

eppex: Epochal Phrase Table Extraction
for Statistical Machine Translation

Česlav Przywara, Ondřej Bojar

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University in Prague

Outline

 Intro + motivation
 Implementation

 approximate frequency counting

 Experiments
 Conclusions and future work

Phrase table construction

 Input: parallel corpus + word alignments + phrase
extraction algorithm (symmetrisation heuristics)

 Output: phrase table
epochal extraction ||| epochální extrakce |||
p(f|e) lex(f|e) p(e|f) lex(e|f) ...

 direct and inverse translation probabilities
 p(e|f) = C(e,f) / C(f)
 p(f|e) = C(e,f) / C(e)

 lexical weights
 lex(f|e), lex(e|f)

 …

Phrase table construction in Moses

 Substeps of steps 5 and 6 of train-model.perl
 phrase extraction – produces direct and reverse phrase

table halves (with word alignments, no scores yet)
 gzipping, sorting and scoring of the direct table
 gzipping, sorting and scoring of the reverse table
 sorting of the scored reverse table
 consolidation of the scored direct and reverse tables
 gzipping of the consolidated phrase table

 Optional post-processing:
 significance filtering

Motivation

 phrase table construction is time consuming
 temporary data are read/written to disk
 phrase tables size ~ usually several GB or even more

 phrase table quality is not strictly determined by its
size

 significance filtering – Johnson et al. (2007)

 more and more physical memory is available
 laptops ~ 4 GB
 computational clusters ~ 16 GB (and more) per node

From motivation to implementation

 Our inspiration:
 Goyal et al. (2009) used approximate frequency counting

for Language Modeling

 Our current status:
 extraction of phrase pairs with on the fly filtration

implemented via Lossy Counting

 Our ultimate goal:
 in-memory phrase table construction (with on-the-fly

filtration)

Lossy Counting algorithm (1)

 Manku and Motwani (2002)
 approximate frequency counts over stream of data

 user defines two parameters: error ε and support s
(such that ε << s)

 algorithm guarantees (N = number of instances):
 all items whose true frequency exceeds sN are output
 no item whose true frequency is less than (s-ε)N is output
 estimated frequencies are less than the true frequencies

by at most εN
 the space used by the algorithm is O(1/ε × log(εN))

Lossy Counting algorithm (2)

 input data ~ stream of items conceptually divided into
epochs of size w = 1/⌈ ε⌉

 T – current epoch ID

 internally maintains database D of triples (e, f, Δ)
 e – element, f – est. frequency, Δ – max. error

 new item e arrives
 if e in D: increment f by one
 otherwise: insert new triple (e, 1, T-1)

 pruning at the end of each epoch (N ≡ 0 mod w)
 remove all triples where f + ∆ <= T

Lossy Counting algorithm (3)

 At any time the Lossy Counting algorithm can be
asked to produce a list of elements with f ≥ (s − ε)N

 such elements satisfies the aforementioned guarantees
 in practice an alternative is also to output all items that

survived the pruning so far

eppex implementation

 drop-in alternative to extract component from
phrase extract‑ toolkit

 fully compatible input/output format

 written in C++
 strings stored as C-strings in memory pools (Boost library)
 internally all strings represented by 4-byte integers
 Lossy Counting implemented as generic template

 comes with counter utility

Usage

Syntax:
eppex tgt src align extract \

lossy-counter [lossy-counter-2 [lossy-counter-3 […]]] \

[orientation [--model [wbe|phrase|hier]-[msd|mslr|mono]]]

Lossy Counter specification:
 phrase-pair-length:error:support

1:0:0 2-4:2e-7:8e-7

 no pruning of phrase pairs of length 1

 phrase pairs of length 2-4 stored by one LC with ε = 2×10-7 and s = 8×10-7

1:0:0 2:2e-7:8e-7 3:2e-7:8e-7 4:2e-7:8e-7

 similar as above, but phrase pairs of length 2-4 stored in separate counters

Usage (in Moses)

 train-model.perl
 --eppex=”1:0:0 2-4:2e-7:8e-7”

 experiment.perl (EMS)
 config: [TRAINING] > training-options

Experiments enviroment

 All experiments run on the same machine
 64-bit Ubuntu 10.04 server edition
 2 Core4 AMD Opteron 2.8 GHz processors
 32 GB RAM
 all input and output files read from and written to a locally

mounted disk

Experiments - dataset

 Training data: CzEng corpus with a few additions
 8.4M sentence pairs
 107.2M English and 93.2M Czech tokens
 exact setup: Mareček et al. (2011), system ”cu-bojar”

 Tuning and testing data: WMT 2011 Translation Task

Experiments – scenarios

 baseline (default approach)
 baseline + sigfilter

 -l a-e → all 1-1-1 phrase pairs kept in
 -l a+e → all 1-1-1 phrase pairs removed
 -n 30 → top n pairs kept (sorted by forward probability)

 eppex 1-in
 all phrase pairs of length 1–3 kept in

 eppex 1-out
 all single-occurring phrase pairs removed

Experiments – BLEU scores

Experiment
Number of
phr. pairs

Gzipped
file size

BLEU on
wmt10

BLEU on
wmt11

baseline 153.6 M 3.68 GB 17.36 18.22

sigfilter 30 137.0 M 3.36 GB 17.48 18.13

sigfilter a-e 92.4 M 2.39 GB 17.23 17.87

eppex 1-in 57.1 M 1.28 GB 17.60 18.10

sigfilter a+e 35.0 M 0.86 GB 17.31 17.99

eppex 1-out 14.4 M 0.33 GB 17.23 17.94

Experiments – wallclock time

Step baseline eppex 1-in eppex 1-out

phr-ext 1152 4360 4361

gzip 1303 502 246

sort 5101 1632 1131

score 20417 7433 712

sort-inv 1569 129 22

cons 1361 269 66

pt-gzip 881 259 65

TOTAL
(hh:mm:ss)

31784
8:49:44

14584
4:03:04

6603
1:50:03

Experiments – sigfilter wallclock time

-l a+e -l a-e -n 30

baseline 31784

sigfiltering 18248 18449 1141

TOTAL
(hh:mm:ss)

50032
13:53:52

50233
13:57:13

32925
9:08:45

Experiments – RAM usage

Experiment VM peak in step

baseline 1.1 GB scoring-e2f

sigfilter 30 1.1 GB scoring-e2f

sigfilter a-e 5.4 GB sigfilter

eppex 1-in 19.2 GB phr-ext

sigfilter a+e 5.4 GB sigfilter

eppex 1-out 16.7 GB phr-ext

Old vs. new scorer – wallclock time

Step Baseline (old) Baseline (new)

phr-ext 1152 1272

gzip 1303 1354

sort 5101 4599

score 20417 7470

sort-inv 1569 1383

cons 1361 1419

pt-gzip 881 849

TOTAL
(hh:mm:ss)

31784
8:49:44

18346
5:05:46

Conclusions

 bulk of phrase pairs to be scored can be significantly
reduced

 3.68 GB → 1.28 GB

 translation quality can be preserved (BLEU)
 wmt10: 17.36 → 17.60
 wmt11: 18.22 → 18.10

 significant RAM requirements
 1.1 GB → 19.2 GB
 not for laptop use...

Future work

 futher optimization of memory usage
 integration with memscore – Hardmeier (2010)
 confrontation with larger corpora (Fr-En)
 (Ondřej would like me to)

 compare eppex and suffix arrays approach used for
incremental training

Bibliography

 Goyal, Amit, Hal Daumé, III, and Suresh Venkatasubramanian. Streaming
for large scale NLP: language modeling. In Proc. of HTL/NAACL, pages
512–520, Boulder, Colorado, 2009.

 Hardmeier, Christian. Fast and Extensible Phrase Scoring for Statistical
Machine Translation.The Prague Bulletin of Mathematical Linguistics,
93:79–88, 2010.

 Johnson, J Howard, Joel Martin, George Foster, and Roland Kuhn.
Improving Translation Quality by Discarding Most of the Phrasetable. In
Proc. of EMNLP and Computational Natural Language Learning, 2007.

 Manku, Gurmeet Singh and Rajeev Motwani. Approximate Frequency
Counts over Data Streams. In Proc. of the 28th International Conference
on Very Large Data Bases, 2002.

 Mareček, David, Rudolf Rosa, Petra Galuščáková, and Ondřej Bojar.
Two-step translation with grammatical post-processing. In Proc. of WMT,
Edinburgh, UK, July 2011.

Questions?

 Any comments and suggestions are appreciated!
 ceslav@przywara.cz
 bojar@ufal.mff.cuni.cz
 moses-support@mit.edu

mailto:ceslav@przywara.cz
mailto:bojar@ufal.mff.cuni.cz
mailto:moses-support@mit.edu

