
  

Machine Translation as 
Tree Labeling

Mark Hopkins and Jonas Kuhn
Department of Linguistics

University of Potsdam
hopkins@ling.uni-potsdam.de

kuhn@ling.uni-potsdam.de

mailto:hopkins@ling.uni-potsdam.de


  

The familiar goal:  use syntax in a 
meaningful, central way to 
genuinely help machine 
translation.  Our hypothesis is that 
by using syntactic information 
intelligently enough, it should be 
possible to learn the basics of 
translation with only a small 
quantity of training data.



  

The general set-up:

FULL TRANSLATION
including:

- source sentence
- target sentence

- auxiliary info

TRAINING DATA

PARTIAL
TRANSLATION

including:
- source sentence

- partial auxiliary info

EVALUATION DATA

PARTIAL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION PARTIAL

TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION



  

The general set-up:

FULL TRANSLATION
including:

- source sentence
- target sentence

- auxiliary info

TRAINING DATA

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

FULL
TRANSLATION

The first decision is to determine 
what these “full translations” are 
going to look like.  Namely, what 
kind of auxiliary info are we going 
to rely on?  Our assumption is that 
they will look as follows:



  

The general set-up:

PARTIAL
TRANSLATION

including:
- source sentence

- partial auxiliary info

EVALUATION DATA

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION PARTIAL

TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION

PARTIAL
TRANSLATION

Next decision: what will the “partial 
translations” look like?  We will 
assume that they are source 
sentences which are parsed and 
annotated in the same manner as the 
training data.

S

VPNP

VP ADJP

MD VP

RB VB

going todaynotamI



  

To summarize... from 
a training set of full 
translations:



  

To summarize... from 
a training set of full 
translations:

S

VPNP

VP ADJP

MD VP

RB VB

going todaynotamI

...we want to learn 
how to go from a 
partial translation...



  

To summarize... from 
a training set of full 
translations:

...we want to learn 
how to go from a 
partial translation... ...to a full translation.

S

VPNP

VP ADJP

MD VP

RB VB

going todaynotamI

vais pasnejeAujourd'hui ,



  

We will show:

(1) how to take an aligned tree-string pair in our training 
corpus, and convert it to an equivalent labeled tree 
representation.



  

We will show:

(1) how to take an aligned tree-string pair in our training 
corpus, and convert it to an equivalent labeled tree 
representation.
(2) how to take this labeled tree representation, and convert 
it to a series of (mostly binary) decisions – a generative story

RULE (root): YES
RULE (NP): YES
RULE (VP1): NO
RULE (VP2): YES
...
RHS TEMPLATE(root):  X , X
VAR 1 RIGHT(root)?  YES
VAR 2 LEFT(root)?  NO
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
RHS TEMPLATE(NP):  je
RHS TEMPLATE(VP2):  X
RHS TEMPLATE(VP3):  ne X pas
RHS TEMPLATE(VB):  vais
RHS TEMP(ADJP):  aujourd'hui



  

After converting each item in our training corpus to such 
a generative story:
- training will consist of learning how to make each of 
these decisions in the generative story (discriminatively)
- decoding will consist of computing the lowest cost 
generative story according to our learned distributions.

RULE (root): YES
RULE (NP): YES
RULE (VP1): NO
RULE (VP2): YES
...
RHS TEMPLATE(root):  X , X
VAR 1 RIGHT(root)?  YES
VAR 2 LEFT(root)?  NO
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
RHS TEMPLATE(NP):  je
RHS TEMPLATE(VP2):  X
RHS TEMPLATE(VP3):  ne X pas
RHS TEMPLATE(VB):  vais
RHS TEMP(ADJP):  aujourd'hui



  

In (Galley et al., 2003), the authors 
propose a way of interpreting any 
aligned tree-string pair (t,s,a) as the 
tree t, labeled with a particular 
type of rule (the so-called GHKM 
rule).

GHKM RULES

For instance...



  

This aligned tree-sentence pair turns into...

S

VPNP

VP ADJP

MD VP

RB VB

going todaynotamI

vais pasnejeAujourd'hui ,



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

... this labeled tree.



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Roughly speaking, what do these rules mean?  Consider one of the 
simplest rules, the one labeling the VB node:



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

This simply directs you to do the following: if you see the word 
“going” then translate it as “vais”.



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Let's go one level up in the tree and consider a slightly more 
complicated rule:



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

This states: 
IF you see the word “not”, followed by something you've already translated
THEN translate the whole thing as “ne” + the existing translation + “pas”



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

In this particular tree, we've already translated “going”  as “vais”, so we're 
applying this rule to: “not vais”, which therefore becomes “ne vais pas”.



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

By the time we get to the top of the tree, we've translated the three immediate 
“rule node” descendants (those descendants annotated with rules) as “je”, “ne 
vais pas”, and “aujourd'hui”, respectively. 



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Our translations so far are: “je”, “ne vais pas”, “aujourd'hui” (in that order).
Thus the top rule directs us to reorder these, such that we get as output:
aujourd'hui , je ne vais pas  (notice the comma that the rule inserts)



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

In short, the “GHKM tree” representation implicitly 
captures the target language translation of this source 
sentence, which is explicitly represented in the original 
aligned tree-string pair.  



  

Although we won't go into detail about how 
(Galley et al., 2003) convert this...

S

VPNP

VP ADJP

MD VP

RB VB

going todaynotamI

vais pasnejeAujourd'hui ,



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

... to this...



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

...suffice it to say that this can be done deterministically 
and efficiently, in such a way that the rules of the 
GHKM tree “respect” the original alignment (where 
this idea of “respect” is defined formally by (Galley et 
al., 2003) ).



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Hence, as a preprocessing step, we can convert every 
aligned tree-sentence pair in our training corpus to its 
equivalent GHKM tree representation, and learn from 
these instead.



  

Given this representation, what does it mean to translate?  It 
means: we start with a parsed sentence...

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI



  

Given this representation, what does it mean to translate?  It 
means: we start with a parsed sentence...

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI



  

Given this representation, what does it mean to translate?  It 
means: we start with a parsed sentence...

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

... and we label (some subset) of the nodes with rules.



  

In this way, we've reduced the somewhat ambiguous 
translation task to the more concrete task of labeling the nodes 
of a tree.

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

???

???

???
???

??? ???
???

???

???



  

But we still need to break down the task a bit further.  We can't 
really ask a generative process, as its first decision, to guess 
with a high degree of accuracy that it should label the root node 
in the correct way.  It doesn't even know yet how many 
variables there will be (which will only be clear once we know 
which nodes will actually be receiving rule labels).

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

???

???
???

??? ???
???

???

???



  

Instead, we'll begin the generative story with a simpler task.  
We'll simply go to each node, and decide whether it will have a 
rule or whether it will not have a rule.

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

???

???

???
???

??? ???
???

???

???



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

???

???
???

???

???

???

Note that this is a binary decision.  Once we've done that, notice 
that our job is suddenly easier, because:



  

Note that this is a binary decision.  Once we've done that, notice 
that our job is suddenly easier, because:

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

The LHS of every rule is determined.



  

Now, what do we have to do to complete our generative story? 
Simply fill in the right-hand side of each rule.

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI



  

So let's devise a 
simple generative 
story for the RHS of a 
rule...

Consider two of the rules from our 
sample tree, and take particular notice 
of the RHS.

21 3 213 , not 1 1 pasne



  

Conceivably in our corpus we will find 
many very similar looking right hand 
sides.

21 3 213 , not 1 1 pasne

21 3 321

21 3 314 ,

21 21 ,

not 1 1 pasne,

4 2

2 2

not 1 2 pasne2 1



  

We can view these RHS as instances of a 
general schema.  We begin to create 
such a RHS by choosing a template.

21 3 213 , not 1 1 pasne

21 3 321

21 3 314 ,

21 21 ,

not 1 1 pasne,

4 2

2 2

not 1 2 pasne2 1



  

Rather than memorizing all of these 
rules separately, let's view them as 
instances of a more general rule.  We 
begin to create such a rule by choosing a 
template.

21 3 213 , not 1 1 pasne

21 3 321

21 3 314 ,

21 21 ,

not 1 1 pasne,

4 2

2 2

not 1 2 pasne2 1

XX , X pasne



  

Once we've chosen the RHS template, we have partially 
completed rules that look like the following examples.  
Our next task is to fill each RHS will the variables of the 
LHS.  Let's see how this works.

XX , not 1 X pasne21 3



  

We began the generative story of a rule RHS by 
choosing the RHS template.

XX ,21 3

CHOOSE TEMPLATE RHS:  X , X

DECISIONS MADE THUS FAR:



  

Now we place (by default) the first variable in the first 
RHS slot.

XX ,21 3

CHOOSE TEMPLATE RHS:  X , X

DECISIONS MADE THUS FAR:



  

Now we ask: do we want to push this variable further to 
the right?  Note that this is a yes/no decision.  Suppose 
we say yes.

X1 ,21 3

“Do we want to push this variable further 
to the right?”

“Yes.”

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

DECISIONS MADE THUS FAR:



  

At this point, we cannot push variable 1 further to the 
right, so we won't ask again.  Let's move on to variable 
2.

1X ,21 3

“Hmm... it looks like we can't go any 
further to the right.”

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

DECISIONS MADE THUS FAR:



  

By default, we'll start by placing variables immediately 
after the previously placed variable.

1X ,21 3 2

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

DECISIONS MADE THUS FAR:



  

We can't move variable 2 further to the right, so we'll 
start by asking whether we want to move it further to 
the left.

1X ,21 3 2

“Do we want to push this variable further 
to the left?”

“No.”

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO

DECISIONS MADE THUS FAR:



  

Once we've declined to move variable 2 to the right and 
to the left, we go on to consider variable 3.

1X ,21 3 2 3

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO

DECISIONS MADE THUS FAR:



  

We can't move to the right, so we begin by asking 
whether we want to move it left.

1X ,21 3 3 2

“Do we want to push this variable further 
to the left?”

“Yes.”

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO
CHOOSE TO PUSH VAR 3 LEFT?  YES

DECISIONS MADE THUS FAR:



  

Until we decline to move it left, or are unable to move 
the variable left, we continue to ask this question.

1X ,21 3 3 2

“Do we want to push this variable further 
to the left?”

“Yes.”

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO
CHOOSE TO PUSH VAR 3 LEFT?  YES
CHOOSE TO PUSH VAR 3 LEFT?  YES

DECISIONS MADE THUS FAR:



  

Now that we have taken care of all of the LHS variables, 
we have completed our rule.

13 ,21 3 2

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO
CHOOSE TO PUSH VAR 3 LEFT?  YES
CHOOSE TO PUSH VAR 3 LEFT?  YES
CHOOSE TO PUSH VAR 3 LEFT?  YES

DECISIONS MADE THUS FAR:



  

Observe that the RHS of this rule was created using a 
series of three basic types of decisions (template, push 
left, push right), two of which are binary.

13 ,21 3 2

CHOOSE TEMPLATE RHS:  X , X
CHOOSE TO PUSH VAR 1 RIGHT?  YES

CHOOSE TO PUSH VAR 2 LEFT?  NO
CHOOSE TO PUSH VAR 3 LEFT?  YES
CHOOSE TO PUSH VAR 3 LEFT?  YES
CHOOSE TO PUSH VAR 3 LEFT?  YES

DECISIONS MADE THUS FAR:



  

Now that we have a generative story for the generation of the 
right-hand side of a rule, we use this to go from here...

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI



  

... to here.  Which is exactly where we were trying to get to.

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI



  

Hence, our overall process of labeling a tree with 
GHKM rules then boils down to four types of decisions:

(1) Whether a node 
should be labeled with a 
rule (true/false)

(2) The RHS template of 
the rule (open ended)

(3) Whether a variable 
should be pushed left in 
a given context 
(true/false)

(4) Whether a variable 
should be pushed right 
in a given context 
(true/false)



  

Except for decision (2), all of these decisions are binary, 
and easy for a classifier to crunch on.

(1) Whether a node 
should be labeled with a 
rule (true/false)

(2) The RHS template of 
the rule (open ended)

(3) Whether a variable 
should be pushed left in 
a given context 
(true/false)

(4) Whether a variable 
should be pushed right 
in a given context 
(true/false)



  

Except for decision (2), all of these decisions are binary, 
and easy for a classifier to crunch on.

(2) The RHS template of 
the rule (open ended)

Even decision (2) is not 
an extremely difficult 
decision, if we learn a 
separate distribution for 
each LHS template.  

Consider LHS template “X”.  Much of the time the 
corresponding RHS template will simply be “X” as well.  
Or consider LHS template “the”.   The number of RHS 
template possibilities is not enormous (for French, the 
major candidates would be “le” and “la”).  



  

At this point we have shown:

(1) how to take an aligned tree-string pair in our training 
corpus, and convert it to a GHKM tree representation.



  

At this point we have shown:

(1) how to take an aligned tree-string pair in our training 
corpus, and convert it to a GHKM tree representation.
(2) how to take this GHKM tree presentation, and convert it 
to a series of (mostly binary) decisions

RULE (root): YES
RULE (NP): YES
RULE (VP1): NO
RULE (VP2): YES
...
RHS TEMPLATE(root):  X , X
VAR 1 RIGHT(root)?  YES
VAR 2 LEFT(root)?  NO
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
VAR 3 LEFT(root)?  YES
RHS TEMPLATE(NP):  je
RHS TEMPLATE(VP2):  X
RHS TEMPLATE(VP3):  ne X pas
RHS TEMPLATE(VB):  vais
RHS TEMP(ADJP):  aujourd'hui



  

We can easily turn these into feature vectors, by jotting 
down relevant feature information at the point when 
these decisions were made.

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]
...
RHS TEMPLATE(root):  X , X [NT=S]
VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]
VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]



  

Here we content ourselves with simple features.  However there are no 
restrictions.  We can provide appropriate features to enable an intelligent 
and informed decision about whether to translate “the” as “le” or “la,” 
given simple clues (e.g. whether the associated noun ends in “ion”) or 
more structured information that we might choose to annotate the parse 
tree with (like the gender of the associated noun).  

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]
...
RHS TEMPLATE(root):  X , X [NT=S]
VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]
VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]



  

The system can also incorporate intelligent context for the 
reordering (RIGHT/LEFT) decisions.  For instance, if I have a 
variable corresponding to an adjective, should I push it past its 
associated noun, based on what I know of this language?

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]
...
RHS TEMPLATE(root):  X , X [NT=S]
VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]
VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]



  

Training at this stage is simple.  First we divide the feature 
vectors up according to what type of decision they're making.

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]
...
RHS TEMPLATE(root):  X , X [NT=S]
VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]
VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]



  

Training at this stage is simple.  First we divide the feature 
vectors up according to what type of decision they're making.

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]
...
RHS TEMPLATE(root):  X , X [NT=S]
VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]
VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]



  

Training at this stage is simple.  First we divide the feature 
vectors up according to what type of decision they're making.

VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]

RHS TEMPLATE(root):  X , X [NT=S]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]

VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]



  

Then we train a classifier for each decision type, based on 
these training vectors.  We can use any off-the-shelf learning 
software, and any learning method, though we prefer “soft” 
learners that induce a probability distribution rather than a 
hard decision.

VAR 2 LEFT(root)?  NO [VARNT=VP; PUSH = NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=VP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=NP]
VAR 3 LEFT(root)?  YES [VARNT=ADJP; PUSH=,]

RHS TEMPLATE(root):  X , X [NT=S]
RHS TEMPLATE(NP):  je [NT=NP; WD=I]
RHS TEMPLATE(VP2):  X [NT=VP]
RHS TEMPLATE(VP3):  ne X pas [NT=VP; WD=not]
RHS TEMPLATE(VB):  vais [NT=VB; WD=going]
RHS TEMP(ADJP):  aujourd'hui [WD=today]

RULE (root): YES [NT = S; HEAD = am]
RULE (NP): YES [NT = NP; HEAD = I]
RULE (VP1): NO [NT = VP; HEAD = am]
RULE (VP2): YES [NT = VP; HEAD = am]

VAR 1 RIGHT(root)?  YES [VARNT=NP; PUSH=,]



  

Then we train a classifier for each decision type, based on this 
training feature vectors.  We can use any off-the-shelf learning 
software, and any learning method, though we prefer “soft” 
learners that induce a probability distribution rather than a 
hard decision.

VAR LEFT 
CLASSIFIER

RHS TEMPLATE 
CLASSIFIER

RULE 
CLASSIFIER

VAR RIGHT 
CLASSIFIER



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Decoding is also straightforward.  We simply find the best 
overall assignment to our generative model according to the 
classifiers we've learned.



  

S

VP

NP
VP ADJP

MD VP

RB VB

going todaynotamI

Because of the generality (and therefore flexibility) of our 
approach, the optimal solution cannot always be determined 
in polynomial time.  We settle for a brute-force search to find 
the best solution.



  

However... what we can do is use depth-first 
branch-and-bound search, i.e. 
greedily find a good solution in 
linear time, and then use this 
solution to help prune the search 
space as we attempt to find better 
solutions.

The sharper the distributions of the assignment process, 
the faster the search process will go.  In the extreme 
case, where all distributions have all of their probability 
weight concentrated on a single domain element (a hard 
classifier), DFBnB is linear-time.  In any event, DFBnB 
can be cut off at any time (once the initial greedy 
solution is found) and used as a heuristic search.



  

The main advantages of using this probabilistic 
approach over, say, some constrained model for 
which we can use dynamic programming to 
decode polynomially are:

We have a practically unlimited flexibility  to 
include history into our decisions.

We can use plug-and-play discriminative 
training software  to train our system, 
adopting decision trees or MaxEnt regression 
with equal ease.

Heuristic decoding is faster  than using a 
polynomial dynamic programming approach.



  

So:

We've developed an early version of a translator 
which casts the machine translation problem as a 
graph labeling task.

This system has the potential to use syntactic 
information freely and flexibly to make key 
decisions during the translation process.

Early results seem to indicate that the basics of 
reordering and syntax can be learned with a 
relatively small training corpus.



  

Preliminary results
● Comparison (English → German):

(1) “Phrasal” StatMT approach    
(Pharaoh)

(2) Tree labeling approach, based         
on Collins' parser

(3) Tree labeling approach                        
   based on English ParGram             
   grammar

(4)  Professional translation

Translation models trained 
on 50,000 sentence pairs

Preliminary training on 
5000 sentence pairs

Uses language model of 
German in addition 
(trained on large corpus)

Corpus: subset of Europarl consisting of 60000 
sentences of length 8-17 words – divided into 
training (50000), dev (5000), and test (5000).



  

(1) wir halten dies f r ü eine grundlegende  elem ent .

(2) wir glauben , dass diesen ist ein grundlegendes element .
(3) wir meinen , dass dies eine grundlegende element ist.
(4) wir denken , dass dies ein grundlegender aspekt ist .

● system uses an incorrect morphological form 
● word position is incorrect
● a word         is missing
● untranslated source word

We believe that this is a fundamental element .

(1)we   believe      that                a          fundam ental               elem ent      .

(2)  we  believe               that      this           is      a         fundamental               element     .

(3)  We  believe             that       this       a           fundamental          element       is        .

(4)  we    believe          that       this       a          fundamental             element    is    .



  

(1) es ist richtig , dass lissabon ist eine program m  f r zehn ü jahren .  

(2) es ist richtig , dass lissabon ist eine program m  f r zehn ü jahren . 

(3) es ist true , dass lisbon eine programm für zehn jahren ist.
(4) nun ist lissabon ein programm für zehn jahre .

It is true that Lisbon is a programme for ten years .

(1)it     is      true              that       lisbon          is      a        program             for     ten       years   .

(2) it     is      true              that       lisbon          is      a        program            for     ten       years    .

(3)  It    is      true              that       lisbon     a          program         for     ten        years     is        .

(4)           is      lisbon            a          program        for     ten       years   .

● system uses an incorrect morphological form 
● word position is incorrect
● a word         is missing
● untranslated source word



  

(1) ich       v llig einverstanden m it jedem  dieser punkte . ö

(2) ich bin völlig mit jedes diese fragen einer Meinung .

(3) ich agree completely  mit jeder dieser punkte .
(4) ich bin mit jeder einzelnen dieser aussagen voll und                

                                                                                              
ganz einverstanden .

I completely agree with each of these points .

(1)i             com pletely     in agreem ent         with    each       of these      points     . 

(2)  i      am completely with   each     these   questions         in agreement  .

(3)  i      agree        completely            with    each      of these   points       .     

        i      am   with    each       point                of this     statement         completely                           

                                                                                                                                                      

              in agreement         .

● system uses an incorrect morphological form 
● word position is incorrect
● a word         is missing
● untranslated source word



  

(1) allerdings m chte ich noch eines sagen . ö

(2) ich möchte jedoch an noch einen punkt hinzufügen .

(3) allerdings möchte ich einen punkt add .
(4) aber ich möchte gern einen punkt hinzufügen .

However , I would like to add one point .

(1)   however         would like    I        another thing        say       .

(2)   i     would like     however         another     one      point        to add .

(3)   however          would like     i        one       point        add   .

(4)  however  i            would like           one        point          to add           .

● system uses an incorrect morphological form 
● word position is incorrect
● a word         is missing
● untranslated source word



  

(1) das ist sicherlich eine punkt rechtfertigt das aufm erksam keit . 

(2) das ist ohne zweifel eine punkt , die warrants beachtung .

(3) das ist undoubtedly        sache , die attention warrants .
(4) ohne jeden zweifel ist dies ein punkt , der aufmerksamkeit verdient .

This is undoubtedly a point which warrants attention .

(1) this   is     undoubtedly       a        point           justifies           the        attention                     .

(2) this  is            undoubtedly         a        point     ,  which   warrants          attention         .

(3)   this   is     undoubtedly                         point       , which   attention        warrants         .

(4)            undoubtedly                is    this       a      point      , which             attention             warrants   .

● system uses an incorrect morphological form 
● word position is incorrect
● a word         is missing
● untranslated source word



  

Results: Summary
● Syntax-based approach seems to avoid some of the more 

serious ordering mistakes of phrase-based translation
● Phrasal translation incurs fewer agreement mistakes 

(presumably due to the target language model trained on a 
large corpus)

● Quantitative scores (BLEU) for syntax-based approach are 
statistically indistinguishable from phrase-based approach

● Although XLE-based model was trained on just 10% of the 
data, there are some encouraging advantages in picking 
up clause structure facts



  

Thank you!


