eppex: Epochal Phrase Table Extraction
for Statistical Machine Translation

Ceslav Przywara, Ondiej Bojar
— Institute of Formal and Applied Linguistics
F“"; Faculty of Mathematics and Physics
A Charles University in Prague

Intro + motivation

Implementation
= approximate frequency counting
Experiments

Conclusions and future work

Phrase table construction

= |nput: parallel corpus + word alignments + phrase
extraction algorithm (symmetrisation heuristics)

= Qutput: phrase table

epochal extraction ||| epochalni extrakce |||
p(fle) lex(f|e) p(e|f) lex(e|f) ...
= direct and inverse translation probabilities
- p(e[f) = C(e, T) / C(T)
- p(fle) = C(e, T) / C(e)
= |exical weights
= lex(f|e), lex(e]|f)

Phrase table construction in Moses

= Substeps of steps 5 and 6 of train-model.perl

phrase extraction — produces direct and reverse phrase
table halves (with word alignments, no scores yet)

gzipping, sorting and scoring of the direct table
gzipping, sorting and scoring of the reverse table
sorting of the scored reverse table

consolidation of the scored direct and reverse tables
gzipping of the consolidated phrase table

= Optional post-processing:

significance filtering

= phrase table construction Is time consuming

= temporary data are read/written to disk

= phrase tables size ~ usually several GB or even more
= phrase table quality is not strictly determined by its

SlZe

= significance filtering — Johnson et al. (2007)
= more and more physical memory is available

= |laptops ~ 4 GB

= computational clusters ~ 16 GB (and more) per node

From motivation to implementation

= Our Inspiration:

= Goyal et al. (2009) used approximate frequency counting
for Language Modeling

= QOur current status:

= extraction of phrase pairs with on the fly filtration
Implemented via Lossy Counting

= Our ultimate goal:

= In-memory phrase table construction (with on-the-fly
filtration)

Lossy Counting algorithm (1)

= Manku and Motwani (2002)

= approximate frequency counts over stream of data

= user defines two parameters: error € and support s
(such that € << s)

= algorithm guarantees (N = number of instances):

= all items whose true frequency exceeds sN are output
= no item whose true frequency is less than (s-¢)N is output

= estimated frequencies are less than the true frequencies
by at most eN

= the space used by the algorithm is O(1/¢ x log(eN))

Lossy Counting algorithm (2)

Input data ~ stream of items conceptually divided into
epochs of size w = [1/¢]

= T —current epoch ID

internally maintains database D of triples (e, f, A)
= e —element, f— est. frequency, A — max. error

new item e arrives

= if e In D: increment f by one
= otherwise: insert new triple (e, 1, T-1)

pruning at the end of each epoch (N = 0 mod w)

= remove all triples where f+ A<=T

Lossy Counting algorithm (3)

= At any time the Lossy Counting algorithm can be
asked to produce a list of elements with f= (s —)N

= such elements satisfies the aforementioned guarantees

= In practice an alternative is also to output all items that
survived the pruning so far

eppex implementation

= drop-in alternative to extract component from
phrase-extract toolkit

= fully compatible input/output format
= written in C++

= strings stored as C-strings in memory pools (Boost library)
= internally all strings represented by 4-byte integers
= Lossy Counting implemented as generic template

= comes with counter utility

Syntax:

eppex tgt src align extract \
lossy-counter [lossy-counter-2 [lossy-counter-3 [..]]] \
[orientation [--model [wbe|phrase|hier]-[msd|mslr|mono]]]

Lossy Counter specification:

= phrase-pair-length:error:support
1:0:0 2-4:2e-7:8e-7
= no pruning of phrase pairs of length 1

= phrase pairs of length 2-4 stored by one LC with € =2x107 and s = 8x10”’
1:0:0 2:2e-7:8e-7 3:2e-7:8e-7 4:2e-7:8e-7

= similar as above, but phrase pairs of length 2-4 stored in separate counters

Usage (in Moses)

= train-model.perl

= --eppex="1:0:0 2-4:2e-7:8e-7"
= experiment.perl (EMS)

= config: [TRAINING] > training-options

Experiments enviroment

= All experiments run on the same machine

= 64-bit Ubuntu 10.04 server edition
= 2 Core4 AMD Opteron 2.8 GHz processors
= 32 GB RAM

= all input and output files read from and written to a locally
mounted disk

Experiments - dataset

= Training data: CzEng corpus with a few additions

= 8.4M sentence pairs
= 107.2M English and 93.2M Czech tokens
= exact setup: Marecek et al. (2011), system "cu-bojar”

= Tuning and testing data: WMT 2011 Translation Task

Experiments - scenarios

baseline (default approach)

baseline + sigfilter

= -la-e - all 1-1-1 phrase pairs kept in

= -lat+e - all 1-1-1 phrase pairs removed

= -n 30 - top n pairs kept (sorted by forward probabillity)

eppex 1-in

= all phrase pairs of length 1-3 kept in
eppex 1-out

= all single-occurring phrase pairs removed

Experiments — BLEU scores

Experiment
baseline
sigfilter 30
sigfilter a-e
eppex 1-in
sigfilter a+e
eppex 1-out

Number of
phr. pairs

153.6 M
137.0 M
924 M
5/7.1 M
35.0M
14.4 M

Gzipped
file size

3.68 GB
3.36 GB
2.39 GB
1.28 GB
0.86 GB
0.33 GB

BLEU on
wmtl10

17.36
17.48
17.23
17.60
17.31
17.23

BLEU on

wmtll
18.22
18.13
17.87
18.10
17.99
17.94

Experiments — wallclock time

Step
phr-ext
gzip
sort
score
sort-inv
cons
pt-gzip

TOTAL
(hh:mm:ss)

baseline
1152

1303
5101
20417
1569
1361

3881

31784
8:49:44

eppex 1-in eppex 1-out

4360
502
1632
7433
129
269

259

14584
4:03:04

4361
246
1131
712
22
66

65

6603
1:50:03

Experiments - sigfilter wallclock time

-l a+e -| a-e -n 30
baseline 31784
sigfiltering 18248 18449 1141
TOTAL 50032 50233 32925

(hh:mm:ss) 13:53:52 13:57:13 9:08:45

Experiments - RAM usage

Experiment VM peak In step
baseline 1.1 GB scoring-e2f
sigfilter 30 1.1 GB scoring-e2f
sigfilter a-e 5.4 GB sigfilter
eppex 1-in 19.2 GB phr-ext
sigfilter a+e 5.4 GB sigfilter

eppex 1-out 16.7 GB phr-ext

Old vs. new scorer — wallclock time

Step Baseline (old) Baseline (new)
phr-ext 1152 1272
gzip 1303 1354
sort 5101 4599
score 20417 7470
sort-inv 1569 1383
cons 1361 1419
pt-gzip 881 849
TOTAL 31784 18346

(hh:mm:ss) 8:49:44 5:05:46

Conclusions

= bulk of phrase pairs to be scored can be significantly
reduced

= 3.68GB - 1.28 GB
= translation quality can be preserved (BLEU)

= wmtl0: 17.36 - 17.60
= wmtll: 18.22 - 18.10

= significant RAM requirements

= 1.1GB - 19.2 GB
= not for laptop use...

futher optimization of memory usage
Integration with memscore — Hardmeier (2010)

confrontation with larger corpora (Fr-En)

(Ondrej would like me to)

= compare eppex and suffix arrays approach used for
Incremental training

Bibliography

Goyal, Amit, Hal Daume, lll, and Suresh Venkatasubramanian. Streaming
for large scale NLP: language modeling. In Proc. of HTL/NAACL, pages
512-520, Boulder, Colorado, 20009.

Hardmeier, Christian. Fast and Extensible Phrase Scoring for Statistical
Machine Translation.The Prague Bulletin of Mathematical Linguistics,
93:79-88, 2010.

Johnson, J Howard, Joel Martin, George Foster, and Roland Kuhn.
Improving Translation Quality by Discarding Most of the Phrasetable. In
Proc. of EMNLP and Computational Natural Language Learning, 2007.

Manku, Gurmeet Singh and Rajeev Motwani. Approximate Frequency
Counts over Data Streams. In Proc. of the 28th International Conference
on Very Large Data Bases, 2002.

MareCek, David, Rudolf Rosa, Petra GalusCakova, and Ondrej Bojar.
Two-step translation with grammatical post-processing. In Proc. of WMT,
Edinburgh, UK, July 2011.

Questions?

= Any comments and suggestions are appreciated!

= ceslav@przywara.cz
= pojar@ufal.mff.cuni.cz
= moses-support@mit.edu

mailto:ceslav@przywara.cz
mailto:bojar@ufal.mff.cuni.cz
mailto:moses-support@mit.edu

