
JAVA AND ITS ROLE IN NATURAL LANGUAGE PROCESSING
AND MACHINE TRANSLATION

Tim Read1, Elena Bárcena2 & Pamela Faber2

1Dep. of Experimental Psychology 2Dep. of Translation, University of Granada

1Campus Universitario de Cartuja 2Puentezuelas 55, 18010 Granada, Spain
tread@platon.ugr.es, ebarcena@goliat.ugr.es & pfaber@platon.ugr.es

Abstract

The Java programming language started as the language Oak when the World Wide Web was
still being developed at CERN. It has gained popularity since its launch as a programming
language capable of being used to develop applications which can run across the Internet (as
well as local stand-alone programs). As with many technologies associated with the World
Wide Web, there is a lot of 'hype', confusion, and misinformation. Consequently, while many
researchers in the area of Natural Language Processing and Machine Translation will have
heard of Java, may be considering using it, or even have got as far as their first 'Hello World'
applet, they are probably not fully aware of what the implications of using this language are,
and what possible role it could have in the development of computational linguistic
applications, either intended to run locally on a wide range of computing platforms, or
remotely across the Internet. This paper sets out to address this issue by presenting Java in a
clear, concise fashion and considering how it may be used in computational linguistic
applications. A requirements analysis for a generic Natural Language Processing and
Machine Translation tool is undertaken to consider how Java could be used, and
subsequently two example systems developed in Java (which can be accessed on the Internet)
are introduced. Finally, pointers to Java resources are presented so that researchers interested
in using this language can both install it and learn how to program it.

1. Introduction

Once in a while a new technology becomes available which can offer interesting possibilities for
researchers. One such technical advance which is having an increasingly large impact in almost every
research and technical community is the Internet (or, to be more specific, the World Wide Web;
henceforth the Web). The use of the Web is growing at an amazing rate, and now there are arguably
as many individuals connected from home (via local service providers) as there are private companies,
research centres, and academic institutions. In the early days of the Web, the addition of the common
gateway interface (henceforth CGI; Heslop & Budnick, 1996) and related tools designed by Richard
Denny enabled Web pages to do more than simple Hypertext Mark-up Language (henceforth HTML)
document retrieval. The CGI enabled Web pages to embed calls to programs on the server which
could do such tasks as accessing server resident databases. This technology was subsequently adopted
by computational linguists to provide on-line linguistic tools such as mono- and bilingual dictionaries.
There are many such examples on the Web at the moment, a small selection of which can be seen
below:

ARTFL (French/English, English/ http://humanities.uchicago.edu/forms_unrest/FR-ENG.html
French dictionaries)
Logos (Multiple bilingual dictionaries) http://www.logos.it/forumget.html
Travlang's translating dictionaries http://www.travlang.com/languages
(bilingual between thirty eight languages)

224

While these on-line lexical reference systems have been useful linguistic tools, and will continue to be
so, the many limitations of the CGI (e.g., basic form based interface, limited graphical capabilities,
limited user interaction, non arbitrary data types, high server loads) have contributed significantly to
the lack of more sophisticated Natural Language Processing and Machine Translation (henceforth
NLP&MT) tools on the Web. Sun Microsystems subsequently released their new programming
language called Java, which has had a growing effect on the computing community ever since
(judging by the traffic in the comp.lang.java.* network news groups, E-mail discussion lists, large
media presence, and a list of over a hundred books on the subject which have been written to date;
Howard, 1996a). Java has been presented as a panacea for developing sophisticated portable
applications which could be used in a wide range of heterogeneous environments ranging from Web
pages accessed across the Internet to local stand-alone applications, running either on a desktop PC or
even (in the future) on the new generation of hand-held PCs. Consequently, it is not surprising that
interest in Java has grown at an incredible rate.

However, the problem with a new development tool like Java is that it is very hard to separate the fact
from the fantasy (which often arises in the many discussion forums) regarding the language and its
potential role in the development of new NLP&MT applications. Hence, researchers who are
contemplating the development of a computational linguistic system and are tempted to use Java for
this purpose would have to invest a lot of time and effort not just to get hold of the basic information,
but to disentangle its content. The majority of the books on the subject are little more than 'how to
program' guides. The information available on-line at Sun Microsystems (or JavaSoft) looks
remarkably like a marketing exercise, which not only does not list the problems with the language, but
also does not differentiate between what is currently possible and what may be possible in six months
or a year from now. Furthermore, after such an investment of time and effort, researchers might
discover that Java is not relevant for their application.

This paper has been written in an attempt to solve this problem by presenting the Java programming
language at a high level of description, avoiding actual reference to the nuts and bolts of how it works
and should be programmed, for researchers who might want to consider using it, but so far have only
heard about it in a very superficial way. Together with this information, an examination of the claims
which have been made about Java and a discussion of its problems have been presented. To give an
idea of what this language has to offer to NLP&MT researchers, a requirements analysis of a generic
computational linguistic system is introduced against which Java is evaluated. Subsequently, two
systems are outlined which have been built with Java and are both available on the Web. These
systems can be accessed on-line to provide researchers with experience of state-of-the-art systems
built with this language. Finally, a few pointers are included to enable researchers who are interested
in developing their own Java based NLP&MT tools to access sources of information that will prove to
be useful (e.g., where to get the Java development kit, an on-line tutorial, documentation, examples).

While some computational linguistic researchers may already be working on Java based tools, general
widespread knowledge about the language and what it has to offer remains quite limited. Therefore,
the goal of this paper is to remove the confusion and hype surrounding Java, and examine how it may
be of use to researchers. It is important to note that the objective of this paper is neither to push Java
as a replacement for traditional languages used in NLP&MT applications (like Lisp, Prolog, or C) nor
to dismiss its usefulness in a superficial way. The eventual choice of programming language remains
(as ever) with the researcher.

2. A requirements analysis for generic NLP&MT

The design and development of a computational linguistic system usually starts with an analysis
which specifies what requirements need to be fulfilled. While these goals and conditions vary from

225

research project to project (e.g., the goal could be testing and implementing an existing linguistic
theory), it is possible to make a list of generic requirements which might be common to future
systems, and can be used to illustrate how to apply Java to such requirements. A full analysis and
comparison of Java with other programming languages such as Lisp, Prolog, or C are not undertaken
here for a number of reasons, including the fact that, due to the relative newness of Java, very few real
Java applications exist to date, from which comparisons can be drawn.

Before presenting the requirements analysis, it should be noted that the ultimate goal of most
computational linguistic systems is the quality of their output, e.g., the fidelity, intelligibility or
clarity, and style in MT systems (Lehrberger & Bourbeau, 1988) and accurate cross-linguistic links
between entries and lack of circularity in computational lexica. However, this fundamental objective
is not included in the list of requirements below because it depends more on the underlying linguistic
theory implemented in the system, than on the programming language (since, with varying degrees of
difficulty, a computer scientist can implement most linguistic algorithms in programming languages
ranging from 6802 assembler to Common Lisp). The requirements presented below refer to the more
computationally based goals of a generic system (it should be noted that this list is not intended to be
complete, but merely a selection of standard requirements for NLP&MT systems):

1. Simple updating of linguistic knowledge in the system, i.e., this knowledge must be stored in a
way that enables linguists and non computer experts to access and modify it easily. While some
of the knowledge will actually be built into the program itself (e.g., how to parse sentences), and
therefore can not be changed, there are usually data files which contain other types of information
(e.g., dictionary files). The knowledge should be structured in such a way as to both make it
portable to future applications and facilitate human understanding (rather than coded in a way
that makes it easy for the program to access). An example of how this type of information is
usually coded can be seen in the following extract taken from a data file from the Anthem project
(Barcena et al., 1995):

OPHIASIS SUBS snomed($DO-53112$,$$,01,$Ophiasis$,$(T-01400)$,704.01,$$)
OPHTHALMOMYIASIS SUBS snomed($DE-71402$,$$,02,$Opthalmomyiasis$,$
(T-AA000)(L-0020)$,$134.0$,$$)
OPIOD ADJ snomed($C-60600$,$$,02,$Opioid$,$$,$$,$$)

Furthermore, the linguistic knowledge should be managed in such a way that, when extended, it is
easy to supply users with new updated versions, perhaps in terms of only the differences with the
older information, rather than a complete new copy of the knowledge source.

2. An interface which requires no expert (computer) knowledge to be used, and that offers fast,
linguistically sophisticated, and flexible (easily tailorable) access to the information.

3. Complete system independence, i.e., a system which runs on any combination of hardware and
software without the need to make a port for each combination.

4. A stand-alone application which does not require a supporting runtime harness which is difficult
to install or manage for non computer experts.

5. Application accessibility, i.e., a system which is accessible both locally (on a computer which
does not have a network connection) and remotely across the Internet.

6. Reusability of linguistic knowledge, i.e., the portability of the linguistic knowledge to a new
system without any additional effort.

226

3. Java: fact and fantasy

Now that a requirements analysis has been presented for a generic NLP&MT system, a key point
description of Java is necessary prior to the consideration of how this programming language may be
applied to this analysis. The review and discussion about Java presented here is built upon
information drawn from many different sources including Blundon, 1996; Brugués, 1996; Campione
and Walrath, 1995; Cuenca Jiménez, 1996; Harold, 1996a, 1996b, 1996c; Jamsa, 1996; Lea, 1996;
Naughton, 1996; Van der Linden, 1996; http://java.sun.com; http://www.javasoft.com;
http://www.stars.com/Software/Java; and http://www.gamelan.com/index.shtml.

According to Sun Microsystems, Java is a simple, robust, dynamic, multi-threaded, general-purpose,
object oriented, platform independent programming language! It has some similarities to languages
like C and C++, but was designed from scratch to avoid some of their key problems (e.g., pointer
arithmetic, memory management). The claimed strengths of Java can be split into four key issues,
namely, portability, security, robustness and ease of usage, and distributed operation across the Web.
Each of these issues is considered here in more detail.

Firstly, the claim that Java applications are portable across different hardware platforms, not just in
terms of its source code like C, but also its binary code. Java achieves its platform independence by
the combination of a compiler which produces machine independent (Virtual Machine, henceforth
VM) byte code and an interpreter which runs on the execution machine to convert the VM byte code
into native machine code calls. Java is available on the majority of platforms including Sun SPARC
and X86 Solaris; Microsoft Windows 3.1 (with more than 8 megs of RAM), NT and Windows 95;
MacOS 7.5 on PowerMacs, 68030 (25Mhz and faster) and 68040 Macs; IRIX, Linux, OS/2, and AIX;
UnixWare, Bull Estrella or PowerPCs running AIX4.1; X86 running DASCOM OSF/1; the Digital
Alpha running Digital UNIX 3.2; the Hewlett Packard HP7000 series running HPUX 10.x; the NCR
Globalyst (Pentium) running UNIX Sys V; Sony NEWS (MIPS) running Sony NEWS 6.1.1; Nexstep;
SunOS 4.1; and the Amiga.

The problem with this technique boils down to the issue of speed. Interpreted languages run slower
than compiled ones. Hence, the speed of a program written in Java depends on both the size of the
application running (especially if it is being run across the Internet) and the power of the client
computer. A bad combination can lead to very slow programs (between two and ten times slower than
native C code). A partial solution has been provided by modifying the design of the Java VM
interpreter to include a technique known as compiling 'just in time' (or JIT), which means that once a
byte code is interpreted it is held in memory, so that, should it be used again, the native machine code
equivalent can be used directly from memory without the need to reinterpret it. This can speed up
code execution up to fifty times. A second solution to this problem (which unfortunately removes the
portability claim!) was the development of the Java VM in silicon, that is to say, the development of
microprocessors which perform the interpretation of the Java VM code. Independently of these
dedicated processors, the ongoing development of new microprocessor technology in general
(resulting in power and performance improvements) combined with redesigned interpreters will
undoubtedly remove the speed of interpretation problem in the future. The reality of the claim of real
binary portability across platforms appears to be true. Small Java applications embedded within Web
pages (called applets) work on as many platforms as there are Java enabled Web browsers to support
them (that is to say, browsers which implement the Java VM interpreter). However, regarding large
stand-alone Java applications, this claim remains something to be seen. Certainly, the first version of
Sun's own Java programming environment (written in this language), Java Workshop, did not run
reliably on non SPARC/Solaris combinations.

227

Secondly, the claim that Java provides secure operation of code across a network. Secure code
operation is claimed to be achieved in two ways. Firstly, the compilation of the VM byte code does
not permit any direct memory access or other insecure operations. Secondly, in order to prevent the
generation of specially modified code from malicious compilers, the VM interpreter checks the
integrity and security of the byte code before executing it. Thirdly and finally, the two main Web
browsers (namely Netscape Navigator and Microsoft Internet Explorer) also add an extra level of
security by preventing Java applets from accessing the local file system (but, interestingly enough, not
Sun's own browser HotJava). So far, Java has proven to be 'relatively secure'. The security holes
which have been found in the Java VM to date have been repaired quickly, and future planned
extensions using encryption keys and signed code will continue to improve security.

Thirdly, the claim of application robustness and ease of use. In order to assist with the development of
robust programs, Java does not include pointers, thereby avoiding many of the memory related pointer
errors so common in C variants (it has been estimated that native C code has on average one bug
every fifty five lines, often related to memory allocation and deallocation). Memory allocation is
handled by a garbage control mechanism, which removes a source of many memory related problems
in C and C++. Java minimises program bugs by including strong typing, no unsafe constructs,
consistent error handling, and no undefined or architecture dependent constructs. It is a small
language and therefore easy to learn. Its object oriented structure leads to code which is easy to read
and write, and facilitates reusability. The only minor problem for the adoption of Java is its enforced
object oriented view of the world. Non experienced object oriented programmers will need to put up
with the learning curve associated with adopting this new view before they become fluent with the
task of code design and implementation. A powerful feature of Java is its threading mechanism, which
allows task concurrency. While multi-threaded applications can enhance performance of a program,
they can also cause a few headaches until the basic principles are sorted out.

Fourthly and finally, Java is claimed to allow distributed application operation on the Web. Applets
can be developed to run on Web pages, which enables programs to run across the Internet. The main
issue with such programs is that they run on the client machine, and not on the server, which means
that the VM code has to be transferred across the Internet before it can run. This, depending on the
speed of the Internet connection, can result in a long wait! However, once the applets are loaded into
memory, they run as quickly as local programs. This means that either all the data needed by an applet
must be loaded when the applet is first transferred across the Internet (which could be very slow), or
else, the applet will need to be able to contact the server to access information held at that end.

At this point, it should be apparent that Java has many features which make it an interesting
alternative language for computational research applications. Before the application of Java to the
requirements analysis, a comment must be made about a traditional problem found in the use of
languages like C for NLP&MT, namely, the lack of representational and manipulative processing
facilities for complex abstract data structures like words and sentences. Traditionally, languages like
Lisp and Prolog have been selected for such applications since they contain computational
mechanisms (e.g., list manipulation, pattern matching) which would need to be incorporated (to some
degree) in languages like C. However, in these days in which more systems are being designed to run
as stand-alone programs on home computers, away from the computational linguistic laboratories and
their associated computing tools, there has been a move toward C and C++ based applications. While
there will always be a place for Lisp and Prolog in the development of computational linguistic
systems, it should be noted that a key feature of object oriented languages like C++ and Java is
reusability of code. Hence, the initial overhead of designing libraries for complex abstract data type
representation and manipulation which would be needed in Java (beyond the many libraries which
come with the basic language) will only need to be designed once, at which point, hopefully, the
libraries will start to be distributed in the NLP&MT research community.

228

4. Java for NLP&MT: the requirements analysis revisited

It should be emphasised that the examination below is intended to be illustrative, and not exhaustive,
of some of the ways in which Java can be used to meet the requirements of generic NLP&MT
applications:

1. Simple updating of linguistic knowledge... One of the most promising aspects of Java as a tool
(especially for server side application development in a network context), is its database access
routines, namely, the Java Database Connectivity (JDBC) Application Program Interface (API).
This enables both applications and applets to access databases. Consequently, an obvious choice
to ensure ease of access to linguistic knowledge stored in a user-friendly way is to store the
information in a database. It can then be loaded at run time or when the applet is transferred
across the network.

2. An interface which requires no expert (computer) knowledge... The interface can be developed in
a number of ways since Java contains libraries to aid the construction of interfaces. The program
interface could vary from one or more applets which reside on a Web page through to a complete
stand-alone application which has its own 'look and feel'. Both types of interface could run
locally, across an intranet, or across the Internet. As was pointed out above, Java is capable of
multitasking via its threading mechanism, so tasks within an application can be split into threads
(e.g., one controlling source language access and one controlling target language access) to speed
up processing.

3. Complete system independence... In principle, Java applications are completely system
independent. Consequently, if implemented as an applet, the tool can be run locally, on an
intranet, or across the Internet, without needing to change a single line of code. The only
difference in the three cases is the location of the database (on the local machine or on a server
somewhere on the network). Such information can be set by a single environmental variable. The
use of method overloading (a feature of object oriented languages) means that different versions
of the same database access method can be written to cater seamlessly with the different locations
of the database. An advantage of a single version of the database located on a network server is
that it can be modified and updated without the need to send new data files to all users.

4. A stand-alone application ... A benefit of embedding of the tool as an applet in a Web page is that
the majority of Web browsers come with Java VM interpreters built in, and hence, no extra Java
run time systems are needed.

5. Application accessibility... As has been explained above, the computational linguistic tool can be
used both across a network and stand-alone. For users who have a local copy and occasional
access to the Internet, new versions of the database files could be made available for on-line
updating without the need to ship new copies on disk or CD.

6. Reusability of linguistic knowledge... The separation of the linguistic knowledge (in the database
files) from the corresponding Java program means that the knowledge can be easily reused for
new applications. Furthermore, since it is easy to change the structure of tables within a database
(or create new tables by partially merging existing ones), it is easy to modify the linguistic
properties of the knowledge without having to re-enter the information from scratch. Finally,
providing the original forms and entries are left intact with the tables, it is irrelevant whether new
entries are added since the nature of Structured Query Language access will not generate error
messages (unlike a program parsing a file which contains the linguistic knowledge).

229

Now that an illustration has been provided for ways in which Java fits with the generic requirements
of an NLP&MT system, the existence of two systems which have been developed in Java will be
outlined. These systems are the only examples (at the time of writing this paper) available on the Web
written in Java. The first of these systems is called MoLeX (developed by a research team including
the authors; Barcena et al., 1997). It is an on-line lexical reference system which uses a semantic
feature based representation to facilitate multilinguality. Its structure is similar to the generic tool
presented above for the requirements analysis, with a database containing monolingual lexica and a
Java based front end which consists of two separate applets, one for the source language and one for
the target language. It can be accessed on-line at http://www.ugr.es/~tread/molex.html (with a Java
enabled Web browser such as Netscape Navigator 3.0 Gold - or later, accessible from
http://www.netscape.com). The second tool is a Japanese-English dictionary which includes four
methods of Kanji 'lookup'. The dictionary can be accessed in four ways: skip-code, selecting a line in
the dictionary, handwriting recognition (interpretation of lines generated by mouse movements), and
radical selection. This system has been written by Todd Rudick, and can be readily accessed on-line at
http://www.cs.arizona.edu/people/rudick/DrawApplet/index.html.

5. Conclusion

In this paper the role of Java in NLP&MT has been discussed by considering the requirements of a
generic computational linguistic system, and then, after examining Java, an illustration was presented
about how this language might be used to meet these requirements. The strengths of Java, both for
computational research applications in general, and specifically for NLP&MT systems, have been
presented, and were split into four categories: portability, security, robustness and ease of usage, and
distributed operation on the Web. However, it is important that the developer has had some
experience with previous object oriented programming languages, a fast computer, and does not mind
waiting a while for some of the newer development tools and libraries to become available.

For researchers who have read this paper and are interested in using Java for their own NLP&MT
applications, they are encouraged to contact the authors for more information, help, and possible
collaboration (perhaps if sufficient interest is shown, a discussion E-mail-list could be started on
topics related to NLP&MT using Java). Furthermore, a list of resources is included here:

Firstly, to start developing Java programs all that is needed is the Java development kit (JDK) which
can be obtained (together with a wide range of related information) freely from Sun at the following
address: http://java.sun.com/products.

Secondly, a rather complete on-line tutorial is available at Sun Microsystems Java site at the
following address: http://www.javasoft.com/nav/read/Tutorial.html.

Thirdly and finally, a small list of the many sources of information available of Java is included
below:

General information about JavaSoft http://www.javasoft.com
Documentation on Java http://www.javasoft.com/doc
General Java information list http://www.stars.com/Software/Java
Java resources list http://www.sun.com/java/list.html
Java FAQ http://sunsite.unc.edu/javafaq/javafaq.html
Cafe Au Lait links http://sunsite.unc.edu/javafaq/links.html
Java news groups comp.lang.java.*

230

References

Bárcena E., Vanallemeersch T. & Gerardy C. 1995. Distributional Underlying Predications for the
semantic description of medical diagnoses'. In Actes de la Première Rencontre de Jeunes Linguistes.
Université du Littoral (Dunkerque). 17-18 March 1995.

Bárcena E., Faber P. & Read T. 1997. 'El diccionario del traductor del mañana'. In submission to I
Congreso Internacional de Estudios de Traducción. Universidad de la Coruña.

Blundon W. 1996. The truth about Java'. Internet World, 7(12).

Brugués A. 1996, 'Ultimas tendencias en el Web'. In Net Conexión, 13.

Campione M. & Walrath K., 1995. 'The Java Tutorial' (accessible at
http://www.javasoft.com/nav/read/Tutorial.html).

Cuenca Jiménez P. M. 1996. Programación en Java para Internet. Anaya.

Heslop B. & Budnick L. 1996. Publicar con HTML en Internet. Paraninfo.

Howard E.R. 1996a. 'The Java Book List' (accessible at http://sunsite/unc.edu/javafaq/books.html).

Howard E.R. 1996b. comp.lang.java FAQ (accessible at http://sunsite/unc.edu/javafaq/javafaq.html).

Howard E.R. 1996c. The Java Developer's Resource. Prentice Hall.

Jamsa K. 1996. Java Now! Jamsa Press.

Lea D., 1996. Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley.

Lehrberger J. & Bourbeau L.1988. Machine translation: linguistic characteristics of MT systems and
general methodology of evaluation (Linguisticae Investigationes: Supplementa, 15). John Benjamins.

Naughton P. 1996. The Java Handbook. Macgraw Hill.

Van der Linden P. 1996. Just Java. 2nd edition. Sunsoft Press/Prentice Hall.

231

