
  

eppex: Epochal Phrase Table Extraction
for Statistical Machine Translation

Česlav Przywara, Ondřej Bojar

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University in Prague



  

Outline

 Intro + motivation
 Implementation

 approximate frequency counting

 Experiments
 Conclusions and future work



  

Phrase table construction

 Input: parallel corpus + word alignments + phrase 
extraction algorithm (symmetrisation heuristics)

 Output: phrase table
epochal extraction ||| epochální extrakce |||
p(f|e) lex(f|e) p(e|f) lex(e|f) ...

 direct and inverse translation probabilities
 p(e|f) = C(e,f) / C(f)
 p(f|e) = C(e,f) / C(e)

 lexical weights
 lex(f|e), lex(e|f)

 …



  

Phrase table construction in Moses

 Substeps of steps 5 and 6 of train-model.perl
 phrase extraction – produces direct and reverse phrase 

table halves (with word alignments, no scores yet)
 gzipping, sorting and scoring of the direct table
 gzipping, sorting and scoring of the reverse table
 sorting of the scored reverse table
 consolidation of the scored direct and reverse tables
 gzipping of the consolidated phrase table

 Optional post-processing:
 significance filtering



  

Motivation

 phrase table construction is time consuming
 temporary data are read/written to disk
 phrase tables size ~ usually several GB or even more

 phrase table quality is not strictly determined by its 
size

 significance filtering – Johnson et al. (2007)

 more and more physical memory is available
 laptops ~ 4 GB
 computational clusters ~ 16 GB (and more) per node



  

From motivation to implementation

 Our inspiration:
 Goyal et al. (2009) used approximate frequency counting 

for Language Modeling

 Our current status:
 extraction of phrase pairs with on the fly filtration 

implemented via Lossy Counting

 Our ultimate goal:
 in-memory phrase table construction (with on-the-fly 

filtration)



  

Lossy Counting algorithm (1)

 Manku and Motwani (2002)
 approximate frequency counts over stream of data

 user defines two parameters: error ε and support s 
(such that ε << s)

 algorithm guarantees (N = number of instances):
 all items whose true frequency exceeds sN are output
 no item whose true frequency is less than (s-ε)N is output
 estimated frequencies are less than the true frequencies 

by at most εN
 the space used by the algorithm is O(1/ε × log(εN))



  

Lossy Counting algorithm (2)

 input data ~ stream of items conceptually divided into 
epochs of size w = 1/⌈ ε⌉

 T – current epoch ID

 internally maintains database D of triples (e, f, Δ)
 e – element, f – est. frequency, Δ – max. error

 new item e arrives
 if e in D: increment f by one
 otherwise: insert new triple (e, 1, T-1)

 pruning at the end of each epoch (N ≡ 0 mod w)
 remove all triples where f + ∆ <= T



  

Lossy Counting algorithm (3)

 At any time the Lossy Counting algorithm can be 
asked to produce a list of elements with f ≥ (s − ε)N

 such elements satisfies the aforementioned guarantees
 in practice an alternative is also to output all items that 

survived the pruning so far



  

eppex implementation

 drop-in alternative to extract component from 
phrase extract‑  toolkit

 fully compatible input/output format

 written in C++
 strings stored as C-strings in memory pools (Boost library)
 internally all strings represented by 4-byte integers
 Lossy Counting implemented as generic template

 comes with counter utility



  

Usage

Syntax:
eppex tgt src align extract \

lossy-counter [lossy-counter-2 [lossy-counter-3 […]]] \

[orientation [--model [wbe|phrase|hier]-[msd|mslr|mono]]]

Lossy Counter specification:
 phrase-pair-length:error:support

1:0:0 2-4:2e-7:8e-7

 no pruning of phrase pairs of length 1

 phrase pairs of length 2-4 stored by one LC with ε = 2×10-7 and s = 8×10-7

1:0:0 2:2e-7:8e-7 3:2e-7:8e-7 4:2e-7:8e-7

 similar as above, but phrase pairs of length 2-4 stored in separate counters



  

Usage (in Moses)

 train-model.perl
 --eppex=”1:0:0 2-4:2e-7:8e-7”

 experiment.perl (EMS)
 config: [TRAINING] > training-options



  

Experiments enviroment

 All experiments run on the same machine
 64-bit Ubuntu 10.04 server edition
 2 Core4 AMD Opteron 2.8 GHz processors
 32 GB RAM
 all input and output files read from and written to a locally 

mounted disk



  

Experiments - dataset

 Training data: CzEng corpus with a few additions
 8.4M sentence pairs
 107.2M English and 93.2M Czech tokens
 exact setup: Mareček et al. (2011), system ”cu-bojar”

 Tuning and testing data: WMT 2011 Translation Task



  

Experiments – scenarios

 baseline (default approach)
 baseline + sigfilter 

 -l a-e → all 1-1-1 phrase pairs kept in
 -l a+e → all 1-1-1 phrase pairs removed
 -n 30 → top n pairs kept (sorted by forward probability)

 eppex 1-in
 all phrase pairs of length 1–3 kept in

 eppex 1-out
 all single-occurring phrase pairs removed



  

Experiments – BLEU scores

Experiment
Number of
phr. pairs

Gzipped
file size

BLEU on 
wmt10

BLEU on 
wmt11

baseline 153.6 M 3.68 GB 17.36 18.22

sigfilter 30 137.0 M 3.36 GB 17.48 18.13

sigfilter a-e   92.4 M 2.39 GB 17.23 17.87

eppex 1-in   57.1 M 1.28 GB 17.60 18.10

sigfilter a+e   35.0 M 0.86 GB 17.31 17.99

eppex 1-out   14.4 M 0.33 GB 17.23 17.94



  

Experiments – wallclock time

Step baseline eppex 1-in eppex 1-out

phr-ext 1152 4360 4361

gzip 1303 502 246

sort 5101 1632 1131

score 20417 7433 712

sort-inv 1569 129 22

cons 1361 269 66

pt-gzip 881 259 65

TOTAL
(hh:mm:ss)

31784
8:49:44

14584
4:03:04

6603
1:50:03



  

Experiments – sigfilter wallclock time

-l a+e -l a-e -n 30

baseline 31784

sigfiltering 18248 18449 1141

TOTAL
(hh:mm:ss)

50032
13:53:52

50233
13:57:13

32925
9:08:45



  

Experiments – RAM usage

Experiment VM peak in step

baseline 1.1 GB scoring-e2f

sigfilter 30 1.1 GB scoring-e2f

sigfilter a-e 5.4 GB sigfilter

eppex 1-in 19.2 GB phr-ext

sigfilter a+e 5.4 GB sigfilter

eppex 1-out 16.7 GB phr-ext



  

Old vs. new scorer – wallclock time

Step Baseline (old) Baseline (new)

phr-ext 1152 1272

gzip 1303 1354

sort 5101 4599

score 20417 7470

sort-inv 1569 1383

cons 1361 1419

pt-gzip 881 849

TOTAL
(hh:mm:ss)

31784
8:49:44

18346
5:05:46



  

Conclusions

 bulk of phrase pairs to be scored can be significantly 
reduced

 3.68 GB → 1.28 GB

 translation quality can be preserved (BLEU)
 wmt10: 17.36 → 17.60
 wmt11: 18.22 → 18.10

 significant RAM requirements
 1.1 GB → 19.2 GB
 not for laptop use...



  

Future work

 futher optimization of memory usage
 integration with memscore – Hardmeier (2010)
 confrontation with larger corpora (Fr-En)
 (Ondřej would like me to)

 compare eppex and suffix arrays approach used for 
incremental training



  

Bibliography

 Goyal, Amit, Hal Daumé, III, and Suresh Venkatasubramanian. Streaming 
for large scale NLP: language modeling. In Proc. of HTL/NAACL, pages 
512–520, Boulder, Colorado, 2009.

 Hardmeier, Christian. Fast and Extensible Phrase Scoring for Statistical 
Machine Translation.The Prague Bulletin of Mathematical Linguistics, 
93:79–88, 2010.

 Johnson, J Howard, Joel Martin, George Foster, and Roland Kuhn. 
Improving Translation Quality by Discarding Most of the Phrasetable. In 
Proc. of EMNLP and Computational Natural Language Learning, 2007.

 Manku, Gurmeet Singh and Rajeev Motwani. Approximate Frequency 
Counts over Data Streams. In Proc. of the 28th International Conference 
on Very Large Data Bases, 2002.

 Mareček, David, Rudolf Rosa, Petra Galuščáková, and Ondřej Bojar. 
Two-step translation with grammatical post-processing. In Proc. of WMT, 
Edinburgh, UK, July 2011.



  

Questions?

 Any comments and suggestions are appreciated!
 ceslav@przywara.cz
 bojar@ufal.mff.cuni.cz
 moses-support@mit.edu

mailto:ceslav@przywara.cz
mailto:bojar@ufal.mff.cuni.cz
mailto:moses-support@mit.edu

