
Moses Installation and Training
Run-Through

The purpose of this guide is to offer a step-by-step example of downloading,
compiling, and runing the Moses decoder and related support tools. I make no claims
that all of the steps here will work perfectly on every machine you try it on, or that
things will stay the same as the software changes. Please remember that Moses is
research software under active development.

PART I - Download and Configure Tools and Data

Support Tools Background

Moses has a number of scripts designed to aid training, and they rely on GIZA++ and
mkcls to function. More information on the origins of these tools is available at:

 http://www.fjoch.com/GIZA++.html
 http://www.fjoch.com/mkcls.html

A Google Code project has been set up, and the code is being maintained:

 http://giza-pp.googlecode.com/

Moses uses SRILM-style language models. SRILM is available from:

 http://www.speech.sri.com/projects/srilm/download.html

(Optional) The IRSTLM tools provide the ability to use quantized and disk memory-
mapped language models. It's optional, but we'll be using it in this tutorial:

 http://sourceforge.net/projects/irstlm

Support Tools Installation

Before we start building and using the Moses codebase, we have to download and
compile all of these tools. See the list of versions to double-check that you are using
the same code.

I'll be working under /home/jschroe1/demo in these examples. I assume you've set
up some appropriately named directory in your own system. I'm installing these tools
under an FC6 distro.

Changes to run the same setup under Mac OS X 10.5 are highlighted. For the Mac I'm
running under /Users/josh/demo.

Machine Translation Marathon changes are highlighted. We probably won't have time
to train a full model today.

mkdir tools
cd tools

 Download and compile GIZA++ and mkcls

 wget http://giza-pp.googlecode.com/files/giza-pp-

v1.0.2.tar.gz
 curl -O http://giza-pp.googlecode.com/files/giza-pp-

v1.0.2.tar.gz
 tar -xzvf giza-pp-v1.0.2.tar.gz
 cd giza-pp

OS X doesn't support static linking (here's more info), so we need to tweak
two Makefiles. GIZA++-v2/Makefile:

15c15
< LDFLAGS = -static

> LDFLAGS =

mkcls-v2/Makefile is OK

make

 Copy compiled executables to bin/ folder

 cd ../
 mkdir bin
 cp giza-pp/GIZA++-v2/GIZA++ bin/
 cp giza-pp/mkcls-v2/mkcls bin/
 cp giza-pp/GIZA++-v2/snt2cooc.out bin/

 Download and compile SRILM

SRILM has a lot of dependencies. These instructions work on bash.

mkdir srilm
cd srilm

(get srilm download 1.5.7, requires web registration, you'll end up with a .tgz
file to copy to this directory)

tar -xzvf srilm.tgz

(SRILM expands in the current directory, not in a sub-directory).

READ THE INSTALL FILE - there are a lot of tips in there.

chmod +w Makefile

edit Makefile to point to your directory. Here's my diff:

7c7
< # SRILM = /home/speech/stolcke/project/srilm/devel

> SRILM = /home/jschroe1/demo/tools/srilm

7c7
< # SRILM = /home/speech/stolcke/project/srilm/devel

> SRILM = /Users/josh/demo/tools/srilm

make World

If you want to test that this worked, you'll need to add SRILM to your path
and run their test suite. You don't need these in your path for normal training
and decoding with Moses.

export
PATH=/home/jschroe1/demo/tools/srilm/bin/i686:/home/jschroe1/de
mo/tools/srilm/bin:$PATH
export
PATH=/Users/josh/demo/tools/srilm/bin/macosx:/Users/josh/demo/t
ools/srilm/bin:$PATH
cd test

OSX doesn't have gawk, but it does have awk. Change the following:

chmod +w go.run-test

19c19
< diff="gawk -f compare-outputs 2>/dev/null"

> diff="awk -f compare-outputs 2>/dev/null"

make all

Check output, look for IDENTICAL and DIFFERS. I still see the occasional
difference, but it's pretty easy to tell when the tools are working and when
they're dying instantly.

 Download and compile IRSTLM

You can either download a release or check out the latest files from svn.

cd /home/jschroe1/demo/tools
wget http://downloads.sourceforge.net/irstlm/irstlm-5.20.00.tgz
curl -LO http://downloads.sourceforge.net/irstlm/irstlm-
5.20.00.tgz
tar -xzvf irstlm-5.20.00.tgz

Or get it from sourceforge:

mkdir irstlm
svn co https://irstlm.svn.sourceforge.net/svnroot/irstlm irstlm

cd irstlm
./install
OSTYPE=darwin ./install

On my system, Moses looks in irstlm/bin/i686, and IRST compiles to
irstlm/bin/i686-redhat-linux-gnu. Symlink to fix.

cd bin
ln -s i686-redhat-linux-gnu i686
cd ../../

Get The Latest Moses Version

Moses is available via Subversion from Sourceforge. See the list of versions to
double-check that you are using the same code as this example. From the tools/
directory:

mkdir moses
svn co
https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk
moses

This will copy all of the Moses source code to your local machine.

Compile Moses

Within the Moses folder structure are projects for Eclipse, Xcode, and Visual Studio -
- though these are not well maintained and may not be up to date. I'll focus on the
linux command-line method, which is the preferred way to compile.

For OS X versions 10.4 and lower, you need to upgrade aclocal and automake to at
least version 1.9 (1.6 is the default in 10.4) and set the variables ACLOCAL and
AUTOMAKE in ./regenerate-makefiles.sh.

cd moses
./regenerate-makefiles.sh
./configure --with-srilm=/home/jschroe1/demo/tools/srilm --with-
irstlm=/home/jschroe1/demo/tools/irstlm
make -j 2

(The -j 2 is optional. make -j X where X is number of simultaneous tasks is a
speedier option for machines with multiple processors)

This creates several files we will be using:

 misc/processPhraseTable - Used to binarize phrase tables
 misc/processLexicalTable - Used to binarize reordering tables
 moses-cmd/src/moses - The actual decoder

Confirm Setup Success

A sample model capable of translating one sentence is available on the Moses
website. Download it and translate the sample input file.

cd /home/jschroe1/demo/
mkdir data
cd data
wget http://www.statmt.org/moses/download/sample-models.tgz
curl -O http://www.statmt.org/moses/download/sample-models.tgz
tar -xzvf sample-models.tgz
cd sample-models/phrase-model/
../../../tools/moses/moses-cmd/src/moses -f moses.ini < in > out

The input has "das ist ein kleines haus" listed twice, so the output file (out) should
contain "this is a small house" twice.

At this point, it might be wise for you to experiment with the command line options of
the Moses decoder. A tutoral using this example model is available at
http://www.statmt.org/moses/?n=Moses.Tutorial.

Compile Moses Support Scripts

Moses uses a set of scripts to support training, tuning, and other tasks. The support
scripts used by Moses are "released" by a Makefile which edits their paths to match
your local environment. First, make a place for the scripts to live:

cd ../../../tools/
mkdir moses-scripts
cd moses/scripts

edit Makefile as needed. Here's my diff:

13,14c13,14
< TARGETDIR?=/home/s0565741/terabyte/bin
< BINDIR?=/home/s0565741/terabyte/bin

> TARGETDIR?=/home/jschroe1/demo/tools/moses-scripts
> BINDIR?=/home/jschroe1/demo/tools/bin

make release

This will create a time-stamped folder named /home/jschroe1/demo/moses-
scripts/scripts-YYYYMMDD-HHMM with released versions of all the scripts. You will
call these versions when training and tuning Moses. Some Moses training scripts also
require a SCRIPTS_ROOTDIR environment variable to be set. The output of make
release should indicate this. Most scripts allow you to override this by setting a -
scripts-root-dir flag or something similar.

export SCRIPTS_ROOTDIR=/home/username/lab4/moses-scripts/scripts-
YYYYMMDD-HHMM

Additional Scripts

There are few scripts not included with moses which are useful for preparing data.
These were originally made available as part of the WMT08 Shared Task and
Europarl v3 releases, I've consolidated some of them into one set.

cd ../../
wget http://homepages.inf.ed.ac.uk/jschroe1/how-to/scripts.tgz
curl -O http://homepages.inf.ed.ac.uk/jschroe1/how-to/scripts.tgz
tar -xzvf scripts.tgz

We'll also get a NIST scoring tool.

wget ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

On the Mac, use ftp or a web browser to get the file. curl and I had a fight about it.

chmod +x mteval-v11b.pl

PART II - Build a Model

We'll used the WMT08 News Commentary data set, about 55k sentences. This should
be good enough for moderate quality but still be doable in a reasonable amount of
time on most machines. For this example we'll use FR-EN.

cd ../data
wget http://www.statmt.org/wmt08/training-parallel.tar
curl -O http://www.statmt.org/wmt08/training-parallel.tar
tar -xvf training-parallel.tar --wildcards training/news-
commentary08.fr-en.*

If you're low on disk space, remove the full tar.

rm training-parallel.tar

cd ../

Prepare Data

First we'll set up a working directory where we'll store all the data we prepare.

mkdir work

 Tokenize training data

We'll keep the initial versions in zipped format. Note that Mac uses gzcat
instead of zcat, so we'll just use gzip -cd for both.

mkdir work/corpus
gzip -cd data/training/news-commentary08.fr-en.fr.gz |
tools/scripts/tokenizer.perl -l fr > work/corpus/news-
commentary.tok.fr
gzip -cd data/training/news-commentary08.fr-en.en.gz |
tools/scripts/tokenizer.perl -l en > work/corpus/news-
commentary.tok.en

 Filter out long sentences

 tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/clean-

corpus-n.perl work/corpus/news-commentary.tok fr en
work/corpus/news-commentary.clean 1 40

This ensures that only sentences of length 1-40 are selected for training. In this
case, we lose almost 11,000 sentences:

Input sentences: 55030 Output sentences: 44219

We do this because GIZA++ takes a very long time to train on long sentences.
This isn't much of an issue with a 55,000-sentence corpus, but it can be a
limitation when dealing with corpora of millions of sentences. Of course, the
more data you throw out to improve training times, the less examples Moses
can choose from when building translations.

 Lowercase training data

 tools/scripts/lowercase.perl < work/corpus/news-

commentary.clean.fr > work/corpus/news-commentary.lowercased.fr
 tools/scripts/lowercase.perl < work/corpus/news-

commentary.clean.en > work/corpus/news-commentary.lowercased.en

Build Language Model

Language models are concerned only with n-grams in the data, so sentence length
doesn't impact training times as it does in GIZA++. So, we'll lowercase the full
55,030 tokenized sentences to use for language modeling. Many people incorporate
extra target language monolingual data into their language models.

mkdir work/lm
tools/scripts/lowercase.perl < work/corpus/news-commentary.tok.en >
work/lm/news-commentary.lowercased.en

We will use SRILM to build a tri-gram language model.

tools/srilm/bin/i686/ngram-count -order 3 -interpolate -kndiscount -
unk -text work/lm/news-commentary.lowercased.en -lm work/lm/news-
commentary.lm
tools/srilm/bin/macosx/ngram-count -order 3 -interpolate -kndiscount
-unk -text work/lm/news-commentary.lowercased.en -lm work/lm/news-
commentary.lm

We can see how many n-grams were created

head -n 5 work/lm/news-commentary.lm

\data\
ngram 1=36035
ngram 2=411595
ngram 3=118368

Train Phrase Model

Moses' toolkit does a great job of wrapping up calls to mkcls and GIZA++ inside a
training script, and outputting the phrase and reordering tables needed for decoding.
The script that does this is called train-factored-phrase-model.perl

If you want to skip this step, you can use the pre-prepared model and ini files located
at /afs/ms/u/m/mtm52/BIG/work/model/moses.ini and
/afs/ms/u/m/mtm52/BIG/work/model/moses-bin.ini instead of the local
references used in this tutorial. Move on to sanity checking your setup.

We'll run this in the background and nice it since it'll peg the CPU while it runs. It
may take up to an hour, so this might be a good time to run through the tutorial page
mentioned earlier using the sample-models data.

nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-
factored-phrase-model.perl -scripts-root-dir tools/moses-
scripts/scripts-YYYYMMDD-HHMM/ -root-dir work -corpus
work/corpus/news-commentary.lowercased -f fr -e en -alignment grow-
diag-final-and -reordering msd-bidirectional-fe -lm
0:3:/home/jschroe1/demo/work/lm/news-commentary.lm >&
work/training.out &
nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/train-
factored-phrase-model.perl -scripts-root-dir tools/moses-
scripts/scripts-YYYYMMDD-HHMM/ -root-dir work -corpus
work/corpus/news-commentary.lowercased -f fr -e en -alignment grow-
diag-final-and -reordering msd-bidirectional-fe -lm
0:3:/Users/josh/demo/work/lm/news-commentary.lm >& work/training.out
&

You can tail -f work/training.out file to watch the progress of the tuning script.
The last step will say something like:

(9) create moses.ini @ Tue Jan 27 19:40:46 CET 2009

Now would be a good time to look at what we've done.

cd work
ls
corpus giza.en-fr giza.fr-en lm model

We'll look in the model directory. The three files we really care about are in bold.

cd model
ls -l
total 192554
-rw-r--r-- 1 jschroe1 people 5021309 Jan 27 19:23 aligned.grow-diag-
final-and
-rw-r--r-- 1 jschroe1 people 27310991 Jan 27 19:24 extract.gz

-rw-r--r-- 1 jschroe1 people 27043024 Jan 27 19:25 extract.inv.gz
-rw-r--r-- 1 jschroe1 people 21069284 Jan 27 19:25 extract.o.gz
-rw-r--r-- 1 jschroe1 people 6061767 Jan 27 19:23 lex.e2f
-rw-r--r-- 1 jschroe1 people 6061767 Jan 27 19:23 lex.f2e
-rw-r--r-- 1 jschroe1 people 1032 Jan 27 19:40 moses.ini
-rw-r--r-- 1 jschroe1 people 67333222 Jan 27 19:40 phrase-table.gz
-rw-r--r-- 1 jschroe1 people 26144298 Jan 27 19:40 reordering-
table.gz

Memory-Map LM and Phrase Table (Optional)

The language model and phrase table can be memory-mapped on disk to minimize the
amount of RAM they consume. This isn't really necessary for this size of model, but
we'll do it just for the experience.

More information is available on the Moses' web site at:
http://www.statmt.org/moses/?n=Moses.AdvancedFeatures and
http://www.statmt.org/moses/?n=FactoredTraining.BuildingLanguageModel
.

Performing these steps can lead to heavy disk use during decoding - you're basically
using your hard drive as RAM. Proceed at your own risk, especially if you're using a
(slow) networked drive.

 IRSTLM Binary Language Model

Produces a compact file on disk

cd ../../
tools/irstlm/bin/i686/compile-lm work/lm/news-commentary.lm
work/lm/news-commentary.blm
tools/irstlm/bin/i386-apple-darwin9.0/compile-lm work/lm/news-
commentary.lm work/lm/news-commentary.blm

 IRSTLM Memory Mapping

Changing the suffix of this file to .mm forces the decoder to leave the file on
disk instead of loading it into memory. We'll just make a symlink.

cd work/lm
ln -s news-commentary.blm news-commentary.blm.mm
cd ../../

A note on memory mapping: IRSTLM makes use of a temp directory during
decoding. Version 5.20.00 has this hard-coded to /tmp, but the trunk on svn
has been updated to allow you to set it using the TMP environment variable. If
this is important to your setup, be sure to set this variable, or check that it is
already set appropriately.

 Binary Phrase Table

As with the LM, the phrase table can be processed and read from disk on-
demand instead of being loaded in its entirety into memory.

Note that if your phrase table was not sorted, you would need to pipe the zcat
through a sort, and use the LC_ALL=C flag. Depending on the size of your
temp directory, you may have to have sort use a different directory using the -
T flag. man sort for more info.

gzip -cd work/model/phrase-table.gz | LC_ALL=C sort |
tools/moses/misc/processPhraseTable -ttable 0 0 - -nscores 5 -
out work/model/phrase-table

 Binary Reordering Table

Similar to the phrase table, including optional sorting.

gzip -cd work/model/reordering-table.gz | LC_ALL=C sort |
tools/moses/misc/processLexicalTable -out
work/model/reordering-table

 Edit Config File

We'll make a copy of work/model/moses.ini and set it to use these files.
Moses will automatically use binary phrase and reordering tables if they are
present with the correct naming stem, and since we used the same stem for
output as for our input tables, we just need to remove the .gz suffix. For LM
information, we need to set the type to be IRSTLM (1) instead of SRILM (0)
and change the LM file.

cp work/model/moses.ini work/model/moses-bin.ini

Here's my diff:

15c15
< 0 0 5 /home/jschroe1/demo/work/model/phrase-table.gz

> 0 0 5 /home/jschroe1/demo/work/model/phrase-table
21c21
< 0 0 3 /home/jschroe1/demo/work/lm/news-commentary.lm

> 1 0 3 /home/jschroe1/demo/work/lm/news-commentary.blm.mm
31c31
< 0-0 msd-bidirectional-fe 6
/home/jschroe1/demo/work/model/reordering-table.gz

> 0-0 msd-bidirectional-fe 6
/home/jschroe1/demo/work/model/reordering-table

Sanity Check Trained Model

We haven't tuned yet, but let's just check that the decoder works, and output a lot of
logging data with -v 2.

Here's an excerpt of moses initializing with binary files in place (note bold lines, and
recall the IRSTLM TMP issue):

echo "c' est une petite maison ." | TMP=/tmp tools/moses/moses-
cmd/src/moses -f work/model/moses-bin.ini
Loading lexical distortion models...
have 1 models
Creating lexical reordering...
weights: 0.300 0.300 0.300 0.300 0.300 0.300
binary file loaded, default OFF_T: -1
Created lexical orientation reordering
Start loading LanguageModel /home/jschroe1/demo/work/lm/news-
commentary.blm.mm : [0.000] seconds
In LanguageModelIRST::Load: nGramOrder = 3
Loading LM file (no MAP)
blmt
loadbin()
mapping 36035 1-grams
mapping 411595 2-grams
mapping 118368 3-grams
done
OOV code is 1468
IRST: m_unknownId=1468
Finished loading LanguageModels : [0.000] seconds
Start loading PhraseTable
/amd/nethome/jschroe1/demo/work/model/phrase-table.0-0 : [0.000]
seconds
using binary phrase tables for idx 0
reading bin ttable
size of OFF_T 8
binary phrasefile loaded, default OFF_T: -1
Finished loading phrase tables : [1.000] seconds
IO from STDOUT/STDIN

And here's one if you skipped the memory mapping steps:

echo "c' est une petite maison ." | tools/moses/moses-cmd/src/moses -
f work/model/moses.ini
Loading lexical distortion models...
have 1 models
Creating lexical reordering...
weights: 0.300 0.300 0.300 0.300 0.300 0.300
Loading table into memory...done.
Created lexical orientation reordering
Start loading LanguageModel /home/jschroe1/demo/work/lm/news-
commentary.lm : [47.000] seconds

/home/jschroe1/demo/work/lm/news-commentary.lm: line 1476: warning:
non-zero probability for <unk> in closed-vocabulary LM
Finished loading LanguageModels : [49.000] seconds
Start loading PhraseTable
/amd/nethome/jschroe1/demo/work/model/phrase-table.0-0.gz : [49.000]
seconds
Finished loading phrase tables : [259.000] seconds
IO from STDOUT/STDIN

Again, while these short load times and small memory footprint are nice, decoding
times will be slower with memory-mapped models due to disk access.

PART III - Prepare Tuning and Test Sets

Prepare Data

We'll use some of the dev and devtest data from WMT08. We'll stick with news-
commentary data and use dev2007 and test2007. We only need to look at the input
(FR) side of our testing data.

 Download tuning and test sets

 cd data/
 wget http://www.statmt.org/wmt08/devsets.tgz
 curl -O http://www.statmt.org/wmt08/devsets.tgz
 tar -xzvf devsets.tgz
 cd ../

 Tokenize sets

 mkdir work/tuning
 tools/scripts/tokenizer.perl -l fr < data/dev/nc-dev2007.fr >

work/tuning/nc-dev2007.tok.fr
 tools/scripts/tokenizer.perl -l en < data/dev/nc-dev2007.en >

work/tuning/nc-dev2007.tok.en
 mkdir work/evaluation
 tools/scripts/tokenizer.perl -l fr < data/devtest/nc-

test2007.fr > work/evaluation/nc-test2007.tok.fr

 Lowercase sets

 tools/scripts/lowercase.perl < work/tuning/nc-dev2007.tok.fr

> work/tuning/nc-dev2007.lowercased.fr
 tools/scripts/lowercase.perl < work/tuning/nc-dev2007.tok.en

> work/tuning/nc-dev2007.lowercased.en
 tools/scripts/lowercase.perl < work/evaluation/nc-

test2007.tok.fr > work/evaluation/nc-test2007.lowercased.fr

PART IV - Tuning

Note that this step can take many hours, even days, to run on large phrase tables and
tuning sets. We'll use the non-memory-mapped versions for decoding speed. The
training script controls for large phrase and reordering tables by filtering them to
include only data relevant to the tuning set (we'll do this ourselves for the test data
later).

nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/mert-
moses.pl work/tuning/nc-dev2007.lowercased.fr work/tuning/nc-
dev2007.lowercased.en tools/moses/moses-cmd/src/moses
work/model/moses.ini --working-dir work/tuning/mert --rootdir
/home/jschroe1/demo/tools/moses-scripts/scripts-YYYYMMDD-HHMM/ --
decoder-flags "-v 0" >& work/tuning/mert.out &

Since this can take so long, we can instead make a small, 100 sentence tuning set just
to see if the tuning process works. This won't generate very good weights, but it will
let us confirm that our tools work.

head -n 100 work/tuning/nc-dev2007.lowercased.fr > work/tuning/nc-
dev2007.lowercased.100.fr
head -n 100 work/tuning/nc-dev2007.lowercased.en > work/tuning/nc-
dev2007.lowercased.100.en
nohup nice tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/mert-
moses.pl work/tuning/nc-dev2007.lowercased.100.fr work/tuning/nc-
dev2007.lowercased.100.en tools/moses/moses-cmd/src/moses
work/model/moses.ini --working-dir work/tuning/mert --rootdir
/home/jschroe1/demo/tools/moses-scripts/scripts-YYYYMMDD-HHMM/ --
decoder-flags "-v 0" >& work/tuning/mert.out &

(Note that the scripts rootdir path needs to be absolute).

While this runs, check out the contents of work/tuning/mert. You'll see a set of
runs, n-best lists for each, and run*.moses.ini files showing the weights used for
each file. You can see the score each run is getting by looking at the last line of each
run*.cmert.log file

cd work/tuning/mert
tail -n 1 run*.cmert.log

==> run1.cmert.log <==
Best point: 0.028996 0.035146 -0.661477 -0.051250 0.001667 0.056762
0.009458 0.005504 -0.006458 0.029992 0.009502 0.012555 0.000000 -
0.091232 => 0.282865

==> run2.cmert.log <==
Best point: 0.056874 0.039994 0.046105 -0.075984 0.032895 0.020815 -
0.412496 0.018823 -0.019820 0.038267 0.046375 0.011876 -0.012047 -
0.167628 => 0.281207

==> run3.cmert.log <==
Best point: 0.041904 0.030602 -0.252096 -0.071206 0.012997 0.516962
0.001084 0.010466 0.001683 0.008451 0.001386 0.007512 -0.014841 -
0.028811 => 0.280953

==> run4.cmert.log <==
Best point: 0.088423 0.118561 0.073049 0.060186 0.043942 0.293692 -
0.147511 0.037605 0.008851 0.019371 0.015986 0.018539 0.001918 -
0.072367 => 0.280063

==> run5.cmert.log <==
Best point: 0.059100 0.049655 0.187688 0.010163 0.054140 0.077241
0.000584 0.101203 0.014712 0.144193 0.219264 -0.005517 -0.047385 -
0.029156 => 0.280930

This gives you an idea if the system is improving or not. You can see that in this case
it isn't, because we don't have enough data in our system and we haven't let tuning run
for enough iterations. Kill mert-moses.pl after a few iterations just to get some
weights to use.

If mert were to finish successfully, it would create a file named
work/tuning/mert/moses.ini containing all the weights we needed. Since we
killed mert, copy the best moses.ini config to be the one we'll use. Note that the
weights calculated in run1.cmert.log were used to make the config file for run2, so
we want run2.moses.ini

If you want to use the weights from a finished mert run, try
/afs/ms/u/m/mtm52/BIG/work/tuning/mert/moses.ini

cp run2.moses.ini moses.ini

Insert weights into configuration file

cd ../../../
tools/scripts/reuse-weights.perl work/tuning/mert/moses.ini <
work/model/moses.ini > work/tuning/moses-tuned.ini
tools/scripts/reuse-weights.perl work/tuning/mert/moses.ini <
work/model/moses-bin.ini > work/tuning/moses-tuned-bin.ini

PART V - Filtering Test Data

Filtering is another way, like binarizing, to help reduce memory requirements. It
makes smaller phrase and reordering tables that contain only entries that will be used
for a particular test set. Binarized models don't need to be filtered since they don't take
up RAM when used. Moses has a script that does this for us, which we'll apply to the
evaluation test set we prepared earlier:

tools/moses-scripts/scripts-YYYYMMDD-HHMM/training/filter-model-
given-input.pl work/evaluation/filtered.nc-test2007
work/tuning/moses-tuned.ini work/evaluation/nc-test2007.lowercased.fr

There is also a filter-and-binarize-model-given-input.pl script if your
filtered table would still be too large to load into memory.

PART VI - Run Tuned Decoder on Development Test Set

We'll try this a few ways.

 First, reusing the weights from tuning, without filtering:

I'd skip this step today. It takes too much RAM on the lab machines.

nohup nice tools/moses/moses-cmd/src/moses -config
work/tuning/moses-tuned.ini -input-file work/evaluation/nc-
test2007.lowercased.fr 1> work/evaluation/nc-
test2007.tuned.output 2> work/evaluation/tuned.decode.out &

 Next, with the filtered phrase table from the output of the filtering step:

 nohup nice tools/moses/moses-cmd/src/moses -config

work/evaluation/filtered.nc-test2007/moses.ini -input-file
work/evaluation/nc-test2007.lowercased.fr 1>
work/evaluation/nc-test2007.tuned-filtered.output 2>
work/evaluation/tuned-filtered.decode.out &

 Finally, if you performed binarizing, you can try that too:

 TMP=/tmp nohup nice tools/moses/moses-cmd/src/moses -config

work/tuning/moses-tuned-bin.ini -input-file work/evaluation/nc-
test2007.lowercased.fr 1> work/evaluation/nc-test2007.tuned-
bin.output 2> work/evaluation/tuned-bin.decode.out &

All three of these outputs should be identical, but they will take different amounts of
time and memory to compute.

If you don't have time to run a full decoding session, you can use an output located at
/afs/ms/u/m/mtm52/BIG/work/evaluation/nc-test2007.tuned-
filtered.output

PART VII - Evaluation

Train Recaser

Now we'll train a recaser. It uses a statistical model to "translate" between lowercased
and cased data.

mkdir work/recaser
tools/moses-scripts/scripts-YYYYMMDD-HHMM/recaser/train-recaser.perl
-train-script tools/moses-scripts/scripts-YYYYMMDD-
HHMM/training/train-factored-phrase-model.perl -ngram-count
tools/srilm/bin/i686/ngram-count -corpus work/corpus/news-
commentary.tok.en -dir /home/jschroe1/demo/work/recaser -scripts-
root-dir tools/moses-scripts/scripts-YYYYMMDD-HHMM/

This goes through a whole GIZA and LM training run to go from lowercase sentences
to cased sentences. Note that the -dir flag needs to be absolute.

Recase the output

tools/moses-scripts/scripts-YYYYMMDD-HHMM/recaser/recase.perl -model
work/recaser/moses.ini -in work/evaluation/nc-test2007.tuned-
filtered.output -moses tools/moses/moses-cmd/src/moses >
work/evaluation/nc-test2007.tuned-filtered.output.recased

Detokenize the output

tools/scripts/detokenizer.perl -l en < work/evaluation/nc-
test2007.tuned-filtered.output.recased > work/evaluation/nc-
test2007.tuned-filtered.output.detokenized

Wrap the output in XML

tools/scripts/wrap-xml.perl data/devtest/nc-test2007-ref.en.sgm en
my-system-name < work/evaluation/nc-test2007.tuned-
filtered.output.detokenized > work/evaluation/nc-test2007.tuned-
filtered.output.sgm

Score with NIST-BLEU

tools/mteval-v11b.pl -s data/devtest/nc-test2007-src.fr.sgm -r
data/devtest/nc-test2007-ref.en.sgm -t work/evaluation/nc-
test2007.tuned-filtered.output.sgm -c

 Evaluation of any-to-en translation using:
 src set "nc-test2007" (1 docs, 2007 segs)
 ref set "nc-test2007" (1 refs)
 tst set "nc-test2007" (1 systems)

NIST score = 6.9126 BLEU score = 0.2436 for system "my-system-name"

We got a BLEU score of 24.4! Hooray! Best translations ever! Let's all go to the pub!

Appendix A - Versions

 GIZA++ and mkcls: Google Code 1.0.2
 SRILM: 1.5.7
 IRSTLM: 5.20.00, or -r 232 from svn
 Moses: -r 2014 from svn

