And that may be apt, but what keeps chaos in check in this Model, we may argue, is that
there is an underlying, fundamental simplicity at play, the proof of which is that linguistic tasks
are accomplished fairly easily and normally with good results. And generally speaking, it pleases
linguists to work with such a system. When a linguist sees a problem, he or she can run the
offending sentence with diagnostics and quite readily determine where the problem or deficiency
lies and also, generally, how to fix it. The linguist then writes or corrects a rule or perhaps a
group of rules to address the matter, often doing so more in the space of minutes than hours. And
these rules, it may be recalled, find their own appropriate place in the knowledge base. To be
sure, the number of new problems that arise when dealing with real world language, and thus the
number of new rules needed, is literally endless, but it is rare for a developer to encounter a
situation that cannot be handled in this straightforward way. In any case, if the Model exhibits a
certain complexity, such complexity rarely translates into cognitive complexity for the seasoned
developer.

If the Model strikes the reader as somewhat inelegant, in a formalistic sense, one might observe
that language itself is not elegant and one might well question whether elegance is the right
quality to look for in natural language processing. No one, I think, claims elegance as a
characterizing feature of human sentence processing. Indeed, some claim that Chomsky (1990)
himself has abandoned his original, more formalistic agenda. On our part, we have not
approached natural language as a formal object for good reason; dealing with the complexity and
ambiguity of natural language in the real world is like Odysseus making passage between
Charybdis and Skylla, an experience one survives only with great cunning and succor from on
high.

Regarding the question of how good a system based on this Model can ever get to be, we offer the
following. If one in fact has a system that can absorb endless amounts of linguistic data without
indigestion and can apply this knowledge effectively, then it seems likely that over time, perhaps
as much as several generations, under ideal development conditions, the goal of FAHQT could
eventually be reached, at least in a significant portion of the discursive language spectrum. Of
course, it is not likely that this will ever happen. The many factors that must be present for it to
occur−availability of money, talent, the proper sociological environment and team dedication,
wise and patient management, to say nothing of the amount of time it would take, are all too
problematic in themselves, quite apart from any consideration of model design and methodology.
It is true that the Logos System got as far as it did precisely because, in patches of its 30-year
history, many of these factors were more or less present, mirabile dictu. But those happy
circumstances have ended, still short of the goal, and these conditions are unlikely to be repeated
again. In sum, the sought-after FAHQT summit will likely always remain a distant, ultimately
unrealizable goal.

 35

 Multi-Target Logos Model with Advanced Features

Lex

Res1

Res2

Parse1

NL Input

Tgt Gen

Format

Rules

Rules

Rules

Rules

Rules

Rules

Rules

Dict

 Output

Rules

Tran1

Tran2

Tran3

Format

NL

Tran4

SS

Rules

Rules

Rules

Rules

Rules

Lex

semantic tables

semantic dict

Begin
Analysis

Begin
Generation

Parse2

Parse3

Parse4* extra-
sentential
data store

*

*

* = projected

semantic dict*

Fig. 18 – New Version of Logos Model under Development. In this new version of the
pipeline, target transfer does not begin until source analysis is entirely complete. In effect, target
transfer aspect of the pipeline will have as input a completed, quasi-interlingual parse tree of the
source. The new version of the Logos Model has already been implemented and tested for
English-German. A Semantic Dictionary is also planned to be introduced. This dictionary
converts natural language words to a finer-grained semantic taxonomy. Designed to supplement
SAL, this finer-grained taxonomy is needed for such functions as adjective and common noun
disambiguation. This finer-grained taxonomy will also be accessible from any point in the
pipeline. A prototype of the dictionary already exists for English and German source (each with c.
80,000 canonical entries) but software changes to pipeline modules to allow for its utilization
have yet to be made. The new Model also envisions extra-sentential processing, although at
present no work has yet been started in this regard. Discourse analysis will allow for handling of
such issues as anaphora, ellipsis, and common noun disambiguation.

 36

Notes

1 Pyatt, Everett (1973), personal communication referring to Dr. John Foster’s classified 1972

Annual Report of the Director, Defense Research and Engineering. Pyatt was Assistant
Secretary of the U.S. Navy.

2 David Hays (1964), personal communication.

