MT Server Land

DFKI LT’s open-source MT network architecture
Christian Federmann, Andreas Eisele

v Vv VvV VvV VvV v

Overview

Python-based network architecture for MT
central “broker server” dispatches requests
distributed “worker servers” handle MT tasks
Browser-based access for end users

APl access for integration into custom apps

Open-source project hosted at GitHub




Our Vision

Motivation

Make MT from ongoing research accessible
to everyone

Build up a shared MT infrastructure for our
projects at DFKI’s LT lab

Allow easy translation using multiple MT
engines and/or configurations

Connect to external applications




Core Requirements

® Single entry point to multiple MT engines for
multiple users

® Many language pairs, multiple engines per pair

® Simple web-based access and APIs

Important Features

® Scalability via distributed implementation
® Robustness wrt. failures in all modules
® Keep administrative effort low

® Management of user roles and privileges




Advanced Functionality

Give access to intermediate results

Allow fine-grained influence on behaviour of
MT engines

Make auxiliary processing steps (segmentation,
normalisation) accessible via uniform interface

Support needs of interactive translation,
incremental training, and other hot topics of
ongoing research

System Architecture




System Architecture

APl access

™

™ ﬁ_ﬂj}
&

i

end users broker server worker servers

End User Access

» Browser-based interface

» Password protected

» Allows to create new,

view finished or delete Trmmmm———

translation requests

» Results downloadable
» Implemented in django

» Hosted using lighttpd

10




v Vv Vv Vv V9v V9

APl Access

Token-based authentication for security
Uses HT TP connections (GET, POST, DELETE)
Several export formats (JSON,YAML, XML)
Can be used with non-Python frameworks
It is possible to throttle access to functions

Uses Google protocol buffer serialization

11

APl Access, cont’d

APl methods either available directly from
the django application via HT TP calls

Or via an XML-RPC service wrapper

We also plan to extend the export formats
to include protocol buffer messages (as
these are used anyway by the application)

Implemented in dashboard/api

12




Object Models

13

Object Models

» Defined in dashboard/models.py and
dashboard/api/models.py

» 2 central models:

» WorkerServer, models an external worker

server that exports MT functionality via
XML-RPC

» TranslationRequest, models a translation
request, including related information

14




Worker Servers

» WorkerServer implementation includes

information on supported language pairs
and status methods (is_alive, is_busy...)

» Translation requests are serialized into a
Google protocol buffer “message” which
allows for easy serialization of data

» Our .proto definition contains request id,

source/target language, source/target text
and additional “packet data”

15

Translation Requests

» TranslationRequest implementation allows

to create a translation “job” on a suitable
worker server

» We first generate an “underspecified”
protocol buffer and send the serialized data
to the worker server

» All communication relies on base64
encoded, serialized protocol buffers

» .message files:“backups” in case of crashes

16




Translation Request Messages

» Each TranslationRequest first generates a
so called “Translation Request Message”

» TRMs encode request id, source/target
languages, source text and (once ready) the
final translation

» Each TRM can also have (optional) “packet
data”, a list of key—value pairs which may
encode additional data obtained from the
translation worker server

17

Current State of Things

18



Supported MT Systems

We have implemented worker servers for:
» Google Translate (all language pairs!)

» Microsoft Translator

» Yahoo! Babelfish

» Lucy RBMT (output includes parse trees!)

» Moses SMT — we have a related project

19

Get the source code!

Source code is freely available from github
» http://github.com/cfedermann/mt-serverland

Includes bug tracker, wiki, documentation.We
will be happy to include your code extensions!

Happy branching!

20




Conclusion

We have implemented a MT server network:
» with central access for users and API calls

» worker servers for many different systems
p flexible object models allow easy extension
p system plays nicely with other frameworks

» open source development envisaged!

21

Thank you!

Any questions or comments?!

22




Publication

Federmann, Eisele. MT Server Land:
An Open-Source MT Architecture.

Prague Bulletin of Mathematical Linguistics,
No. 94: pages 57-66, September 2010.

23




