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Timings

Using core features

Trunk Moses: 47 minutes
Sparse Moses: 54 minutes

Using extended features (and a smaller model)

Sparse Moses: 372/377 minutes
Sparse Moses (pre-calculation): 63/65 minutes
Sparse Moses (eliminate gratuitous waste): 58 minutes
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Optimisations I

Pre-calculate features which only depend on phrase pair /
rule

”Stateless features” can use rule, source sentence and
coverage
Those in phrase table already pre-calculated
Added hooks for pre-calculating others

Reduce (or eliminate!) string concatenation in names

Use ”builder” object for feature names
Standard version will encode strings
Fast version can use hashing
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Optimisations II

Don’t store full feature vectors unless needed

Add a method to feature function to calculate score
delta
For n-best lists, backtrack to get vectors

Use a faster feature vector

Take from cdec, or from kbmira
Moses should have just one – it has 3 now
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