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... and, likelihood is convex for IBM Model 1:

But not IBM Models 3-5!
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Phrase-based Models

® Segmentation probabilities: fixed (uniform)

® Distortion probabilities: fixed (decaying)



Learning p(Chinese | English)

® Reminder: (nearly) every problem comes down to
computing either:

® Sums: MLE or EM (learning)

® Maximum: most probable (decoding)



Recap: Expectation Maximization

® Arbitrarily select a set of parameters (say, uniform).

® Calculate expected counts of the unseen events.

® Choose new parameters to maximize likelihood,
using expected counts as proxy for observed counts.

® [terate.

® Guaranteed that likelihood is monotonically
nondecreasing.
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We have to sum over exponentially many alignments!
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Z p(north|c) Z p(rest of a) \
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identical!
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® Model parameters: p(E phrase | F phrase)

® All we need to do is compute expectations:

plaiy = (j,j'), F|E)

plaii = (j.j)|F. E) = o(F, E)

p(F,E) sums over all possible phrase alignments

...which are one-to-one by definition.
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However , the sky remained clear under [the strong north wind].

p(as = (j,7'), F|E)
p(F, E)

pla; i = (J,j)|F, E) =

Can we compute this quantity?

How many 1-to-1 alignments are there of
the remaing 8 Chinese and 8 English words?
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Recap: Expectation Maximization

® Arbitrarily select a set of parameters (say, uniform).

® Calculate expected counts of the unseen events.

® Choose new parameters to maximize likelihood,

uj nts.
Computing expectations from a phrase-based
model, given a sentence pair, is #P-Complete

® ( (by reduction to counting perfect matchings;
N DeNero & Klein, 2008)

® I




Now What?

® Option #1: approximate expectations

® Restrict computation to some tractable subset of
the alignment space (arbitrarily biased).

® Markov chain Monte Carlo (very slow).



Now What?

® Change the problem definition

® We already know how to learn word-to-word
translation models etficiently.

® Idea: learn word-to-word alignments, extract most
probable alignment, then treat it as observed.

® Learn phrase translations consistent with word
alignments.

® Decouples alignment from model learning -- is
this a good thing?
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Phrasal Translation Estimation

® Approximation #1 (EM over restricted space)
® Align with a word-based model.

® Compute expectations only over alignments
consistent with the alignment grid.

® Approximation #2 (heuristic estimation)

® View phrase pairs as observed, irrespective of
context or overlap.

® By far the most common approach.

® Many other possible approximations!
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