
Sparse Features in Moses

Colin Cherry
Barry Haddow

7th September, 2012



Timings

Using core features

Trunk Moses: 47 minutes
Sparse Moses: 54 minutes

Using extended features (and a smaller model)

Sparse Moses: 372/377 minutes
Sparse Moses (pre-calculation): 63/65 minutes
Sparse Moses (eliminate gratuitous waste): 58 minutes



Timings

Using core features

Trunk Moses: 47 minutes
Sparse Moses: 54 minutes

Using extended features (and a smaller model)

Sparse Moses: 372/377 minutes
Sparse Moses (pre-calculation): 63/65 minutes
Sparse Moses (eliminate gratuitous waste): 58 minutes



Timings

Using core features

Trunk Moses: 47 minutes
Sparse Moses: 54 minutes

Using extended features (and a smaller model)

Sparse Moses: 372/377 minutes
Sparse Moses (pre-calculation): 63/65 minutes
Sparse Moses (eliminate gratuitous waste): 58 minutes



Optimisations I

Pre-calculate features which only depend on phrase pair /
rule

”Stateless features” can use rule, source sentence and
coverage
Those in phrase table already pre-calculated
Added hooks for pre-calculating others

Reduce (or eliminate!) string concatenation in names

Use ”builder” object for feature names
Standard version will encode strings
Fast version can use hashing



Optimisations I

Pre-calculate features which only depend on phrase pair /
rule

”Stateless features” can use rule, source sentence and
coverage
Those in phrase table already pre-calculated
Added hooks for pre-calculating others

Reduce (or eliminate!) string concatenation in names

Use ”builder” object for feature names
Standard version will encode strings
Fast version can use hashing



Optimisations I

Pre-calculate features which only depend on phrase pair /
rule

”Stateless features” can use rule, source sentence and
coverage
Those in phrase table already pre-calculated
Added hooks for pre-calculating others

Reduce (or eliminate!) string concatenation in names

Use ”builder” object for feature names
Standard version will encode strings
Fast version can use hashing



Optimisations II

Don’t store full feature vectors unless needed

Add a method to feature function to calculate score
delta
For n-best lists, backtrack to get vectors

Use a faster feature vector

Take from cdec, or from kbmira
Moses should have just one – it has 3 now



Optimisations II

Don’t store full feature vectors unless needed

Add a method to feature function to calculate score
delta
For n-best lists, backtrack to get vectors

Use a faster feature vector

Take from cdec, or from kbmira
Moses should have just one – it has 3 now



Optimisations II

Don’t store full feature vectors unless needed

Add a method to feature function to calculate score
delta
For n-best lists, backtrack to get vectors

Use a faster feature vector

Take from cdec, or from kbmira
Moses should have just one – it has 3 now


