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Abstract

Current statistical machine translation sys-
tems are based on phrases heuristically ex-
tracted. In this work, a new approach
for phrase-based statistical machine trans-
lation is proposed which can properly de-
scribed as a hidden Markov model. The
proposed model, its associated forward
and backward recurrences, and its EM-
based maximum likelihood estimation is
detailed. Empirical results are reported on
a spanish-english translation task.

1 Introduction

The machine translation problem is stated as the
problem of translating asource (input)sentence,
x, into atarget (output)sentence,y. In accordance
with the statistical approach to machine transla-
tion, the optimal translation̂y of a source sentence
x is given by (Brown et al., 1993):

ŷ = arg max
y∈Y⋆

p(y |x)p(y) (1)

where p(y |x) is approximated by aninverse
translation modelandp(y) is modelled with alan-
guage model; which is usually instanced by an-
gram language model(Stolcke, 1997).

The first proposed models, the so-calledIBM
translation models(Brown et al., 1993), tack-
led the problem with word-level dictionaries plus
alignments between words. However, current
systems model the inverse conditional probabil-
ity in Equation (1) usingphrase dictionaries.
This phrase-based methodology stores specific se-
quences of target words (target phrase) into which
a sequence of source words (source phrase) is
translated. The key concept of this approach is the

procedure through which these phrase pairs are in-
ferred.

A popular, phrase-based technique consists in
using the IBM alignment models (Brown et al.,
1993) to obtain a symmetrised alignment matrix
from which coherentphrases are extracted (Och
and Ney, 2004). Then, a simple count normalisa-
tion is carried out in order to obtain a conditional
phrase dictionary.

Alternatively, some approaches have been de-
scribed in the last few years in which phrase dic-
tionaries are statistically inferred. In particular,
a joint probability model for phrase-based esti-
mation is proposed in Marcu and Wong (2002).
In this work, all possible segmentations are ex-
tracted using the EM algorithm (Dempster et
al., 1977), without any matrix alignment con-
strain, in contrast to the approach followed
in Och and Ney (2004). Based on this work,
A. Birch et al. (2006), constrained the EM to only
consider phrases which agree with the alignment
matrix, thus reducing the size of the phrase dictio-
naries (or tables).

A possible drawback of the above phrase-based
models is that they are not conditional, but joint
models that need to be renormalised in order to
make them conditional. In this work, we pro-
pose a direct, conditional phrase-based approach
for monotone translation. Monotonicity allows
us to derive a relatively simple statistical model
which can be properly described as aphrase-based
hidden Markov model.In what follows, we first
introduce our model in Section 2, and then their
associated forward and backward recurrences in
Section 3. EM-based maximum likelihood estima-
tion of the model parameters is described in Sec-
tion 4. Empirical results are reported in Section 5
and then some concluding remarks are given.



2 Phrase-based hidden Markov model

Let x and y be a pair of source and target sen-
tences of known length,J andI. In order to de-
fine our phrase-based hidden Markov model for
p(x |y), it is first convenient to introduce our def-
inition of monotone segmentation, both for the
monolingual and bilingual cases.

A monotone, monolingual segmentation ofx

into a given number of segments,T , is any se-
quence of indexesj = (j0, j1, . . . , jT ) such that
1 = j0 < j1 < · · · < jT = J . Similarly, a mono-
tone, segmentation ofy into T segments is any
sequence of indexesi = (i0, i1, . . . , iT ) such that
1 = i0 < i1 < · · · < iT = I. Given two mono-
tone, monolingual segmentations ofx andy into
T segments,j andi, their associatedbilingual seg-
mentation ofx andy is defined ass = s1s2 · · · sT

with st = (jt−1 +1, jt, it−1 +1, it), t = 1, . . . , T .
Reciprocally, given a monotone,bilingual seg-
mentation ofx andy, we can easily extract their
associated monolingual counterparts.

Figure 1 shows an example in which all possi-
ble bilingual segmentations forJ = 4 andI = 5
are represented as paths in a directed, multi-stage
graph. The initial stage of the graph has a single,
artificial node labelled as ”init”, which is only in-
cluded to point to the initial segments of all the
possible segmentations. There are12 of such ini-
tial segments, vertically aligned on the first stage.
Similarly, there are15, 3 and13 segments aligned
on the second, third and final stages, respectively.
The total number of segments is then43. There is
a unique segmentation of unit length,s = s1 =
(1415), which is represented by the rightmost
path, but there are12, 18 and4 segmentations of
length2, 3 and4, respectively; comprising35 seg-
mentations in total. As empty segments are not al-
lowed, segmentation lengths range from one to the
length of the shortest sentence. Note that segments
on the first stage can only appear in the first posi-
tion of a segmentation. Also, segments on the sec-
ond and final stages can only appear on analogous
positions in a segmentation. However, those three
on the third stage (i.e.(3334), (3333) and(3344))
may appear in the second or third positions, al-
though they cannot end any segmentation. For in-
stance,(3334) appears in the second position of
((1212), (3334), (4455)) and also in the third po-
sition of ((1111), (2222), (3334), (4455)).

Note that we are using the terms segment and
segmentation only for positions (indexes) in the

input and output sentences. We reserve the term
phrasefor actual portions of the given sentences.
Thus, for instance, the bilingual segmentation
((1212), (3334), (4455)) of x = x1x2x3x4 and
y = y1y2y3y4y5 results in the bilingual phrases
(x1x2, y1y2), (x3, y3y4) and(x4, y5). In what fol-
lows, we will write x(st) to denote the portion
of x delimited by (the input part of) segmentst;
more generally,x(st

t′) will denote the concatena-
tion x(st′)x(st′+1) · · · x(st). Analogous notation
will be used fory: y(st) andy(st

t′).
Now, we can define our model forp(x |y) as a

full exploration of all bilingual segmentations ofx

andy,

p(x |y) =

min(J,I)
∑

T=1

∑

s

p(x, s, T |y) (2)

where the second sum can be defined over all pos-
sible bilingual segmentations, or only over those
of lengthT . The joint probability of occurrence of
s andT is null if the actual length ofs is notT .

To computep(x, s, T |y) in (2), we use the fol-
lowing decomposition:

p(x, s, T |y)=p(s |y)p(T |y, s)p(x |y, s, T ) (3)

wherep(s |y) is modelled as a first-order Marko-
vian process,

p(s |y) :=
∏

t≥1

p(st | st−1) (4)

with s0 :=“init”, and p(x |y, s, T ) is modelled as
composed of independent bilingual phrases,

p(x |y, s, T ) :=
∏

t≥1

p(x(st) |y(st), st) (5)

Clearly, the above modelling assumptions lead to
a phrase-based HMM-like model. Its set of states
is that of all possible bilingual segments, while
its set of transitions includes all pairs〈q′, q〉 in
which the state (segment)q is a successor ofq′,
q ∈ Succ(q′); e.g.〈(1212), (2234)〉.

In this work, we will further assume that both
initial and transition state probabilities are uni-
formly distributed; hence, for eachq and q′, in-
cluding “init” for q′,

p(q | q′) :=

{

1
|Succ(q′)| if q ∈ Succ(q′)

0 otherwise
(6)
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Figure 1: Directed, multi-stage graph representing all possible bilingual segmentations for an input sen-
tence of length4 and an output sentence of length5. Each node defines a different segment; the first two
digits of the node label are the segment limits in the input sentence, while the other two digits correspond
to the output sentence.

Also, T is assumed to be uniformly distributed,

p(T |y, s) :=

{

1
min(I,J) if |s| = T

0 otherwise
(7)

and the phrase translation probabilities are as-
sumed to be stored in a single, state-independent
tablep(·|·):

p(x(st) |y(st), st) := p(x(st) |y(st)) (8)

Using the above assumptions, our model (2) can
be rewritten as follows:

p(x |y) =
1

Z

∑

s

|s|≤Z

|s|
∏

t=1

p(x(st) |y(st))

|Succ(st−1)|
(9)

with Z = min(J, I). The vector of parame-
ters governing this model only includes a table of
phrase translation probabilities,

Θ = {p(u |v) : (u,v) bilingual phrase} (10)

3 Forward and backward probabilities

As usual with HMMs, we will discuss here the so-
called forward andbackwardprobabilities for ef-
ficient computation of the model itself, as given

in (9), and its EM-based parameter re-estimation
(discussed in Section 4). To fix ideas, considerx

andy to be two arbitrary sentences for which we
have to compute (9).

Given a segmentation length and position,T

andt, and a stateq, the forward probability is de-
fined as the joint probability

αT
tq := p(x(st

1), st = q |y, T ) (11)

wherest
1 is any partial segmentation, from posi-

tions1 to t, such thatst = q. This probability can
be efficiently computed by dynamic programming,
using the so-calledforward recurrence,

αT
tq =

∑

q′ : q∈Succ(q′)

αT
t−1q′

p(x(q) |y(q))

|Succ(q′)|
(12)

with αT
tq = 1 for t = 0 andq =“init”; 0 otherwise.

The backward probability also depends on a
given segmentation length and position,T and t,
and a stateq. It is defined as the conditional prob-
ability

βT
tq := p(x(sT

t+1) |y, T, st = q) (13)

wheresT
t+1 is any partial segmentation, from po-

sitions t + 1 to T , that might follow segmentq



in positiont. As before, it can be efficiently com-
puted by dynamic programming, using a “reverse”
version of the forward recurrence calledbackward
recurrence,

βT
tq =

∑

q′∈Succ(q)

βT
t+1q′

p(x(q′) |y(q′))

|Succ(q)|
(14)

with βT
Tq = 1 for any terminalq = (·, I, ·, J) and

anyt; 0 otherwise.
Equation (9) can be computed using (12) as

p(x |y) =
1

Z

∑

T

∑

q=(·,I,·,J)

αT
Tq (15)

or using (14) as

p(x |y) =
1

Z

∑

T

βT
0“init” (16)

4 Maximum likelihood estimation

As discussed in Section 2, the unknown vector
of parameters of our phrase-based HMM model
only includes a table of phrase translation prob-
abilities (10). We will describe here its EM-
based maximum likelihood estimation with re-
spect to a collection of training translation pairs
(x1,y1), . . . , (xN ,yN ).

The log-likelihood function ofΘ is:

L(Θ) =
∑

n

log p(xn |yn)

=
∑

n

log
1

Zn

∑

s

|s|≤Zn

|s|
∏

t=1

p(xn(st) |yn(st))

|Succ(st−1)|
(17)

The EM algorithm maximises Eq. (17) itera-
tively, through the application of two basic steps
in each iteration: the E(xpectation) step and the
M(aximisation) step. The E step computes the ex-
pected value of the “hidden” variables given an
estimation of the parameters. The M step max-
imises (17) using the expected values computed
in the E-step. Given an initial value of the pa-
rameters,Θ(0), these two steps are repeated until
convergence to a local maximum of the likelihood
function.

In our case, the E step requires the computation,
for each pair(xn,yn), of sample versions of (12)
and (14), as well as the joint probability

ξT
ntq′q := p(xn, st−1 = q′, st = q |yn, T ) (18)

which can be efficiently computed as

ξT
ntq′q =

αT
nt−1q′ p(x(q) |y(q))βT

ntq

p(xn |yn) |Succ(q′)|
(19)

On the other hand, the M step re-estimates the
table of phrase translation probabilities,

p(u |v) =
N(u,v)

∑

u′ N(u′,v)
(20)

whereN(u,v) is the expected number of occur-
rences of the the pair(u,v); i.e.

N(u,v) =
∑

n q′q T

1

T

∑

t

ξT
ntq′q δnq(u,v) (21)

with δnq(u,v) defined as1 if u = xn(q) andv =
yn(q); 0 otherwise.

5 Experiments

Our phrase-based hidden Markov model was as-
sessed on the EUTRANS-I dataset (Amengual
et al., 2000). This dataset comprises12 000
bilingual sentence pairs from a limited-domain
spanish-english machine translation application
for human-to-human communication situations
in the front-desk of a hotel. It was semi-
automatically built from a small seed corpus of
sentence pairs collected from traveller-oriented
booklets. Some basic statistics are shown in Ta-
ble 1.

test set training set
spa eng spa eng

sentences 2K 10K
avg. length 12.7 12.6 12.9 13.0
vocabulary 611 468 686 513
singletons 63 49 8 10
running words 35K 36K 97K 99K
perplexity 3.7 2.97 3.63 2.96

Table 1: Statistics of the EUTRANS-I corpus.

Two basic experiments were carried out. In
the first experiment, we did not use our phrase-
based HMM since the experiment was designed
only to obtain a baseline result for comparison
purposes. Instead, we used GIZA++ to obtain a
table of phrase translation probabilities, by sim-
ple count normalisation of phrases in the training
set that were coherent with the symmetric align-
ment matrix (Och and Ney, 2004). Then, we used



Pharaoh (Koehn, 2004) to search for the most
probable translation of each source sentence in
the test set, and the quality of the translated set
was evaluated using theword error rate (WER)
andbilingual evaluation understudy(BLEU) mea-
sures (Papineni et al., 2001). We obtained a WER
of 7.7% and BLEU of89.1%. These are relatively
good results since, in general, low values of WER
and high values of BLEU are a clear indication of
high quality translations.

In the second experiment, we used our phrase-
based hidden Markov model to better train the
phrase translation table. We proceeded as in the
first experiment although, now, the phrase table
obtained before was used to initialise the EM algo-
rithm proposed in Section 4 for parameter training
in accordance with criterion (17). In this case, we
obtained a WER of7.8% and BLEU of88.5%.

Obviously, the result obtained with our model
was not better than that obtained with the base-
line approach. In analysing the phrase table pro-
vided by our model, we found that the EM algo-
rithm prefers long to short phrases; that is, given
a target phrase, long source phrases are favoured
with higher probabilities. To empirically check
this hypothesis, we repeated the two basic exper-
iments described above by first discarding train-
ing phrases longer that a given maximum thresh-
old. For the most restrictive thresholds, however,
phrases longer than the threshold were not dis-
carded so as to ensure full coverage of the training
data. The results are shown in Figure 2 in terms of
BLEU.
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Figure 2: BLEU (%) as a function of the maxi-
mum phrase length threshold, for the baseline ap-
proach and our phrase-based HMM (PHMM).

The results in Figure 2 confirm our hypothesis
on the bias to long phrases in our model. A possi-

ble remedy to this problem is to refine our phrase-
based HMM with inclusion of length models to
penalise long phrases.

6 Conclusions

A phrase-based hidden Markov model has been
proposed for statistical machine translation. We
have described the forward and backward recur-
rences for efficient computation of the model and
its EM-based parameter re-estimation, which has
been also described. Empirically results have
been reported comparing the proposed model with
a baseline system. It has been found that our
model is biased to long phrases and does not pro-
vide better results than the baseline system unless
phrases are restricted to a maximum length. For
future work, we plan to include a length model for
phrases and to carry out more experiments with
larger datasets.

We also intend to take into account example-
based hybrid data-driven systems (Groves and
Way, 2006).
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