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Abstract procedure through which these phrase pairs are in-
ferred.

A popular, phrase-based technique consists in
using the IBM alignment models (Brown et al.,
1993) to obtain a symmetrised alignment matrix
from which coherentphrases are extracted (Och
and Ney, 2004). Then, a simple count normalisa-
tion is carried out in order to obtain a conditional
phrase dictionary.

Alternatively, some approaches have been de-
scribed in the last few years in which phrase dic-
tionaries are statistically inferred. In particular,
a joint probability model for phrase-based esti-
mation is proposed in Marcu and Wong (2002).
In this work, all possible segmentations are ex-
The machine translation problem is stated as th@acted using the EM algorithm (Dempster et
problem of translating @ource (input)sentence, al., 1977), without any matrix alignment con-
x, into atarget (outputlsentencey. In accordance strain, in contrast to the approach followed
with the statistical approach to machine translain Och and Ney (2004). Based on this work,
tion, the optimal translatiofr of a source sentence A. Birch et al. (2006), constrained the EM to only

Current statistical machine translation sys-
tems are based on phrases heuristically ex-
tracted. In this work, a new approach
for phrase-based statistical machine trans-
lation is proposed which can properly de-
scribed as a hidden Markov model. The
proposed model, its associated forward
and backward recurrences, and its EM-
based maximum likelihood estimation is
detailed. Empirical results are reported on
a spanish-english translation task.

1 Introduction

x is given by (Brown et al., 1993): consider phrases which agree with the alignment
. matrix, thus reducing the size of the phrase dictio-
y = arg max p(y [ %)p(y) (1) naries (or tables).
Yy

A possible drawback of the above phrase-based
where p(y | x) is approximated by arinverse models is that they are not conditional, but joint
translation modeandp(y) is modelled with dan-  models that need to be renormalised in order to
guage modelwhich is usually instanced by  make them conditional. In this work, we pro-
gram language modé5tolcke, 1997). pose a direct, conditional phrase-based approach

The first proposed models, the so-call®M  for monotone translation. Monotonicity allows
translation models(Brown et al., 1993), tack- us to derive a relatively simple statistical model
led the problem with word-level dictionaries plus which can be properly described aglaase-based
alignments between words. However, currenthidden Markov model.ln what follows, we first
systems model the inverse conditional probabilintroduce our model in Section 2, and then their
ity in Equation (1) usingphrase dictionaries associated forward and backward recurrences in
This phrase-based methodology stores specific s&ection 3. EM-based maximum likelihood estima-
guences of target wordtafget phrasginto which  tion of the model parameters is described in Sec-
a sequence of source wordso(irce phrasgis tion 4. Empirical results are reported in Section 5
translated. The key concept of this approach is thand then some concluding remarks are given.



2 Phrase-based hidden Markov model input and output sentences. We reserve the term
phrasefor actual portions of the given sentences.

Let x andy be a pair of source and target Sen-t,s  for instance, the bilingual segmentation
t_enCE‘S Of knOWn Iength] -a.nd I In Ol’del’ tO de' ((1212)’ (3334)’ (4455)) Of X = T1T9T3T4 and
fine our phrase-based hidden Markov model fory — y1y2y3y4ys results in the bilingual phrases

p(x|y), itis first convenient to introduce our def- (2179, y132), (23, y3ya) and(z4,ys). In what fol-
inition_of monoton_g segmentation, both for the s we will write x(s;) to denote the portion
monolingual and bilingual cases. of x delimited by (the input part of) segmest;
A monotone, monolingual segmentation ®f  more generallyx(s’,) will denote the concatena-
into a given number of segment¥,, is any se- jgn x(sy)x(sp41) - -~ x(s;). Analogous notation

quence of indexe$ = (jo,J1,--.,j7) such that il be used fory: y(s;) andy(s!,).
1=jo<ji<---<jr=J. Similrly,amono-  Now, we can define our model fpx | y) as a
tone, segmentation of into 7' segments is any || exploration of all bilingual segmentations =f
sequence of indexds= (ig, i1,...,ir) such that andy,

1 =iy <i < - <ip=1. Given two mono-

tone, monolingual segmentationsofandy into min(J,1)

T segmentsj andi, their associatetilingual seg- p(x|y) = Zp(x, s, Tly) (2
mentation ofx andy is defined as = s1s9--- s T=1 s

with s; = (jt_l +1, 5, te—1 + 1,%), t=1,...,T.
Reciprocally, given a monotonejilingual seg-
mentation ofx andy, we can easily extract their
associated monolingual counterparts.

Figure 1 shows an example in which all possi-
ble bilingual segmentations fof = 4 and/ = 5
are represented as paths in a directed, multi—stad

graph. The initial stage of the graph has a single, B
artificial node labelled as "init”, which is only in- B8, Ty)=p(s[y)p(T |y, s)p(x|y.s,T) (3)

CIUdPTSI to point to the 'n't_:%l segargeeor]:ts oLa}II_the wherep(s|y) is modelled as a first-order Marko-
possible segmentations. There such ini- o process,

tial segments, vertically aligned on the first stage.
Similarly, there ard 5, 3 and13 segments aligned .
on the second, third and final stages, respectively. p(sly) = Hp(st [5i-1) @
The total number of segments is théh There is
a unigue segmentation of unit length,= s; = with sy :="init", and p(x |y, s, T') is modelled as
(1415), which is represented by the rightmostcomposed of independent bilingual phrases,
path, but there aré2, 18 and4 segmentations of
length2, 3 and4, respectively; comprising5 seg- p(x|y,s,T) = HP(X(St) |y (st),st)  (5)
mentations in total. As empty segments are not al- >1
lowed, segmentation lengths range from one to the
length of the shortest sentence. Note that segmenfslearly, the above modelling assumptions lead to
on the first Stage can On|y appear in the first posi.a phrase—based HMM-like model. Its set of states
tion of a segmentation. Also, segments on the seds that of all possible bilingual segments, while
ond and final stages can only appear on analogouits set of transitions includes all paifg’, ¢) in
positions in a segmentation. However, those thre@hich the state (segmeng)is a successor aof',
on the third stage (i.€3334), (3333) and(3344)) ¢ € Succ(¢); €.9.((1212), (2234)).
may appear in the second or third positions, al- In this work, we will further assume that both
though they cannot end any Segmentation_ For |nln|t|a| and transition state probabilities are uni-
stance,(3334) appears in the second position of formly distributed; hence, for eachand¢’, in-
((1212), (3334), (4455)) and also in the third po- cluding “init” for ¢,
sition of ((1111), (2222), (3334), (4455)). X _ /

Note that we are using the terms segment and plg|q) = {W if ¢ € Succ(q') ©6)

where the second sum can be defined over all pos-
sible bilingual segmentations, or only over those
of lengthT'. The joint probability of occurrence of
s andT is null if the actual length of is notT".

To computep(x,s,T" | y) in (2), we use the fol-
8wing decomposition:

t>1

segmentation only for positions (indexes) in the 0 otherwise



Figure 1: Directed, multi-stage graph representing alkjids bilingual segmentations for an input sen-
tence of lengtht and an output sentence of lengthEach node defines a different segment; the first two
digits of the node label are the segment limits in the inpotesgce, while the other two digits correspond
to the output sentence.

Also, T' is assumed to be uniformly distributed, in (9), and its EM-based parameter re-estimation
(discussed in Section 4). To fix ideas, consiger
o(T|y.s) = {m if |s] =.T andy to be two arbitrary sentences for which we
0 otherwise have to compute (9).
Given a segmentation length and positidh,
and the phrase translation probabilities are asandt, and a state, the forward probability is de-
sumed to be stored in a single, state-independeffined as the joint probability

tablep(-|-):

p(x(st) |y (st),5¢) == p(x(se) |y(se))  (8) _ _ _ _
wheres! is any partial segmentation, from posi-
Using the above assumptions, our model (2) cations1 to ¢, such thats; = ¢. This probability can
be rewritten as follows: be efficiently computed by dynamic programming,
using the so-calletbrward recurrence,

afy = px(sh),se =qly,T)  (11)

|Succ(s¢—1)| o/f; _ Z a;f_lq/p(x(Q) |y(q)) (12)

Is|
px|y) = % Z H p(x(st) |y (st)) )
slzz ! |Suce(q')|

S =
<7
s|< q' : q€Succ(q’)

with 7 = min(J, 7). The vector of parame- .. \7 _ o0y _ andg —*init’; 0 otherwise.
ters governing this model only includes a table of K -

. The backward probability also depends on a
phrase translation probabilities, . . o

given segmentation length and positiadh,andt,
O = {p(u|v) : (u,v) bilingual phrasg¢ (10) and a stateg. It is defined as the conditional prob-
’ ability

3 Forward and backward probabilities T 7
ﬁtq = p(x(st+1) | Yy, T7 St = q) (13)
As usual with HMMs, we will discuss here the so-
calledforward andbackwardprobabilities for ef- WherestTJrl is any partial segmentation, from po-

ficient computation of the model itself, as givensitions¢ + 1 to 7', that might follow segmeng



in positiont. As before, it can be efficiently com- which can be efficiently computed as
puted by dynamic programming, using a “reverse”

version of the forward recurrence callbdckward T _ szt_h/ p(x(q) |y(q)) g;fq (19)
recurrence, e p(Xn | yn) [Suce(q')]
T ) ly(q")) 14 On the other hand, the M step re-estimates the
Prq = Z( Bt“q \Succ(q)\ (14) table of phrase translation probabilities,
q'€Succ(q)
N(u,v)

TR A i _ —_ 20

with g%, = 1 for anyterminalg = (-, 1,-,J) and p(ulv) = SN, V) (20)

anyt; 0 otherwise.
Equation (9) can be computed using (12) as where N(u,v) is the expected number of occur-

rences of the the paijmu, v); i.e.
p(x[y) Z Z aTq (15) 1 T
T q= ( -[7 7J) N(u7v) = Z T Zéntq’q 6nq(uav) (21)

. nq'qT t
or using (14) as

with 6,,,(u, v) defined ad if u = x,,(¢) andv =
p(x|y) Z BO“init" (16) vn(q); 0 otherwise.
T

5 Experiments

4 Maximum likelihood estimation Our phrase-based hidden Markov model was as-

As discussed in Section 2, the unknown vectoisessed on the UETRANS-I dataset (Amengual
of parameters of our phrase-based HMM modekt al., 2000). This dataset compris&8 000
only includes a table of phrase translation prob-bilingual sentence pairs from a limited-domain
abilities (10). We will describe here its EM- spanish-english machine translation application
based maximum likelihood estimation with re-for human-to-human communication situations

spect to a collection of training translation pairsin the front-desk of a hotel. It was semi-
(X1,¥1)s-- -, (XN, YN)- automatically built from a small seed corpus of
The log-likelihood function o® is: sentence pairs collected from traveller-oriented
booklets. Some basic statistics are shown in Ta-
= Z log p(xy | yn) ble 1.
() test set training set
p Xn St
=S log — (17) spa eng spa eng
Z Zn % !SHCC V sentences 2K 10K
<Zn

avg. length 127 126 129 13.0
The EM algorithm maximises Eq. (17) itera-  Vocabulary 611 468 686 513

tively, through the application of two basic steps ~ Singletons 63 49 8 10
in each iteration: the E(xpectation) step and the funning words 35K 36K 97K 99K
M(aximisation) step. The E step computes the ex- _Perplexity 3.7 297 3.63 2.96

pected value of the “hidden” variables given an

estimation of the parameters. The M step max- 1able 1: Statistics of the ETRANS-I corpus.

imises (17) using the expected values computed

in the E-step. Given an initial value of the pa- Two basic experiments were carried out. In

rameters®(©)  these two steps are repeated untithe first experiment, we did not use our phrase-

convergence to a local maximum of the likelihoodbased HMM since the experiment was designed

function. only to obtain a baseline result for comparison
In our case, the E step requires the computatiorurposes. Instead, we used GIZA++ to obtain a

for each pair(x,,,y,), of sample versions of (12) table of phrase translation probabilities, by sim-

and (14), as well as the joint probability ple count normalisation of phrases in the training
set that were coherent with the symmetric align-

5mq rq = P(Xn, 8-1 = q,st=qlyn,T) (18) ment matrix (Och and Ney, 2004). Then, we used



Pharaoh (Koehn, 2004) to search for the mostble remedy to this problem is to refine our phrase-
probable translation of each source sentence ihased HMM with inclusion of length models to
the test set, and the quality of the translated sgbenalise long phrases.

was evaluated using theord error rate (WER)

andbilingual evaluation understudBLEU) mea- 6 Conclusions

sures (Papineni et al., 2001). We obtained aWEIi\
of 7.7% and BLEU 0f89.1%. These are relatively
good results since, in general, low values of WEIﬁ:
and high values of BLEU are a clear indication of

phrase-based hidden Markov model has been
roposed for statistical machine translation. We
ave described the forward and backward recur-
rences for efficient computation of the model and

high quality translations. its EM-based parameter re-estimation, which has

In the .second experiment, we used our phraseﬁeen also described. Empirically results have
based hidden Markov model to better train the

. . “been reported comparing the proposed model with
phrase translation table. We proceeded as in thg baseline system. It has been found that our

first _experiment although, now, the phrase tablemodel is biased to long phrases and does not pro-
obtained before was used to initialise the EM algo_vide better results than the baseline system unless

_nthm prc(;posed mths ec_'ilorj 4folr7pa:ar:1h§tertrammgphrases are restricted to a maximum length. For
in accordance with criterion (17). In this case, VVefuture work, we plan to include a length model for

obtatl)ngd aIWEhR 07‘8(7;’ ar;)d I_BLEdU qfﬁ8.5%. q Iphrases and to carry out more experiments with
Obviously, the result obtained with our mode larger datasets.

was not better than that_ obtained with the base- \\.. 41so intend to take into account example-
"We approach. In analysing the phrase table P'o%hased hybrid data-driven systems (Groves and
vided by our model, we found that the EM algo- Way, 2006).

rithm prefers long to short phrases; that is, given ’

a target phrase, long source phrases are favoured aAcknowledgements
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