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Abstract 

Achieving high translation quality re-
mains the biggest challenge Machine 
Translation (MT) systems currently face. 
Researchers have explored a variety of 
methods to include user feedback in the 
MT loop. However, most MT systems 
have failed to incorporate post-editing ef-
forts beyond the addition of corrected 
translations to the parallel training data 
for Statistical and Example-Based system 
or to a translation memory database. In 
this paper, we describe the nuts and bolts 
of an Automatic Rule Refiner that, given 
online post-editing information, traces the 
errors back to lexical and grammar rules 
responsible for the errors and proposes 
concrete fixes to such rules. Initial results 
on a Diagnostic Test set show that this 
approach generalizes beyond input sen-
tences corrected by bilingual speakers, 
and allows for the correct translation of 
unseen data.  

1 Introduction 

In the field of Machine Translation, the most popu-
lar trend of recent years has been adding more bi-
lingual data to try to improve output quality. This 
strategy works reasonably well for Statistical and 
Example-Based MT systems. For Transfer-Based 
approaches to MT, however, having more bilingual 
data is rarely the solution to getting higher quality 
output.  

Traditional solutions to improve Transfer-Based 
MT systems are costly and time-consuming, since 
they involve many computational linguist hours to 
develop new rules and refine old ones. Moreover, 
in any MT system, out-of-vocabulary words are 
constantly jeopardizing translation quality.   

In this context, finding a way to automatically 
improve Transfer-Based Machine Translation sys-
tems without the need of computational linguistics 
experts constitutes a new promising research direc-
tion that deserves attention. This approach is par-
ticularly relevant for resource-poor scenarios.  

In this paper, we describe an Automatic Rule 
Refiner that improves the quality of MT output. 
The refinement process targets bilingual speakers’ 
corrections gathered through an online tool. These 
corrections allow the Rule Refiner (RR) to propose 
modifications that result in direct improvement of 
the grammar and the lexicon, yielding an im-
provement on overall translation quality of the MT 
system, even on unseen data. First, the RR parses 
and stores correction instances for specific transla-
tion pairs as provided by several bilingual speak-
ers. Next, it proceeds to do blame assignment 
based on the transfer tree generated by the MT sys-
tem. At this stage, the system retrieves the error-
causing rules and lexical entries and it executes 
specific refining operations. 

In a nutshell, the RR can add a lexical entry, 
modify a current lexical entry, bifurcate a rule and 
modify the copy, usually making it into a more 
specific rule, or refine a rule that is too general, by 
adding a missing agreement constraint.  

2 Related Work 

Nishida (1988) and colleagues described a Post-
Editing Correction information Feedback system 



(PECOF) in its early stages that also sought to im-
prove a transfer-based MT system. The main dif-
ferences with our approach are: 1) requiring 
computational linguists, whose work is not only to 
correct MT output but also to formulate correcting 
procedures corresponding to unseen error patterns, 
which are then executed by the PECOF system, 
and 2) using two MT systems in order to detect 
discrepancies between intermediate representations 
of the source language and the target language 
side, namely an original MT system (Japanese to 
English) and a reverse MT system (English to 
Japanese) that applied to the post-edited English 
translation.  

Our transfer-based MT system is particular in 
the sense that its rules integrate information from 
the three components of a typical transfer system, 
namely parsing, transfer and generation. And thus, 
in comparison with the PECOF system, blame as-
signment is more directly inferable from correc-
tions via the translation tree output by the system. 

 More recently, researchers have looked at other 
ways of including user feedback in the MT loop. 
Phaholphinyo and colleagues (2005) proposed add-
ing post-editing rules to their English-Thai MT 
system via a post-editing tool. However, they use 
context sensitive pattern-matching rules, which 
make it impossible to fix errors involving missing 
words. Their system, unlike our approach, requires 
experienced linguists as well as a large corpus. 
They mention an experiment with 6,000 bilingual 
sentences but report no results due to data sparse-
ness.1

3 Error Correction Extraction 

The first part of the rule refinement process is the 
extraction of error correction information. Our ap-
proach relies on bilingual speaker post-editing in-
formation, collected via an online Translation 
Correction Tool (TCTool) as described in Font-
Llitjós and Carbonell (2004). 

Each translation pair corrected by a user via the 
TCTool generates a log file, which can be proc-
essed and parsed by the Rule Refiner to extract all 
the relevant correction and error information, and 
store it into a correction instance (CI). 

CIs store all correction actions taken by a user, 
with related error information (Figure 1), into a 
                                                           
1 For a more detailed discussion of related work, see Font 
Llitjós and Carbonell (2006) 

vector of actions. Actions are processed by the 
Rule Refiner one at a time, following the algorithm 
described in Section 5. It is important to note that 
the order in which the user corrected errors has an 
impact on the order in which refinements apply 
and, consequently, on the resulting refined gram-
mar. 

3.1 Correction Instance Handling  

It is crucial that the correction actions stored in our 
system correspond to the essence of what the bilin-
gual speaker did to correct a specific translation 
pair while using the TCTool. This is actually a 
rather hard task. Even with just four correction ac-
tions (add, modify, delete and change word order), 
users can choose to correct the same mistake in 
more than one different way. For example, instead 
of modifying a word directly by editing it, deleting 
the incorrect word and adding a correct word 
would lead to the same final translation, but there 
would be no automatic way to relate the correction 
actions to the same error. In addition to intended 
corrections, users often change their mind and 
some times even make mistakes. 

 
 

SL: John and Mary fell  
TL: Juan y María cayeron  
Alignments: ((1,1),(2,2),(3,3),(4,4)) 
 
  Action 1: add (se in position 4) 
    Temp_CTL: Juan y María se cayeron  
    Alignments: ((1,1),(2,2),(3,3),(4,5)) 

 
  Action 2: add alignment (fell⎯se (4,4)) 
 
CTL: Juan y María se cayeron  
Alignments: ((1,1),(2,2),(3,3),(4,5),(4,4)) 

 

Figure 1. Correction Instance for Add Action. CIs store 
the source language sentence (SL), the target language 
sentence (TL) and the initial alignments (AL), as well as 
all the correction actions done by the user. It also pro-
vides the corrected translation (CTL) and final align-
ments. 
 

Thus the goal of this component is to extract all 
the post-editing actions taken by non-expert users 
and process them while filtering out as much noise 
as possible at this early stage, so that the error in-
formation can be used effectively by the rest of the 
system. 
 



3.1.1 Spurious Correction Detection 

There are several ways in which users change their 
mind, the first one being to correct a sentence that 
is already correct. If at some point during the cor-
rection session, the user decides to go back and 
mark the translation as being correct, the RR ig-
nores any correction actions registered and as-
sumes the translation is correct, effectively 
filtering out the noise introduced by the users’ 
hesitation.  

3.1.2 Spurious Loop Detection 

In other cases, users carry out a correction action 
and then change their mind. Examples of this are 
when users decide to add a word, but then realize 
that it is not needed, or modify a word from form1 
into form2, and then decide that it was already cor-
rect before, and so changes form2 back to form1. 

The RR addresses all this issues with a Spurious 
Loop Detector.  The Spurious Loop Detector oper-
ates by iterating over each action (Ai) and search-
ing for an action (Ai’) that will subsequently have 
had a reverse effect on the translation correction. 
Both Ai and Ai’ are removed from the list of ac-
tions the user performed. Then each action lying in 
between Ai and Ai’ is updated to reflect the re-
moval of Ai and Ai’.  Such updates can result in 
even more actions removed from the user action 
history.       

More specifically, the following user actions can 
reverse each other: 

• Adding and Deleting the same word 
(and vice-versa). 

• Editing a word  more than once (first ac-
tion deleted if last edit on word reverts 
back to original word,  first action 
change to last edit otherwise). 

• Changing Word Order to previous or-
der. 

• Adding and Deleting the same SL-TL 
word alignment (and vice-versa) 

 
 Spurious Loop Detection runs in O(|A|²) time. 
 Given a Source Language (SL) and Target Lan-

guage (TL) sentence pair, correctly detecting and 
discarding spurious loops allows for more reliable 
comparison of CIs that were parsed from log files 
generated by different users.  

3.2 Collection of Correction Instances 

Since users of the TCTool are not linguists or 
translation experts, the need to compare different 
correction instances and filter out noise becomes 
even more relevant.  

On the other hand, all posterior blame assign-
ment and refinement decisions made by the system 
fully depend on the correct extraction and process-
ing of error correction information given by bilin-
gual speakers. 

In batch mode, the RR reads in multiple correc-
tion instances affecting multiple translation pairs, 
and stores them in a Collection. This allows the RR 
to compare all the CI affecting a SL-TL pair and, if 
they contain equivalent information2, they are 
stored only once in the Collection with a weight 
proportional to the number of different CIs that 
were found to be equivalent. This weight directly 
indicates how much evidence there is in the data to 
support a correction action set as being more ap-
propriate than another one with less weight for any 
given SL-TL pair. Namely, the relevance of a par-
ticular CI can be precisely estimated by its weight, 
which corresponds to the number of log files (and 
thus different users) that agree with it. 

3.2.1 Error Complexity 

In addition to taking into account the number of 
users who agreed on a specific set of correction 
actions, the RR also scores CIs according the com-
plexity of their set of correction actions, or error 
complexity.  

To estimate the error complexity of a given CI, 
both the number of errors addressed (approximated 
by counting different correction actions) as well as  
whether there is any dependency among the errors 
(the assumption being that when two different cor-
rection actions affect the same word they are tar-
geting the same error, and thus are considered 
dependent), are factored in. 

More specifically, CIs are sorted with polyno-
mial sort, first by degree of dependency and then 
by coefficient, namely the amount of clusters with 
that degree. 

                                                           
2 Equivalent CIs are CIs that in addition to having the same 
SL-TL and Corrected TL, once the spurious loops have been 
detected and removed, they also have the same set of correc-
tion actions affecting the same words. 



For example, CIs with one correction action can 
be codified as (1); CIs with two independent cor-
rection actions, as (2), and with two dependent ac-
tions, as (1,0); CIs with three independent 
correction actions,  can be codified as (3), with two 
dependent actions and one independent action, as 
(1,1), and with three dependent correction actions, 
as (1,0,0), and so on.  

Descendent order of these vectors provides a 
natural and intuitive way to sort correction in-
stances, since it correctly prioritizing CIs with a 
larger number of independent errors over CIs with 
smaller number errors that are dependent among 
them: 001, 002, 003, 010, 011, 100, etc.3

3.2.2 Ranking of CI Collection 

Since we want to prioritize correction instances 
with more user support and tackle simpler errors 
first, the RR uses the following ranking algorithm: 
 

   For each CIcollection:  
1. For each SL-TL pair, find the CI with the highest 

weight (more evidence)  BestCI  
    2. For each BestCI, compute error complexity 

3. Rank BestCI with lowest error complexity higher. 
 

This algorithm picks the CI with more user sup-
port for each SL-TL pair (BestCI) and then com-
putes their error complexity in order to rank 
simpler CIs higher. The resulting ranking is used 
by the Rule Refiner to determine in which order to 
process correction data stored in a Collection of 
Correction Instances. 

This “Tetris” approach is based on the underly-
ing assumption that once simpler errors are fixed, 
more complex errors will be simplified (thus mov-
ing up in the ranking) and become easier to fix 
automatically. 

4 Rule Blame Assignment 

After having correctly stored and processed error 
correction information, rule blame assignment is 
executed by the RR. This is a key step of the rule 
refinement process, and is what differentiates 
Rule-Based MT systems form most Statistical MT 
(SMT) or Example-Based MT (EBMT) systems. 
Namely, for systems that do not have explicit rules, 
an approach like the one proposed here cannot be 
applied directly.  
                                                           
3 Currently, the implementation of error complexity does not 
take alignment correction actions into account. 

Given the error and correction words and the 
transfer tree output by the transfer engine, the RR 
can identify the incorrect rules and/or lexical en-
tries, as the case might be, that are responsible for 
the error. 

4.1 Rule handling  

In order for the blame assignment algorithm to be 
effective, the RR pre-processes the lexicon and the 
grammar and assigns unique Rule IDs to all the 
entries that do not already have an ID. 

To ensure fast look up of rules, red-black trees 
are used to index all rules by their respective Rule 
IDs. Additionally, lexical entries are indexed by 
their SL and TL sides, including exact and partial 
matches. Red-black trees are a balanced-tree data 
structure that ensures amortized look-up times of 
O(log|R|). Logarithmic lookup time is vital as the 
lexicon could potentially have hundreds of thou-
sands of rules. 

When rules are bifurcated, a Refined Rule Hier-
archy is created (with each child being a derived 
rule from its parent). Since refined rules are stored 
in a text file that needs to be parsed by the transfer 
engine, hierarchy information is stored as meta 
data encapsulated by comments that are unparsed 
by the transfer engine. Such a hierarchy allows 
reverting back to the grammar and lexicon previ-
ous to refinements that did not lead to an im-
provement of MT quality.  

In general, all meta data specific to the Rule Re-
finer is stored as comments in the grammar and 
lexicon text files so as not to disturb transfer en-
gine parsing.   

4.2 Translation Trees 

Similar to the modified transfer approach discussed 
in the early METAL system (Hutchins and Somers, 
1992), the rules in our transfer-based MT system 
contain analysis, transfer and generation informa-
tion (Lavie et al., 2004). This representation 
greatly facilitates blame assignment. 

The translation tree that is output by the MT sys-
tem contains a precise trace of what translation 
rules were applied to what lexical entries in order 
to generate the target sentence that the user cor-
rected. This is done via unique rule IDs displayed 
by the tree, which are used by the Blame assign-



ment process to retrieve the relevant rules that need 
to be refined. 

 
       (S,1 (NP,6  (NP,2 (N,2:1 'JUAN') )  

(CONJ,1:2 'Y')  
(NP,2 (N,3:3 'MARÍA') ) ) 

  (VP,1 (V,6:4 'CAYERON') ) ) ) 
 
Figure 2. Translation tree output by the MT system for 
the SL sentence John and Mary fell. 

5 Rule Refinement Operations  

The core component of the rule refinement process 
is the one that decides what rule refinement opera-
tions need to apply to address a specific error (cor-
rection). This is also the component that is most 
sensitive to the set of correction actions currently 
allowed by the TCTool, for the kinds of rule re-
finement operations that are applied crucially de-
pend on what types of correction actions were 
chosen by users.  

The two main pieces of information that deter-
mine the rule refinement operation that will be ap-
plied by the RR are the correction action (taken by 
the user) and the error information available at re-
finement time. Given the correction action type 
(add, edit, delete and change_word_order) and the 
error and correction words, the RR applies a dif-
ferent refinement algorithm. In general, the Rule 
Refiner addresses lexical refinements first and then 
moves on to refinements of the grammar rules, if 
necessary.  

First let’s introduce some notation to describe 
error and correction information. The RR repre-
sents TL sentences as vectors of words from 1 to n 
(sentence length), indexed from 1 to m (corpus 
length)  and the corrected 
sentences (CTL) as follows: 

),...,...( 1 nim WWWTL =

         ),...,...',...( '1 nclueim WWWWCTL =
where Wi represents the error, namely the word 

that needs to be modified, deleted or dragged into a 
different position by the user in order for the sen-
tence to be correct; and Wi’ represents the correc-
tion, namely the user modification of Wi or the 
word that needs to be added by the user in order 
for the sentence to be correct.  

Wclue, or clue word, represents a word that pro-
vides a clue with respect to what triggered the cor-
rection, namely the cause of the error. For 

example, in the case of lack of agreement between 
a noun and the adjective that modifies it, as in *el 
coche roja (the red car), Wclue should be instanti-
ated to coche, namely the word that gives us the 
clue about what the gender agreement feature 
value of Wi should be, namely masculine (rojo). 
Wclue can also be a phrase or constituent like a plu-
ral subject (eg. *[Juan y Maria] cayó, where the 
pl

be contiguous or separated 
by

iner, refer to Font-
Ll

he Rule Refiner 
illustrated by es. 

5.1 Add Word 

bly 
identify a correction word (Wi’). See Figure 3. 

ural is implied by the conjoined NP). 
Wclue is not always present and it can be before 

or after Wi. They can 
 one or more words. 
For more information about the theoretical 

framework of the Rule Ref
itjós and Carbonell (2006). 
The following subsections describe a simplified 

version of algorithm underlying t
 a few exampl

 

When users add a word (by clicking on the [New 
Word] button on the TCTool interface and then 
writing the word in the newly created box), there is 
no error word per se, however the RR can relia

 

 
Figure 3. TCTool snapshot after having created a new 
word (se). 

 
Figure 4. TCTool snapshot after having added the newly 
rec ated word into the right position (Action 1). 

 

Having instantiated Wi’ with a word in the CTL 
vector (Figure 4), the next step is to check if the 
user added any alignments from the word in the SL 
sentence to this Wi’, and if so, to retrieve them. 
Alignment information, however, can only be ex-



tracted after later correction actions are processed 
by the RR, and thus at this point a look ahead in 
th

racts the corresponding 
ali

om SL 
word to other TL words (in this case (4,5)). 

e Action vector is required.  
In the John and Mary fell example, when the 

user adds the word se between María and cayeron 
(Juan y María se cayeron), there is no alignment 
information available for Wi’ (Figure 4), and so the 
algorithm looks ahead in the Action vector trying 
to find an alignment added to position i. In this 
case, it finds that se is aligned to fell by the user 
later on, and thus it ext

gnment (4,4). Figure 5. 
However, the SL word aligned to Wi’ could also 

be aligned to other TL words, in this case fell also 
happens to be aligned to cayeron. And so next, the 
RR algorithm extracts all the alignments fr

               
Figure 5. TCTool snapshot showing Action 2: Adding 
ma

 determine the 
ne

ord] 
an

e lexicon, however [fell cayeron] is 
th

]. The resulting refined entry is displayed 
below: 

 -> ["se cayeron"] 

  ((y0 agr num) = pl) 

nual alignment.  
 

Alignment information is required in order to re-
trieve the relevant lexical entries and

cessary refinements accordingly.  
First, the entry for [SLW  Wi’] is sought in the 

lexicon, if it’s not there, [SLW OtherTLW
d [SL  Wi’+OtherTLWord] are looked up. 
In our example, [fell se] and [fell se cayeron] 

are not in th
ere (V,6). 
 At this point, the RR BIFURCATES the lexical 

entry [fell cayeron] creating a copy of it (V,11), 
and REFINES it by replacing the TL side with Wi’  
+ OtherTLWord (aligned to SL word): [fell se 
cayeron

{V,11} 
V::V |: [fell]
(;(P:{V,6}) 
  (X1::Y1) 
  ((x0 form) = fall) 
  ((x0 tense) = past) 
  ((y0 agr pers) = 3) 

The new lexical entry is added to the Lexicon 
and the Refined Lexicon is loaded to the transfer 
engine in order to assess the effect of the rule re-
finement. 

The lattice output by the transfer engine when 
translating the SL sentence is checked against the 
CTL sentence as corrected by the user. 

If the RR finds that CTL is being generated by 
the MT system, it stops, otherwise, it proceeds to 
grammar refinements. For this example, the algo-
rithm described above successfully refined the 
lexicon and the lattice output by the refined MT 
system, and so the Rule Refiner moves on to the 
next best CI in the Collection ranking.  

 

If the word added (Wi’) is not aligned to any 
word in the SL sentence, then there is nothing to be 
done at the lexical level and the algorithm skips to 
grammar refinements. 

The first step is blame assignment by looking at 
the translation tree. For example, given the transla-
tion pair you saw the woman − viste la mujer and 
the user correction of adding the word “a” in front 
of mujer, the RR detects that “a” is not aligned to 
any words in the SL sentence, and it proceeds to 
look at the translation tree to extract the appropri-
ate rule that needs to be refined. 

 
Figure 6: Translation Tree showing user insertion (“a”) 
with two potentially relevant rules highlighted (VP,2 
and NP,3). 
 

In this case, since “a” is inserted between “viste” 
(V) and “la” (DET), there are two candidate rules 
for refinement, namely VP,2 and NP,3 (Figure 6). 

Adding an “a” in the right position to any of 
these two rules ([“a” DET N] and [V “a” NP]) 
would have the desired effect for this example. 
However, only the second option generalizes well 
to other sentences. If the first one were chosen, all 
instances of NP[DET N] would be generated in 
Spanish with an “a” preceding them, even when 
the NP is a subject or an oblique, this would result 
in an unnecessary ambiguity increase. 



In general, to handle these cases in batch mode 
(when there is no option for further user interac-
tion), the RR needs to refine the most specific rule, 
namely the candidate rule that encodes the most 
amount of context (Figure 7). This ensures that the 
refinement applies to syntactic environments most 
similar to the original corrected sentence. In this 
case, this means the refinement applies to object 
NPs only and not to all NPs. 

 
Figure 7: Depicting context captured by each candidate 
rule. VP,2 encapsulates more context than NP,3, and 
thus is more specific.  
 

This is still not the ideal level of generalization, 
since one would want to only add an “a” in front of 
animated object NPs in Spanish. The RR could 
further refine the bifurcated rule to have a value 
constraint that restricts its application to NPs with 
mujer as a head. However, in the absence of se-
mantic features in the lexicon (such as animacy), 
not adding any further refinements is the best strat-
egy to strive high accuracy and control unneces-
sary ambiguity. 

5.2 Edit Word 

When users modify a word (Wi) into a related form 
or sense (Wi’), there are two possible scenarios. 
The one most favorable to generalization, is that 
the lexicon already discriminates between these 
two forms, usually by giving them a different value 
for the same feature attribute (example: [red-roja] 
and [red-rojo]). The one with less immediate im-
pact is that the two senses are identically defined in 
the lexicon, namely they have the same POS and 
the same feature attributes and values (ex: 
[women-mujer] and [guitar-guitarra] are both sin-
gular feminine nouns in Spanish). 

If the lexicon already discriminates between the 
two lexical entries, the RR extracts the grammar 
rule for the immediate common parent of Wi and 
Wclue (as identified by the user) and adds an 

agreement constraint with the triggering feature4 
between the constituents corresponding to Wi and 
Wclue.  

 
SL: I see the red car  
TL: veo el auto roja  
Alignments: ((2,1),(3,2),(4,4),(5,3)) 
 

  Action 1: edit (Wi=roja  Wi’=rojo; Wclue=auto)  
 

CTL: veo el auto rojo  
Alignments: ((2,1),(3,2),(4,4),(5,3)) 

 
Figure 8. Correction Instance for edit action.  

 

For the CI represented in Figure 8 (I see the red 
car), the user edits roja into rojo (by clicking on 
the word and changing ‘a’ into ‘o’), and the system 
finds that the difference (delta set) between the 
lexical entry for roja and rojo is [agr gen].5  

At this point, the RR moves to the Grammar Re-
finement. 

 

 
Figure 9. Edit Word window eliciting for Clue word 
Information. 

 

Since the user identified auto as being the clue 
word as shown in Figure 9, the RR algorithm can 
now instantiate what variables do Wi and Wclue cor-
respond to in the relevant rule (NP,8), namely y3 
and y2.  

Next, the Rule Refiner adds an [agr gen] con-
straint to the rule copy (NP,9) between y2 and y3: 
 

{NP,9}       ;; y1    y2    y3 
NP::NP : [DET ADJ N] -> [DET N ADJ] 
(;(P:{NP,8}) 
  (X1::Y1)  (X2::Y3)  (X3::Y2) 
  ((x0 det) = x1) 
  ((x0 mod) = x2) 
  (x0 = x3) 
  (y0 = x0) 
  (y1 == (y0 det)) 
  (y3 == (y0 mod)) 
  (y2 = y0) 
  ((y2 agr gen) = (y3 agr gen))) 

                                                           
4 The triggering feature is the attribute name for which the two 
lexical entries have a different value. 
5 roja is the feminine form of red in Spanish and rojo is the 
masculine form (auto rojo vs casa roja). 



However, if the lexicon does not already dis-
criminate between the two lexical entries (Wi and 
Wi’), the RR postulates a new feature attribute and 
adds a binary value constraint to each lexical entry, 
in order to allow the grammar to distinguish be-
tween the two senses of the same SL word. 

For example, given the sentence Mary plays gui-
tar and its translation as produced by our MT sys-
tem, *María juega guitarra, the user will edit 
juega into toca and since this new sense is not 
listed in the lexicon, the RR will BIFURCATE the 
original lexical entry [play juega] and REFINE it 
by replacing the TL side (as in 5.1. Add above). 
Since in this case, [play toca] is otherwise an ex-
act copy of [play juega] (with the same POS and 
features), the system postulates a new feature 
(feat_0) to distinguish between the two and adds 
the following constraints to the lexical entries: 
[play toca ((feat_0) = +)] and [play juega 
((feat_0) = −)]. 

If Wclue were instantiated with guitarra, in order 
to effectively add an agreement constraint between 
“toca” and “guitarra”, in addition to adding an 
agreement constraint to the rule that subsumes both 
words (VP,2), a percolate method recursively adds 
the appropriate agreement constraints to all inter-
mediate rules (in this case, VP,1 and NP,3): 
 

(S,1   (NP,2 (N,3:1 'MARÍA') )  
(VP,2  (VP,1 (V,5:2 'JUEGA') )  

(NP,3 (DET,2:3'LA') 
          (N,5:4 'GUITARRA') ) )) ) 

5.3 Delete Word 

If a user deletes a word (by dragging it to the 
trash),  it could be that the user really meant to de-
lete this word or that she just wanted to modify the 
incorrect word and thus deleted it and then added a 
new word with the correct word in it. 

In order to detect this, the RR algorithm checks 
if there were any alignments from it to one or more 
SL words, and if so, it looks ahead to see if there 
was any other word in the TL sentence that was 
aligned to that SL word at a later point in the ses-
sion. If there is a TL word aligned to the SL word, 
then the RR algorithm checks if it’s already in the 
lexicon, and if it isn’t, it adds it. 

If Wi’ is in the lexicon, the RR algorithm adds a 
new lexical entry for the SL word aligned to it with 
an empty TL side ([SL word  “”]), which results 
into the MT system not translating the SL word. 

5.4 Word Order Change 

In order to change the order of the TL words, users 
can drag and drop words into a different position in 
the TL sentence. (Alignments stay the same, unless 
manually changed by users). 

The Rule Refiner detects which word(s) were 
moved to a different position and extracts what 
were their initial (i) and final (i’) positions. The 
Rule Refiner can only reliably execute refinement 
operations if, given a word that has moved (Wi), 
both the initial and final positions fall inside the 
scope of a rule in the grammar. If a word under-
goes a long-distance move and thus is placed at the 
beginning or the end of the sentence far from its 
original position, automatic refinements become 
less reliable.  

If the initial and final positions are subsumed by 
a rule in the grammar, then the RR algorithm can 
extract the rule that immediately subsumes the 
constituents in both positions and BIFURCATE it 
in order to change the constituents on the right 
hand side of the rule copy. 

For example, if the grammar already contains a 
general NP rule that reverses the order of the ad-
jectives and nouns in Spanish, but is lacking a spe-
cific rule for pre-nominal adjectives, given relevant 
correction feedback, the RR can extract the general 
NP rule and flip the order of N and ADJ on the 
RHS (TL side) of the rule. This also requires up-
dating the alignment information as well as af-
fected indices in the value and agreement 
constraints. 

The next step is to further constrain the newly 
created rule so that it only applies in the right con-
text. Again this can be done in a general way if the 
lexicon already distinguishes between the lexical 
entries that are affected by this change and the 
general cases. A constraint with the appropriate 
feature attribute is added to the specific rule and a 
blocking constraint is added to the general rule. 

If there is no current feature attribute to distin-
guish between the special case and the general 
case, the RR postulates a new binary feature and 
add a value constraint to the appropriate lexical 
entries as well as to the specific and general 
grammar rules. 

To see a concrete example of this (Gaudi was a 
great artist  *Gaudí era un artista grande  
Gaudí era un gran artista), see Font Llitjós and 
Carbonell (2006). 



6 Generalization Power  

The main difference between this approach and 
mere post-editing is that the resulting refinements 
affect not only the translation instances corrected 
by the user, but also other similar sentences where 
the same error would manifest. After the types of 
refinements described in Section 5 have been ap-
plied to the grammar and lexicon, sentences like I 
gave the girl a book and Juan is a great person 
will now correctly be translated as Doy un libro a 
la niña  (instead of *Doy un libro la niña) and 
Juan es una gran persona (instead of *Juan es una 
persona grande), to name just two examples. 

7 Evaluation of Automatic Refinements 

The ultimate goal of the Automatic Rule Refiner 
is to improve MT output accuracy and quality. Ini-
tial experiments with an English-Spanish MT sys-
tem, designed to measure the effects of the 
refinement process, clearly show that refinements 
generalize well beyond the specific sentences cor-
rected by users. 

A Diagnostic Test (DT) set was developed with 
55 sentences expected to exhibit the same kinds of 
errors that users corrected, but that are significantly 
different from the ones corrected. For this initial 
experiment the seven different log files shown in 
Figure 10 were processed by the Rule Refiner. 

 

 
1.  I see the red car – veo el auto roja – veo el auto rojo
TCTool: Edit  RR: Add gender agreement constraint 
 

2. you saw the woman – viste la mujer – viste a la mujer 
TCTool: Add  RR: Add “a” to the appropriate Gr rule 
 

3. I see the red unicorn – veo el unicorn rojo – unicornio
TCTool: Edit  RR: Add OOV word to the lexicon 
 

4. Mary plays the guitar – María juega la guitarra – toca  
TCTool: Edit  RR: Add new sense of the word “play” 
 

5. John and Mary fell – Juan y María cayeron – se caye-
ron.    
TCTool: Add  RR: Add reflexive form to the lexicon 
 

6. Gaudi was a great artist – Gaudí era un artista gran – 
gran artista. TCTool: Move gran in front of artista 
RR: Add NP rule to cover pre-nominal ADJ 
 

7: I would like to go – me gustaría que ir – me gustaría 
ir. TCTool: Delete que  RR: allow no translation for 
“to” ([to  “ ”]). 
 

Figure 10: Log Files processed by the Rule Refiner. 

The DT set was translated both with the initial 
grammar and lexicon (19 grammar rules and 250 
lexical entries) and with the final refined grammar 
and lexicon, result of all the refinements triggered 
by the seven log files (21 grammar rules and 254 
lexical entries). 

The MT system went from not producing a cor-
rect translation to producing one to two correct 
translations for most SL sentences in the DT set, 
while the number of total translations per sentence 
went from an average of 4 to an average of 6 trans-
lations, as shown in Table 1. Note that the average 
increase in the number of correct translations (re-
call) is larger than the average increase in the total 
number of translations (ambiguity). In this context, 
ambiguity corresponds to the denominator of pre-
cision, and so when ambiguity increases, precision 
decreases.  

Table 1: The first row measures recall achieved be-
fore any refinements and after 7 refinements were ap-
plied, the average number of correct translations; the 
second row shows the average increase of the number of 
correct translations. The last two rows illustrate ambigu-
ity: the average number of total translations, and the 
average increase of the number of total translations. 

 
 Figure 11 shows a few examples from the 

DT set which were not being correctly translated 
by the original MT system and are now being cor-
rectly translated by the refined MT system.  

 
   (1) I meet some didactic professors at the conference –   
    conocí a algunos profesores didácticos en el congreso 
   (2) I saw the children – vi a los niños 
   (3) The unicorn slept – el unicornio durmió 
   (4) The boy plays the viola – el niño toca la viola 
   (5) The little boys fell – los niños pequeños se cayeron  
   (6) Irina is a great friend – Irina es una gran amiga. 
    (7) They want to contribute – Ellas quieren contribuir  

 
  Figure 11: Translation examples from DT set after 
refinements in Figure 10. The number preceding each 
example corresponds to the log file number responsible 
for the correction. 

 

These results represent a lower-bound on recall 
for this test set, since the MT system used for these 

            Recall Before After 
Avg. Num of Correct Tr. 0.38 1.20 
Avg. Increase in %   214% 
          Ambiguity 
Avg. Num of Total Tr. 4.09 6.11 
Avg. Increase in %  49% 



experiments did not include a morphology module. 
If the system had a morphology module, refine-
ments would generalize to all forms of a specific 
word, and thus the impact on unseen data would be 
much larger. 

8 Conclusions and Future Work 

The main goal of the Automatic Rule Refiner is to 
extend the lexicon and the grammar to account for 
exceptions not originally encoded in the translation 
rules. A secondary goal is to make overly general 
rules more specific to reduce grammar ambiguity.  

Beyond increasing lexical coverage, the errors 
most efficiently corrected by the Rule Refiner are 
syntactic in nature. The reason for this is that the 
generalization power of the RR is greatest when 
refinements involve existing feature constraints. 
Since our lexicon currently contains purely mor-
pho-syntactic features (such as gender, number and 
person), grammar refinements affecting those fea-
tures will generalize well on unseen data. 

Semantic errors, however, usually require the 
system to postulate a new binary feature to distin-
guish between the different senses of the word. 
Since the RR cannot populate other lexical entries 
with newly hypothesized features automatically, in 
the absence of a generalization mechanism, this 
process represents just a first step towards seman-
tic correction. An extension of this work could be 
to query an external ontology, and derive semantic 
distinctions from it.  

Initial results show that our Automatic Rule Re-
finement achieves the main goal to add generation 
capability to the translation model, and thus im-
prove MT output recall, without proportional in-
creases in ambiguity.  

The space of solutions for an Automatic Rule 
Refiner is large and there is a clear tradeoff be-
tween adding constraints to control ambiguity and 
loosing refinement generality. 

Adding generation capabilities to the model by 
always bifurcating, for example, increases ambigu-
ity exponentially. In a modular translation model, 
where rules plug into each other, blind bifurcation 
increases the complexity of the grammar unneces-
sarily and can pose a serious problem.  

Adding more feature constraints will decrease 
ambiguity, but unless features already exist in the 
lexicon, refinements will not generalize over un-
seen words and syntactic structures. 

In the ideal oracle case, only the right con-
straints at the right level of generality, are added to 
the model. In the practical learning case, the 
Automatic RR learns refinements that increase the 
generation capabilities, but do not increase ambi-
guity exponentially (much like a partial constraint 
oracle). 

When applying refinements automatically, it 
cannot always be determined whether a refinement 
should be as general as possible or, on the con-
trary, it should only be made as specific as possi-
ble. Therefore, choosing between prioritizing 
generalization versus ambiguity reduction becomes 
a practical matter and can be decided according to 
specific needs. 
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