
[MT Summit III, Washington, DC, USA]

An Architecture Sketch of EUROTRA-II

 Jörg Schütz Gregor Thurmair Roberto Cencioni
 IAI SNI A.G. CEC, DGXIII, B/5
 Martin Luther Straße 14 Otto-Hahn-Ring 6 Jean Monnet Building
 D-6600 Saarbrücken D-8000 München 83 L-2920 Luxembourg
 joerg@iai.uni-sb.de metal@ztivax.siemens.com r_cencioni@eurokom.ie

Abstract

This paper outlines a new architecture for
a NLP/MT development environment for the
EUROTRA project, which will be fully opera-
tional in the 1993-94 time frame. The proposed
architecture provides a powerful and flexible
platform for extensions and enhancements to
the existing EUROTRA translation philosophy
and the linguistic work done so far, thus allow-
ing the reusability of existing grammatical and
lexical resources, while ensuring the suitabil-
ity of EUROTRA methods and tools for other
NLP/MT system developers and researchers.

1 Introduction

EUROTRA is a Community research and development
programme for the creation of a machine translation sys-
tem of advanced design, capable of dealing with all offi-
cial languages of the Community.

The EUROTRA programme has led to the creation of
a research prototype system operational in a narrow sub-
ject field and for limited text types, with a vocabulary
of approximately 20,000 entries in each language. The
underlying software environment has been developed by
a number of contractors, working in close cooperation
with EUROTRA researchers.

In November 1990 the Council has adopted a specific
programme concerning the preparation of the develop-
ment of an operational EUROTRA system. The Com-
mission is now executing this programme.

Furthermore, within the third Framework Programme
(1990-1994), in its proposal for a specific programme
concerning Telematic Systems of General Interest, the
Commission has included an action line on Linguistic
Research and Engineering.

In preparation of these initiatives, the Commission has
carried out a number of feasibility and design studies
enabling it to define the overall architecture and the un-
derlying linguistic and computational tools of a power-
ful development environment, suitable for large-scale re-
search application prototyping purposes ([CEC, 1989]).
Such a development environment should be used inside
as well as outside EUROTRA follow-up programmes as
a common platform for machine translation and other

applications involving natural language processing com-
ponents.

In this paper we outline the basic concepts of
the EUROTRA-II development environment which are
based on the outcome of the requirements definition and
feasibility phases of the EUROTRA-6/2 (ET-6/2) de-
sign study ([Gajek et al., 1990], [Gajek et al., 199l])
for a new EUROTRA software environment. This study
was carried out by a consortium consisting of the In-
stitut der Gesellschaft zur Förderung der Angewandten
Informationsforschung (IAI), Saarbrücken, as the Com-
mission’s main contractor, and GAP GEMINI SCS Be-
Com GmbH, Hamburg, and Siemens-Nixdorf Informa-
tionssysteme (SNI) A.G., Munich, as IAI’s subcontrac-
tors, in close collaboration with the Commission’s EU-
ROTRA central software team.

As the existing EUROTRA MT system is demon-
strated at the conference’s exhibition the audience will
have the possibility to compare the two system design
approaches to each other. The EUROTRA-I prototype
system is a robust and comprehensive development sys-
tem, suitable for research and development operations in
a laboratory environment.
 The application software, written in Prolog (YAP) and
C, is available on a broad range of Unix platforms, and is
built around a number of commercial packages (Prolog
compiler, relational DBMS, SGML parser, etc.). It has
been specifically designed for use with the current rule
formalism, the so-called E-framework, on ordinary text
terminals connected to multi-user Unix servers.
Its main shortcomings are its limited potential for
growth and evolution, due to the lack of a uniform and
consistent interface between individual components, and
the poor run-time performance of the rule formalism.

The new architecture design of the system will ensure
the opening up of EUROTRA to other NLP/MT sys-
tem developers and researchers, but it will also provide
a platform for continuity, extensions and enhancements
to the existing EUROTRA translation philosophy.

Great emphasis has therefore been placed on the
openness and modularity of the system architecture, so
that individual components can be developed, enhanced
and/or customized by third parties. One of the key de-
sign aims is to ensure the reusability of the linguistic
resources created with the tools provided by the devel-
opment environment.

3

2 The global EUROTRA-II
Architecture

2.1 User Profiles
The typical user of the EUROTRA-II environment will
be either a skilled researcher in computational linguis-
tics or a team of researchers, who will be provided with
a fully developed software environment enabling them
to produce large-scale linguistic descriptions of differ-
ent languages for a number of NLP/MT application do-
mains.

It might be also an application designer or developer
who wants to enhance or add other functionalities to the
EUROTRA-II environment in order to develop a specific
application prototype.

2.2 Requirements and Design Aims
We propose an architecture for the EUROTRA-II soft-
ware environment which satisfies the following basic re-
quirements:

 • The architecture is based on a relatively conserva-
tive approach that ensures an efficient implementa-
tion on mid-sized Unix workstations.

• It is largely formalism independent and thus re-
usable for other NLP/MT projects.
• It is modular and (user) configurable.
• It is open to further developments and functional
extensions.
• Its design allows for a multi-user NLP/MT develop-
ment environment.
• It is user-friendly and robust, including error recov-
ery and exception handling capabilities,
• The technical solution adopted for its design and

implementation are based on standard state-of-the-
art products, e.g. commercially available data
base management systems, and techniques, e.g. X-
protocol, OSF/Motif widget set, etc., as well as on
widely recognized international standards: thus, for
instance, the ISO 8859 character set supports the
community languages and preserves the multilin-
gual capabilities of the environment,

• The process overhead is as small as possible to gain
maximum time and space efficiency.

• Last but not least the system is portable and can
be used on different standard, e.g. POSIX and
X/Open, Unix platforms.

2.3 Global Architecture
The basic idea of the EUROTRA-II software environ-
ment architecture as outline in this paper is derived from
research and developments in the fields of distributed ar-
tificial intelligence (DAI) and object-oriented program-
ming (OOP).

The EUROTRA-II lingware development environ-
ment for NLP/MT applications is modelled through co-
operating software agents. Its user environment imple-
ments windows and menus with graphic symbols (icons)

instead of text commands, to provide an intuitive man-
machine interface.

We define a NLP/MT application as a specific in-
stantiation of a problem solving process. For example,
if we want to analyse a text, we have to solve several
sub-problems (morphology, syntax, semantic, references
within and across sentence boundaries, text domain spe-
cific knowledge, etc.) in order to achieve a representa-
tion of the meaning of the text as a final result of the
analysis problem. In our architecture such sub-problems
are resolved by specific agents which are embedded in a
problem context dependent environment.

The idea, then, is to model a problem solving be-
haviour of the whole environment, where possible solu-
tions of a given problem ran only be achieved by combin-
ing the problem solving capabilities distributed among a
number of (potentially highly autonomous) agents, none
of which has the ability to solve the whole problem on
its own.

The advantage of such an architecture is its open and
modular design, which allows the replacement or addi-
tion of agents. The design of individual agents caters
for changes in their internal problem solving capability.
Last but not least, this architecture allows for the distri-
bution of the agents over several machines; in this case
only the agent which is responsible for the overall envi-
ronment supervision is active on the local machine.

The disadvantage of a highly distributed system ar-
chitecture is, however, the coordinating, monitoring and
synchronizing of the control flow within a given applica-
tion, e.g. interrupt handling, signal propagation, multi-
user scheduling etc..

In order to have an architecture that is feasible, effi-
cient and reliable on existing Unix software and hard-
ware platforms, we therefore assume that the agents in
the initial (i.e. 1991-1993) implementation of the software
environment are invoked and scheduled by one monitor-
ing agent which is called the User Agent. Further im-
provements and developments of the broader, ‘abstract’
architecture are then still possible, to investigate the fea-
sibility of a society of autonomous, freely cooperating
agents, which can still be seen as an applied research
field in AI (c.f. [Schütz, 1990a]).

The complexity of the intended EUROTRA-II system
implies the requirement for a layered, object-oriented ap-
proach for the overall design. We therefore propose an
architecture for the EUROTRA-II development system
which is based on the following five layers:

1. The User Interface and Presentation Layer
2. The Control Layer
3. The Application Layer
4. The Object Repository Layer
5. The Storage Layer
Between some of the layers there are communication

channels which are responsible for passing messages be-
tween various agents, for triggering different types of re-
quests, for exchanging configuration, control and user
data. We distinguish between channels that deal with
X-based messages and requests (between layers 2 and 3),

4

and that using a programmatic call interface (between
layers 3 and 4, and layers 4 and 5).

2.3.1 The User Interface and Presentation
Layer

The User Interface and Presentation Layer provides
the man-machine interface (MMI) to different toolbox
agents (e.g. grammar editors, compilers, debuggers) of
the EUROTRA-II environment. The MMI is a graphi-
cal interface which uses windows and toggle menus with
iconic symbols to provide an intuitive environment.

The interface and presentation layer provides the user
with graphical access to four types of basic utilities which
in turn provide additional functionalities according to
their realization at the control and application layers:
configuration, browsing, editing, and debugging utilities.

The basic processing unit of this layer is a server for
the video display unit and the related input devices, like
keyboard, mouse and other pointing devices; it is called
the MMI-server. For each utility the MMI-server pro-
vides start-up toggle menus, so-called toolbox defaults
which are requested from the User Agent and the agents
of the application layer.

2.3.2 The Control Layer
The Control Layer is the main piloting and monitoring

level of the EUROTRA-II environment. It controls each
user-defined task and it is the first level of the NLP/MT
development machinery.

The processing unit of this layer is the User Agent.
(UA). It is responsible for the initialization of the en-
vironment at start-up time, the first level of communi-
cation with the user, including global help facilities and
the handling of emergencies, the management of system
resources, the scheduling of application processes and
the overall housekeeping of the environment. The UA
also provides system-wide facilities such as editors and
browsers of the object library (c.f. section 2.3.4).

2.3.3 The Application Layer
The Application Layer constitutes the level of actual

tools which are based on the (family of) EUROTRA-II
formalism(s)1.

The EUROTRA-II framework imposes a basic three
stage architecture on the process of translation: analy-
sis, transfer and generation. Analysis and generation are
performed by the virtual machine agent (VMA), while
the transfer agent (TRA) that is seen as a separate tool-
box agent, extends the operations of the virtual machine
(c.f. section 3.3) to perform the transfer process. This
architecture does not prescribe a single stage of anal-
ysis or generation, so that the EUROTRA notion of a
stratified model can be maintained if required.

The EUROTRA-II formalism (c.f. [Alshawi et al.,
1991]) attempts to incorporate the desirable features of
several different, new formalism approaches in computa-
tional linguistics in a unified and flexible way. The for-
malism does not embody any particular (computational)

1The EUROTRA-II formalism was the subject of a sepa-
rate, parallel design study (ET-6/1) that was carried out by
SRI International, Cambridge, England.

linguistic theory, but serves as a formal language within
which it is possible to encode many particular linguistic
theories. To support this view the design of the formal-
ism has also adopted a layered approach.
 The formalism has at its lowest level (or core) simple
unification-based constructs, i.e. elements that are con-
sidered to be uncontroversial and which can be efficiently
implemented. The basic core is extended and enriched
by (currently two) further layers. The second layer is
composed of notational devices which can be compiled
into the core language, for example, disjunction and lin-
ear precedence constructions. The third layer is an ex-
tended constraint language that cannot be compiled into
the core language. This last layer is yet not fully defined,
so that the formalism remains open to accommodate fu-
ture enhancements. Future inclusions to the constraint
language of the third level, like those of other levels, are
required to be declarative, monotonic and effectively re-
versible.

The linguistic toolboxes of the application layer, al-
though somewhat based on the EUROTRA-II formal-
ism, are in principle applicable, i.e. generalizable, to
other NLP/MT applications, e.g. machine translation,
natural language interfaces to information systems, writ-
ing aids, etc., where different kinds of linguistic theories,
e.g. LFG, HPSG, SFG, etc., and linguistic processing
techniques, e.g. for parsing, generation and transfer, are
employed.

The application layer comprises four built-in tool-
boxes:

1. The text-handling toolbox
2. The linguistic processing toolbox
3. The grammar toolbox
4. The lexicon toolbox
Different (specialized) agents are the processing units

of this layer: the Text-Handling Agent (THA) for the
text-handling toolbox; Editor Agents (EDA), Browser
Agents (BRA) and Compiler Agents (COA) for the
grammar and the lexicon toolbox; the Virtual Machine
Agent (VMA), the Transfer Agent (TRA) and Debugger
Agents (DEA) for the linguistic processing toolbox.

The internal problem solving capability of these agents
is to some extent formalism dependent in so far as most
of it is specifically designed for EUROTRA applications,
at least at the current stage of the project.

Other applications which might be independent of the
EUROTRA formalism are also located at this layer.
However, the central monitoring function in such a non-
EUROTRA application, e.g. a natural language inter-
face to command and control systems, is then handled
by an Application Agent (APA) which takes over the
UA’s tasks for this application.

2.3.4 The Object Repository Layer
Access to the storage layer is handled through the Ob-

ject Repository Layer. It functions as a uniform interface
layer between the application layer of the EUROTRA-II
system on the one hand and the underlying storage layer
on the other hand. Linguistic objects or texts can be

5

passed to or read from the storage layer through the ob-
ject repository, which maintains information about the
resource type, e.g. text file, linguistic object, process-
ing unit, configuration data, etc., its status, e.g. free, in
use, disabled, etc., and location within the file/data base
system.

Internally, the object repository is connected to the
data base (DB interface), to the object library (OL inter-
face), and to the operating system (OS interface). The
DB interface provides access to the lexical data base, the
OL interface gives access to object-oriented descriptions
of user and system resources, and the OS interface gives
access to linguistic data stored in Unix files.

The introduction of the object repository layer ensures
the openness and extensibility of the EUROTRA-II sys-
tem with respect to different kinds of storage systems.
The main processing unit at this layer of the architecture
is the Object Manager (OM).

2.3.5 The Storage Layer

The Storage Layer serves as a foundation where text
files, extra-linguistic data, e.g. user and system configu-
ration information, as well as linguistic data are stored,
The linguistic data consist of lexical information, e.g.
monolingual and bilingual lexical data, and grammatical
information, e.g. monolingual and bilingual grammar
rules, as well as of intermediate results from linguistic
processes,

This information will be stored as independently as
possible of individual applications, i.e. it will be of max-
imum generality and should be suitable for use in dif-
ferent applications, e.g. machine translation, automatic
abstracting, etc., and with different (computational) lin-
guistic theories.

3 EUROTRA-II Components and
Functions

3.1 The User Agent

The UA acts as a smart interface between the user of the
system and different linguistic tools and applications. Its
main tasks are the following;

• Communication with the user, the X components
and the underlying operating system, as well as with
the toolbox agents necessary for a user-defined ap-
plication.

• Configuration support, e.g. parameter setting,
user choices, global linguistic definitions, etc., and
maintenance of the user's general and/or problem-
specific environment, e.g. task definition and task
scheduling.

• Control over resources, e.g. different kinds of ob-
jects and their information carriers, including appli-
cation agents, exception handling, errors and emer-
gency actions, in particular for those agents that do
not possess a user interface.

3.2 Text-handling Toolbox
The text-handling2 toolbox is an intelligent interface be-
tween a document in machine-readable format and the
linguistic applications. It performs the following tasks:

• Convert the external text format, like nroff, LATEX,
proprietary word processors etc., into the internal
standard format, called EDIF (EUROTRA Doc-
ument Interchange Format). EDIF is based on
SGML, a standard document markup language; ba-
sic document elements, like sections, paragraphs,
headings, tables, footnotes, etc, are recognized and
marked-up.

• Display, check and edit the output of the text analy-
sis phase; to do this, commercial SGML parsers and
editors are going to be used.

• Allow for different text-based applications to run
on EDIF files. Among those applications are: text
storage and retrieval tools, concordances and usage
patterns, and statistical tools, like frequency counts,
word lists, etc.

• Recognize and disambiguate sentence boundaries,
wordforms, punctuation marks, etc.

• Run text-based applications at, the wordform level:
special EDIF markers will be used for patterns
like foreign word, proper name, abbreviation and
acronym, code and model, date, number, etc.

• Word analysis: this will cater for orthographic anal-
ysis as well as word segmentation. In order to per-
form word segmentation, the lexical data base will
be consulted for possible morphemes and morpheme
sequences. As wordforms will have to be normalized
before the lexicon look-up, a kind of two-level mor-
phology augmented by featural information fetched
from the lexical rules will be implemented.

• Finally, the input for the Virtual Machine Agent will
be produced. This includes filtering out all the in-
formation which is not linguistically relevant (this
information will be stored in a separate skeleton
file), converting all linguistically relevant informa-
tion into features, according to user declarations,
and creating the proper data structures.

3.3 Linguistic Processing Toolbox

The linguistic processing toolbox consists of several sub-
modules which support the user during the testing and
debugging phases of a NLP/MT application:

• The virtual machine (VM) provides the capabilities
of an inference engine (unification and constraint so-
lution) operating on typed feature structures. The
basic operations performed are: parsing, constraint
evaluation and generation. A VM driver is respon-
sible for the monitoring of the operations and the
management of (sub-) results for further processing.

2 The Texthandling sub-component was the subject of a
third study within the EUROTRA-6 operation; this study
(ET-6/3) was carried out by SEMA, Brussels, Belgium.

6

• The debugger will offer several possibilities for su-
pervising the VM operations (setting of spy points,
interactive debugging facilities, etc.).

• A browser will enable the user to inspect the (sub-)
results in different ways (textual and graphical). It
will be possible to print and edit (sub-) results.

• Interactive disambiguation will enable the user to
monitor and support the operations of the VM. This
capability is foreseen because the user has knowl-
edge about his/her grammatical and lexical mod-
ules.

• A transfer agent enables the user to specify a
transfer-based MT application. Transfer rules of
the EUROTRA-II formalism are dealt with in the
grammar and the lexicon toolbox. This module is
then a specific realization of the VM which is able
to perform graph transductions. The debugger, the
browser and the interactive disambiguation facility
of the VM are also be available for the transfer mod-
ule.

3.4 Grammar Toolbox
The grammar toolbox of the system consists of several
tools for grammar writers. The main functions are:

• Grammar coding: The user will be able to write
and maintain grammars based upon the rule types
defined in the EUROTRA-II formalism, and to com-
pile them for the VM. Grammar maintenance work
will be supported by editors and specialized tools
and menus for the encoding of macros and defaults.

• Grammar search: Browsers will allow different
search strategies based on features and other speci-
fications, e.g. the rule name.

• Grammar import, export and merge: The user will
be able to import (sub-) grammars, to export them
or to merge grammars. Duplicate and/or conflicting
rules will be reported.

• Administration and version control: Users will be
allowed to define and run their private grammars
for special tests or applications. It will be possible
to merge these versions into an overall grammar.

• Consistency checks: The user will be able to run
wellformedness checks on (sub-) grammars, espe-
cially when import, export and merge operations
are performed.

• Grammar administration: The user will be able to
define his/her features (legal types, attributes, val-
ues). This in order to make grammar checks feasible
and to support editing, compiling and searching.

The grammars will be stored in Unix files (source
form) as well as in structured libraries (compiled form)
handled by the Object Manager, Global declarations,
i.e. features and types, will be stored in the linguistic
data base, to avoid redundancies and inconsistencies.
3.5 Lexicon Toolbox
The lexicon toolbox of the system consists of several
tools for lexicographers and linguists. The main func-
tions are:

• Lexicon coding: users will be able to key in, edit,
etc. lexicon entries, either as a whole, or with differ-
ent views on a given entry. Coding will be supported
by a menu system where lexical features and their
values are presented in a mouse-sensitive way, simi-
lar to the lexicographer’s workbench available in the
current EUROTRA-I prototype system.

• Lexical search: users will be able to browse through
the lexicon, following search patterns consisting of
combinations of features and values, rule names,
rule types etc. It will be possible to print and further
process, e.g. narrow down, the results of a search.

• Lexicon import, export, and merge: users will be
able to import other EUROTRA lexicons, to ex-
port them, and to be prompted whenever there are
duplicate or conflicting entries. This is necessary as
there may be several sites involved in the develop-
ment and interchange of large lexicons.

• Administration and version control: users will be
able to define their own lexicons, private sub-sets,
etc. for special purposes. These private copies will
be merged into the group’s overall lexicon.

• Consistency checking: users should be able to run
utilities checking if a lexicon is (syntactically and
semantically) wellformed, consistent, etc.

• Lexical data base administration: users will be able
to customize the lexical data base, based upon their
requirements and linguistic declarations (features,
types, key fields, etc.). Data base administration
will be performed by a separate application.

All the aforementioned functions operate on the inter-
face provided by the object repository layer.

3.6 Object Manager
3.6.1 Architecture

The Object Manager (OM) is responsible for the stor-
age and maintenance of the relevant system and data
objects. Objects can be:

• part of the Unix file system,
• named portions (sets) of a data base system.
Objects stored as files are source text files, grammars,

intermediate linguistic results, etc., but also system ta-
bles, executable modules, documentation, descriptions
of tasks and work items, etc.; objects stored in the data
base are mainly monolingual and bilingual lexicons.

As already outlined in section 2.3,4, the Object Man-
ager fulfils two basic tasks: on the one hand it allows
the UA to locate, access and manipulate user and sys-
tem resources by means of unique identifiers and high-
level functions, e.g. open/close, create/delete, execute,
etc., on the other hand it provides a library of (file and
data base) input-output primitives, thus increasing the
independence of the application layer from the storage
layer.

The OM controls requests to the object repository, and
passes them either to the file system or to the data base
frontend. The DB frontend is part of the application

7

software, and is able to perform more sophisticated op-
erations than a standard DB product; in particular, it is
able to perform unification and subsumption operations
of objects with DB entries.

The DB frontend relies upon the services provided by a
DB backend, for which several alternatives are possible,
at different stages of the project:

• Low-cost low-functionality routines, like C/ISAM,
may be suitable for a public domain version of the
system.

• Standard (E)SQL data bases like ORACLE, IN-
FORMIX, etc. can handle and store linear feature
structures quite efficiently; they are not suitable for
complex linguistic objects.

• Object-oriented data bases like GemStone, ONTOS,
O2 etc. could do this, but there are no industry
standards for them yet.

For the 1991-1993 version of the system, preference
should be given to relational DBMS’s featuring standard
(E)SQL.

3.6.2 Services
The main tasks of the OM are the following:
• It ensures consistency system-wide, as it is able to

lock objects which are currently used, to support
version control and cooperative work. This allows
for a truly multi-user environment.

• It supports task description and configuration: one
class of objects is a so-called ‘work-item’ consisting
of a processing function, input and output files, lex-
icon portions, rule sets and parameter settings, A
‘task’, as seen by the User Agent, is then simply a
sequence of work-items.

4 Interactions between the
EUROTRA-II Components

4.1 General
The layered approach adopted for the EUROTRA-II ar-
chitecture is closely related to the X-protocol paradigm.
The user interface and presentation layer is therefore the
location of the X server, which is responsible for the win-
dow structure building and all surface related informa-
tion.

The UA is a X client, but with the additional task
of being a EUROTRA application server. The different
tools of the application layer are also X clients: they
communicate on the one hand with the X server, and
on the other hand with the UA. The access to different
types of objects is channelled through the OM.

The selection and activation of the various toolbox
agents is handled by the UA. Apart from the UA, lit-
tle or no real-time communication is currently foreseen
between individual processing agents,

In this scenario a user-defined task is a sequence of
work-items; a work-item may consist of:

• a processing function, e.g. a command line;
• a grammar file;

• a set of lexical resources;
• a number of additional objects, e.g. text files, con-

figurations data, etc.
Once instructed by the user, the UA is responsible

for building an appropriate task, i.e. a problem solving
plan, with the support of the OM; it is also up to the UA
to schedule the task and monitor its execution. In par-
ticular when it runs in background mode, for example,
text-to-text translation.

In the following section we will briefly describe some
of the key interact ions between the toolbox agents of the
application layer and the OM.

4.2 Interactions
4.2.1 Text-handling Toolbox - Object Manager

The text-handling toolbox uses the services provided
by the OM and the underlying storage layer in two ways:

First, it has to access the data it needs; among them
there are:

• Input text files and output segmentation files.
• Sets of morphographemic rules.
• Additional files and tables used for its internal oper-

ations, like abbreviations used for sentence bound-
ary recognition.

These data (resources) are passed (granted) to the
text-handling toolbox by the OM and locked against pos-
sible changes.

Second, it has to access the lexical data base for word
segmentation. Segmentation is a critical operation wrt.
performance, as substrings of words have to be identified
and looked up in the data base.

Like in other NLP/MT systems, the segmentation
module uses a kind of “character tree” structure where
‘legal’ lexical entries are stored as leaves, with pointers
to the data base entries they refer to,

During segmentation, the character tree is browsed for
legal candidate morphemes, and the data base is then
accessed. This reduces disc accesses to a bare minimum.
4.2.2 Grammar Toolbox - Object Manager

The grammar toolbox agents, e.g. a grammar edi-
tor, use the OM for access to grammar objects which
can be of different sorts, for instance, rules, macros, de-
faults, type and feature definitions. Grammar objects
are mainly stored in structured or plain Unix files, there-
fore access is handled through the operating system in-
terface.

In addition to the standard Unix file handling capa-
bilities, the OM provides further locking and versioning
facilities, especially when multi-user access to the files is
allowed.
4.2.3 Lexicon Toolbox - Object Manager

The lexical toolbox agents, e.g. the lexicographer's
workbench, use the OM as a tool for getting access to
the storage layer, which acts as a physical repository for
their objects. They store and retrieve entries and sub-
lexicons, using a set of high-level calls. A separate tool-
box agent provides lexical data base maintenance and
administration functions.

8

4.2.4 Linguistic Toolbox - Object Manager
The virtual machine agent (VMA) needs various sorts

of objects, for example:
• Compiled grammars and declarations of types and

features, as well as defaults and macros; they are
loaded from Unix files and the data base.

* Lexical entries; for each morpheme recognized by
the text-handling component, and passed on to the
virtual machine, a lexical lookup has to be per-
formed.

The main problem, however, is the interface structure
between lexicons as stored in the data base, and the
EUROTRA-II formalism. While the formalism manip-
ulates complex objects, using variables, complex values
for features, etc., lexical structures are basically linear,
with considerably less complex feature-value structures.
Moreover, the lexical data base should support several
different formalisms, and therefore be somehow formal-
ism independent.

Therefore, it is proposed to use ‘compilers’ which con-
vert (flatten) the objects used within the VM into a
linear structure based on a typed feature logic (TFL)
language (c.f. [Schütz, 1990b]). It can be shown that
these structures (terms) are mathematically equivalent
to highly structured graph-based descriptions, as used
in the EUROTRA-II formalism. The reverse operation
(deepening) is also performed by these compilers.

This schema caters for a generic data base interface,
and supports the EUROTRA-II formalism effectively
([Schütz, 1991]).

The transfer agent (TRA) has to consult the bilingual
lexicon for certain rules or feature combinations, and to
instantiate appropriate target language patterns. Lex-
ical lookup is performed in the same way as described
above.

5 Development Phases
For the development of the EUROTRA-II system, the
Commission is considering the following implementation
stages:

• a Mock-up Phase (1991),
• a Development Phase (1992-93),
• a EUROTRA Phase-in Phase (1993-94),
• a Shared-cost Phase (1994 and beyond).

5.1 Mock-up Phase
During this phase, the critical components of the
EUROTRA-II linguistic processing toolbox, i.e. the
VMA, will be prototyped by the EUROTRA software
team, along with some of the User Agent capabilities.
This phase also includes an assessment of the computa-
tional efficiency and the linguistic adequacy of the new
formalism, as well as the low-level design of underly-
ing algorithms and data structures for the linguistic pro-
cesses.

At this stage, the object manager of the object repos-
itory layer might be implemented as a program which

simulates data base capability and is completely loaded
into main memory.

In parallel, the Commission will perform an evaluation
of products and development tools to be adopted for the
subsequent development phases.

A call for tender for the following development phases
will be launched by the Commission during the second
quarter of 1991.

5.2 Development Phase
This phase consists of two development stages and will
produce an operational software environment, includ-
ing a graphical user interface, providing the facilities re-
quired by the EUROTRA community,

The main features of the first development stage of
the prototype are:

1. An overall user environment, including editors,
browsers, etc.

2. A revised and augmented linguistic processing tool-
box with essential debugging tools.

3. A basic text-handling subsystem.
4. An early implementation of the lexical data base

component (depending on priorities and resources
available).

The basic objectives of the second development stage
(1983) are:

1. The integration of a full-fledged data base compo-
nent,

2. A more sophisticated implementation of the text-
handling component.

This stage adds multi-user capabilities to the sys-
tem, therefore the object manager may require a re-
implementation. The other components may have to
be enhanced as well, with a view to making them fully
suitable for development work within EUROTRA.

5.3 EUROTRA Phase-in Phase
At this point in time (late 1993), the system will be
handed out to the EUROTRA researchers and will be
made available to other project teams, researchers and
system suppliers, in order to have a broader basis for
assessment, experimentation and evaluation of possible
further developments. With respect to this, the Commis-
sion is considering the possibility of producing a public
domain version of the EUROTRA-II system.

At this stage of the project, the implementation work
will concentrate on the distribution of the system across
a network of Unix workstations and servers.

5.4 Shared-cost Phase
After the EUROTRA-II system has been adopted by
the EUROTRA community and favourably evaluated
by other project teams, we propose that the Commis-
sion should consider the possibility of undertaking a fur-
ther development cycle, with a view to turning the sys-
tem into a truly general purpose NLP/MT platform and
workbench.

9

By this we mean a comprehensive ‘professional’ de-
velopment system for designing and building research
prototypes and pre-competitive applications. This could
comprise:

• Toots for implementing different grammar for-
malisms.

• Tools for defining lexical structures and their
schemata.

• Interfaces with machine-readable and machine-
tractable dictionaries and other linguistic resources
and environments, e.g. interfaces with text storage
and retrieval systems, importation and exportation
of lexical, textual and grammatical resources.

• Tools for building specialized applications.
The functionality and design of such a system would

he largely derived from the experience made with the
EUROTRA-II environment development. At this point
in time, the software industry should he interested in
such an enterprise, so that the development work could
be undertaken on a shared-cost basis.

6 Conclusions and Perspectives
In this paper we have outlined the global architecture of
the EUROTRA-II system and its main operational and
functional components.

The design of this architecture is open and can there-
fore be generalized to encompass other natural language
processing applications, but it also provides support to
the EUROTRA machine translation philosophy while
ensuring the reusability of lexical and grammatical re-
sources implemented so far in the EUROTRA project.

Furthermore, this design allows further developments
towards a highly distributed, cooperative system and the
use of different additional resources, e.g. knowledge rep-
resentation systems for specific domain dependent infor-
mation, which would be handled by specialized agents of
the application layer.

Acknowledgements
Thanks are due to the EUROTRA Commission team,
especially Serge Perschke, project leader, Giovanni B.
Varile, supervisor of the ET-6/1 formalism study, and
the EUROTRA central software team. Thanks are also
due to Klaus Netter, DFK1 Saarbrücken, Ralph Meyer
and Hartmut Krasemann from CAP GEMINI SCS Be-
Com GmbH, Hamburg, and members of the SNI METAL
team for various contributions to the ET-6/2 study.

Finally we would like to thank Johann Haller, head
of the EUROTRA-D research unit, and Hans Uszkoreit,
University of the Saarland, for scientific advice and con-
tinous encouragement. Remaining weaknesses are the
authors' sole responsibility.

References

(Alshawi et al., 1991] Alshawi, H., D. J. Arnold, R.
Backofen, D. M. Carter, J. Lindop, K. Netter, S.
G. Pulman, J.Tsujii, H. Uszkoreit. ET6/1: (Draft)

Final Report. S.R.I International, Cambridge, Eng-
land, 1991.

[CEC, 1989] Commission of the European Communi-
ties. Call for Tender EUROTRA-6: Feasibility and
Design Studies within the Framework of the EURO-
TRA Programme. Technical Annex, Part I and II,
Luxembourg, 1989.

[Gajek et al., 1990] Gajek, O., K. Luks, R. Meyer, K.
Netter, J. Schütz, G. Thurmair, A. Wehrmeyer. Re-
quirements Study for a EUROTRA-II software en-
vironment. Internal Progress Report, Luxembourg,
1990.

[Gajek et al., 1991] Gajek, O., H. Krasemann, Th.
Loomis, K. Luks, R. Meyer, K. Netter, W. Ramm,
J. Schütz, G. Thurmair, A. Wehrmeyer. Feasibility
Study for a EUROTRA-II System. Interim Report,
Luxembourg, 1991.

[Schütz, 1990a] Schütz, J. A Multi-Agent Architecture
for a NLP/MT Development Environment. Ms.,
IAI, Saarbrücken, 1990.

[Schütz, 1990b] Schütz, J. An Architecture for Reusable
Lexical Resources in a Multi-theoretical Environ-
ment, Ms., IAI, Saarbrücken, 1990.

[Schütz, 1991] Schütz, J. Towards a Lexicon Interface
Representation Formalism. Ms., IAI, Saarbrücken,
1991.

10

