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Abstract 

This paper describes an example-based ma- 
chine translation (EBMT) system which 
relays on various knowledge resources. Mor- 
phologic analyses abstract the surface forms 
of the languages to be translated. A shal- 
low syntactic rule formalism is used to per- 
colate features in derivation trees. Trans- 
lation examples serve the decomposition of 
the text to be translated and determine 
the transfer of lexical values into the tar- 
get language. Translation templates deter- 
mine the word order of the target language 
and the type of phrases (e.g. noun phrase, 
prepositional phase, ...) to be generated in 
the target language. An induction mecha- 
nism generalizes translation templates from 
translation examples. The paper outlines 
the basic idea underlying the EBMT sys- 
tem and investigates the possibilities and 
limits of the translation template induc- 
tion process. 

1    Introduction 

Until the end of the eighties MT was strongly dom- 
inated by rule-based systems which deduce transla- 
tions of natural language texts based on a bilingual 
lexicon and a grammar. Linguistic theory and gram- 
mar formalisms have evolved and are ready at hand to 
support this approach. Unification and feature struc- 
tures are such computational means which have influ- 
enced linguistic theories, formalisms and conception 
of MT systems. However, much human effort is re- 
quired since, both, the grammar and the lexicon are 
manually entered into the machine. 
In 1990 a new epoch started when Brown et al. (1990) 
presented a paper on statistics-based MT. Translation 
was no longer considered as deduction but rather as 
a stochastic process which relies on a number of ran- 
dom variables. Given a well evolved stochastic the- 
ory and powerful hardware, random variables could 
be computed from a sufficiently large set of example 
translations. 

Since then machine learning technologies have evol- 
ved dramatically in such a way that not only statistics 
but also other learning techniques have entered the 
MT domain. Artificial neural networks were used for 
MT (McLean, 1992) or to transfer a source language 
parse tree into a target language parse tree (Wang 
and Waibel, 1995).  Hiroshi et al. (1996) describe an 
MT system which makes use of genetic algorithms 
to optimize translation rules.  Other approaches mix 
more or less shallow linguistic analysis with statis- 
tics (Knight et al., 1994) or with symbolic inductive 
methods (Sato and Nagao, 1990; Güvenir and Tunc 
1996; Güvenir and Cicekli,  1998; Collins and Cun- 
ningham, 1997; Collins, 1999).   Knight et al. (1994) 
ranks semantic analyzes of an input sentence by sta- 
tistical means to filter out least probable analyses. 
Sato and Nagao (1990) replace subtrees in a tree bank 
of syntactically analyzed source-target language equiv- 
alences to obtain target language parse trees. 
Güvenir and Tunc (1996), Güvenir and Cicekli (1998) 
Collins and Cunningham (1997) and Collins (1999) in- 
duce translation templates to map a generalized input 
sentence into the target language.   Different as they 
are, these approaches have in common that they use a 
corpus of reference translations which serves as a ba- 
sis to induce (or restrict) possible translations of new 
unknown texts. 
With inductive methods, the knowledge acquisition 
bottleneck largely  disappears because the reference 
text can be prepared in a consistent way so that infor- 
mation extracted from it may be used directly in the 
translation process.   However, unless the number of 
reference translations is overwhelming — as is the case 
in  the experiments reported in Brown et al. (1990) 
and Brown et al. (1993) — it is hardly expected that 
all required features for the MT task can automat- 
ically  be extracted from the reference translations. 
Even in case a large reference corpus is available, fur- 
ther (linguistic) knowledge resources may enhance the 
translation outcome. 
In this paper I shall describe the example-based ma- 
chine translation system EDGAR1 which makes use of 
reference translations, morphological knowledge and 
flat  syntactic  rules.   The main  feature, however, is  
 
           1EDGAR is an acronym for Example-based Decompo- 
  sition. Generalization And Refinement. 
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Figure 1: Representational richness of EDGAR 
Rich morphological representation is supported in EDGAR allowing for distributed complex disjunctions. 

 

  

an induction mechanism which generalizes translation 
templates from a corpus of reference translations. In 
this way four different knowledge resources, morpho- 
logical analysis, syntactic rules, translation examples 
and induced translation templates are integrated into 
one MT process. 
The next section gives a sketch of EDGAR. The rich- 
ness of morphological representation is outlined and 
an example of the case base structure is shown. The 
way in which translation templates are induced from 
translation examples is briefly discussed and an ex- 
ample translation is given. The example translation 
aims to outline how the different knowledge resources 
interact in the translation process. 
The third section describes how translation templates 
are induced from translation examples. Correctness 
criteria and the one tree criteria for translation tem- 
plates induction are presented. The fourth section dis- 
cusses the potentials of the induced translation tem- 
plates in the translation process. It is shown that from 
a small set of translation examples translation tem- 
plates can be induced which map structurally identical 
context-sensitive languages onto each other. 

2    A sketch of EDGAR 

EDGAR is an Example-Based Machine Translation 
(EBMT) system which integrates linguistic (i.e. mor- 
phological) knowledge, reference translations, simple 
syntactic rules for analysis and generation and a com- 
ponent which induces generalized translation templates 
from translation examples. EDGAR morphologically 
analyzes the input sentence, decomposes and gener- 
alizes it by matching it against the set of reference 
translations and reducing the matching chunks into 
one node. The generalized input sentence is then spec- 
ified (i.e. the correct linguistic information is gath- 
ered) and 'refined' in the target language. 
The new sentence to be translated is decomposed ac- 
cording to the source language parts of the examples 
contained in the case base (CB). On a number of levels 
the input sentence is thereby reduced by applying a set 
of reduction rules until no further generalization can 
be computed. The generalized input sentence is then 
specified and refined in the target language. Specifi- 
cation retrieves the target language parts of the trans- 
lation examples from the CB and refines them by ap- 
plying the set of refinement rules. 

2.1     Morphological Analysis 
Morphological analysis is the process of separating 
grammatical information and (a) stem(s) from the sur- 
face form of an input word. From an input string, 
lemmatization generates a basic word form that does 
not contain inflectional information. In theory, a lemma 
plus grammatical information is thus equivalent to the 
surface form of the word. 
Currently, EDGAR makes use of MPRO morphologi- 
cal analyses. MPRO (Maas, 1996) is a powerful tool: 
it yields more than 98% correct morphological analy- 
sis and lemmas of arbitrary German and English texts. 
In addition to this, lemma decomposition can be car- 
ried out by MPRO. Recognition of composition and 
derivation yields knowledge about the internal struc- 
ture of the word. 
Morphological information and the value of the lemma 
are represented in the form of sets of attributes/values 
which we will refer to as feature bundles (FBs). There 
are no (formal) problems to include other information 
such as semantic and/or pragmatic features into the 
FBs. For (at least) two reasons this has not been 
the case until now. Firstly, it is hard to find a con- 
sistently broad coverage semantic analyser. Secondly 
the main problems we are currently facing are related 
to inconsistencies in reference translation examples. It 
does not appear, however, that such problems could be 
solved by means of semantic features (for an example 
see e.g. (Carl and Hansen, 1999), in these proceed- 
ings). 
The analysis of a word (a node) may consist of atomic 
disjunctions and complex disjunctions at a number of 
different levels. Which of the disjunctive representa- 
tions is chosen depends on the one hand on the expres- 
sive requirements (i.e. no feature dependencies can be 
expressed with atomic disjunctions) and on the other 
hand on the linguistic assumptions of the morpholog- 
ical analysis. 
Both types of disjunction are shown in the represen- 
tation of the German article "der" in Figure 1. A 
first level of disjunction occurs at the level of the 
word descriptors. Different analyzes (as a determiner 
(lu=d_art) and as a relative pronoun (lu=d_rel)) are 
separated by a semicolon ‘;’. The second level of dis- 
junction occurs in the feature "agr", which has a com- 
plex disjunction as its value. The case feature "case" 
in the first complex disjunctor has a local disjunction 
(g;d i.e. genitive or dative) as its value. The word 
"der" has seven different interpretations which are 
melted  together  here  by  means of the two different 
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Figure 2: Definition of Rules 
Reduction and refinement rules are used to percolate 
features from a matched chunk into a reduction and 
from the reduction into the specified chunk during re- 
finement 

rule     ::=     name '='  description  ':'  action 
description      ::=     condition1  ','  condition2  ... 

action     ::=     consequence1 ','  consequence2 ... 

types of disjunction. 
There is not need for variable binding between differ- 
ent attributes of the same FB2. because it is assumed 
that each attribute in a (morphological) FB expresses 
a different piece of information (it thus has a different 
type). 

2.2    The Case Base 

Each translation example consists of a tag-annotated 
source and target language part. An English-German 
translation example is given in 1. The English ex- 
pression A hot summer is a translation of the German 
expression Ein warmer Sommer and both expressions 
are labeled with the tag dp. The arrow ↔ separates 
the source language expression and the target lan- 
guage expression. 

1 (A hot summer)dp    ↔  (Ein warmer Sommer)dp 
2 (in the morning)pp     ↔    (morgens)adv 

In example 2. the English expression in the morning 
is labeled with the tag pp whereas its German transla- 
tion morgens is labeled with the tag adv. The source 
language expression and the target language expres- 
sion may thus be differently tagged. Throughout this 
paper, italic letters refer to morphological analyzes 
and lemmatization of the correspondent word. Sub- 
scribed italic letters denote feature values. The string 
summer thus refers to a FB carrying information on 
the lemma of the word “summer” and information on 
part of speech, number, case and gender. Analyzes of 
verbs include information on verb type (finite, infinite, 
participle), time, person, mode, etc. In case of con- 
venience possibly indexed letters are used to denote 
arbitrary FB. 
When compiling a CB, translation templates are in- 
duced from translation examples. In a later section I 
shall explain in more detail how this is automatically 
done, here I shall just outline the basic ideas and clar- 
ify the notation used. 
A translation template differs from a translation ex- 
ample as it has reductions expressed by constraint 

2 In many theories and formalisms (e.g. HPSG, CAT2 
(Sharp and Streiter, 1995)) different attributes in a FB can 
be forced to always have the same values by assigning the 
same variable as their values (they share the same struc- 
ture). However, these approaches allow structure sharing 
and variable binding only among equal types. 

variables in both the source and target language. 
Translation templates are a generalization of transl- 
tion examples which keep traces of properties of the 
reduced sequences in the their reductions. Reduc- 
tions in generalizations and translation templates are 
represented as calligraphic letters X, Y and Z. The 
subscribed features are called the external constraints 
which must match an object. The superscribed num- 
bers are called the internal constraints which keep 
track of (the indices of) the matched subtrees (i.e. the 
reduced chunks). 

lt      (A hot X noun)dp  ↔  (Ein warmer X noun)dp 

The translation template lt is a possible generaliza- 
tion of the translation example 1 where the source 
language expression summer and the target language 
expression Sommer have been replaced by the vari- 
able X . Note that the source language reduction and 
the target language reduction are annotated with the 
part of speech noun of the reduced item summer and 
Sommer respectively. The phrase tag dp in the trans- 
lation template is inherited from the original transla- 
tion example. By means of reduction rules, features 
can be percolated from the matching chunk into the 
reduction. Thus, in case we are interested e.g. in the 
number of the matching summer chunk, by means of 
reduction rules this (or other) features can be perco- 
lated into the reduction. 

2.3    Reduction and Refinement Rules 

Reduction and refinement rules make use of the KURD3 
formalism as described in (Carl and Schmidt-Wigger, 
1998). They serve to percolate features (i.e. external 
constraint) between a chunk and a reduced mother 
node. When reducing a chunk of the input sentence 
into one node, reduction rules may apply in order to 
percolate (sets of) features from the matching chunk 
into the reduced mother node. After specifying an 
example in generation, refinement rules may apply in 
order to percolate features from the mother node into 
the specification. They may change, delete or add val- 
ues, features or nodes. 
Domains of refinement rules are the specified target 
language chunks including information available in the 
mother node. Domains of reduction rules are the 
matched chunks of the input sentence including infor- 
mation available in the mother node. The information 
available in the mother node is — among others — the 
type tag of the matching example. 
A KURD rule essentially consists of a description part 
and an action part as shown in Figure 2. The de- 
scription consists of a number of conditions that must 
match successive nodes in the chunk. Each condition 
matches the longest possible sequence of nodes and, 
once matched, no alternative matching is considered 
i.e. there is no backtracking or multiple solution gen- 
eration. 
While matching the conditions contained in the de- 
scription part  of  a  rule onto a chunk, nodes may be 

3 KURD is an acronym for Kill Unify Replace Delete, 
the first operators implemented in that formalism 
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marked in order to be modified in the action part. The 
action part is activated if all conditions are satisfied. 
Actions of rules include the following operations: 

• Unification and deletion of features. 
• Concatenation and replacement of values. 
• Insertion and deletion of nodes. 

A rule fails if a condition does not match. In this case 
the action part of the rule is not activated. 
All consequences of the action are executed if the 
description matches a sequence in the input sentence. 
The following operations are currently implemented: 

k kills a marked node. 
u unifies FBs into a marked node. 
r replaces values in the marked nodes. 
d deletes features from the marked nodes. 
i inserts a FB before the marked node. 
a inserts a FB after the marked node. 
c concatenates values of features. 

The concatenation operator “c” has a special syntax 
and performs rather powerful operations such as string 
concatenation (e.g. concatenation of values from dif- 
ferent nodes) and simple arithmetic operations. It can 
give a unique value to a feature and it has access to 
some formalism internal representations such as the 
rule number it is part of and the number of the object 
it modifies. In a later section an application of this 
operator shall be discussed. 

2.4    An Example Translation 
A new sentence to be translated is decomposed and 
generalized according to the examples contained in the 
CB. Those sequences of the new sentence which match 
one (or more) example(s) are reduced into one node 
annotated with external constraints and internal con- 
straints. External constraints in the generalized input 
sentence may stem from two different sources. Ei- 
ther they are copied from the matching example(s) 
of the CB into the reduction or they stem from the 
matched chunk of the input sentence. For the latter, 
reduction rules are used to percolate constraints from 
the matched chunk of the input sentence into the re- 
ductions. External constraints thus restrict the set of 
matching translation. In the refinement step, external 
constraints serve to drive the refinement process. 
The generalized sentence is iteratively matched against 
the CB until no more reductions can be performed or 
the entire sentence is reduced to one single node. 
Whereas the external constraints are visible in the 
generalization, internal constraints only serve to de- 
termine the internal structure of the target language 
chunk to be generated in the refinement step. Internal 
constraints refer to matching examples of the CB and 
determine the shape and content of the chunk to be 
specified. 
To give an example, assume the CB below containing 
the translation examples 3 and 4 and the translation 
template 5. Each example is annotated with a tag 
which describes the type of example. 

The input sentence to be translated into German is the 
English sentence Every handsome man loves a pretty 
woman. As shown in Figure 4 (left), in the first gen- 
eralization step the sentence is decomposed into the 
three chunks /Every handsome man/ /loves/ and /a 
pretty woman/. The generalization “Xdp

3
,nom lovefin 

Ydp
4

,acc” is computed based on the examples 3 and 4 
of the CB. The reductions Xdp

3
,nom and Ydp

4
,acc are sin- 

gle nodes which represent the reduced chunks /Every 
handsome man/ and /a pretty woman/ respectively. 
The reduced nodes include the external constraints 
dp, nom and dp, acc of the type of the matching exam- 
ple (dp) and the case of the reduced chunk (nomina- 
tive and accusative). The internal constraints 3 and 
4 are indices of the matching examples. These are 
used in the refinement step to specify the appropriate 
target language chunk. Note that in the reductions 
the type of the reduced chunk (i.e. dp) stems from 
the translation example of the CB whereas the case 
of the reduced chunk (i.e. nom and acc) stems from 
the input sentence and is percolated into the reduc- 
tion by means of reduction rules. Apart from the two 
reductions, the generalization in 7 contains the unre- 
duced word lovefin, where the feature fin stands for 
3.person, singular present. 
A second level generalization is shown in 8 (left). Here, 
the English input sentence can be reduced into one sin- 
gle node based on example 5. This is possible because 
the generalization of the input sentence (i.e. Xdp,nom 
lovefin Ydp,acc) matches the translation template 5. 
Refinement takes place as shown in Figure 4 (right). 
The reduced nodes of a generalization are recursively 
specified according to the reductions’ internal con- 
straints and refined by applying the external constraints. 
Specification of the node Z in 8 (right) retrieves the 
target language side of translation template 5 from 
the CB and adds the internal constraints 3 and 4 
into its respective slots X and Y. The verb lieben 
is inflected according to the features contained in the 
translation template and the reductions X and Y (in 
9) are specified. Refinement of the specified node Y 
for instance performs case agreement in the generated 
German noun phrase eine hübsche Frau according to 
the external constraint acc. 
Notice that no feature transfer from the source lan- 
guage to the target language takes place. All features 
necessary to generate the appropriate target language 
strings are contained in the target language feature 
bundles which are retrieved from the CB due to the 
internal constraints. 
In refinement, the external constraints of a reduction 
may thus serve to modify the chunks' internal realiza- 
tion. 

3    Inducing Translation Templates 

Induction of translation templates is one of the main 
features of EDGAR. Generalized translation templates 
serve two purposes. They contain information on the 
context of the reduced chunks and they describe how 
a generalization of the input sentence is realized in the 
target  language.    This  section  first discusses the shape 
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of induced translation templates and gives correctness 
criteria which delimit the possibly induced grammars. 
The possibilities and limits of the induction of trans- 
lation templates is discussed. 

3.1     Template Correctness Criterion 
Translation templates are induced from translations 
examples. A translation template is a bilingual gener- 
alization of a translation example where composition- 
ally translatable sequences are replaced by reduced 
nodes. 
A translation template needs to hold the following 
template correctness criteria TCC. 

1. A translation template contains at least two nodes 
in both the source and the target language side. 

2. There is an equal number > 0 of reductions in 
both the source and the target language side of 
the translation template. 

3. Reductions in the source and the target language 
side are based on the same examples. 

Consider the following generalizations. Template 11 
violates TCC 1 because its left hand side contains only 
one node. If we would permit translation template 11, 
generalization risks to produce unary recursive deriva- 
tion trees. Such templates are therefore excluded from 
the CB. Translation templates 12 and 13 are not in 
line with TCC 2 because the right hand side contains 
one more reduction than the left hand side. When 
specifying the node Y on the right hand side we are 
unable to retrieve a target language example from the 
CB because nothing has been reduced on the left side. 
The example 14 is a correct translation example but it 
is not a template because it does not contain any re- 
duction.  Example 15 is a correct translation template. 

Both sides have the same number of reductions which 
are inverted in the source and the target language. 

11 (X)    ↔     (x X  y) 
12 (ab)    ↔     (x Y y) 
13 (a X b)    ↔     (x X Y y) 
14 (ab)    ↔     (xy) 

15        (X Y)   ↔   (Y x X ) 

To illustrate the third TCC consider translation ex- 
amples 16 and 17 which serve as a basis to general- 
ize translation example 18. The string abc on the left 
hand side of example 18 can be reduced to a X 17 based 
on translation example 17 whereas the string xyz on 
the right hand side can be reduced to x X 16 y based 
on translation example 16. The generalizations of the 
left and the right hand side of example 18 as shown 
in 18t are corrupt generalizations of the translation 
example. To avoid such misleading translation tem- 
plates it is checked whether the reductions on both 
sides are based on the same examples. 

16 (b)     ↔     (y) 
17 (bc)     ↔     (vw) 
18 (abc)     ↔     (xyz) 
18t          (a X 17)   ↔     (x X 16  z) 

Taking translation example 21 as a basis to generalize 
translation example 22 results in the correct transla- 
tion template 22t. The reductions on both sides of 
the translation template refer to the same translation 
example 21 so that the TCC hold. The translation 
template abstracts the peculiarities of translation ex- 
ample 21; keeping only its general properties. The re- 
ductions' internal constraint 21 is. therefore, discarded 
from the translation template when stored in the CB 
Instead, properties of the reduced chunk are perco- 
lated  into  the  templates'  reductions  in order to select 
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possible fillers of this slot. Since translation examples 
20 and 21 have the same type, translation template 22t 
subsumes the translation ab ↔ xy and am ↔ xn. 
It does not, however, subsume the translation ao ↔ 
xp because the reductions' external constraint a does 
not fit the translation examples' external constraint ω. 

 
In successive induction steps, more than one transla- 
tion template can be generated from one translation 
example. Based on translation example 20, transla- 
tion example 23 can be generalized into translation 
template 23t. In a second step, translation template 
23t can be generalized into translation template 23tt. 
The prefixes of the left and right hand side a Xa , and 
x Xa , match translation template 22t such that a fur- 
ther translation template (23tt) can be generalized. 
Note that the translation template can be generalized 
no further since according to TCC 1 each translation 
template needs at least two nodes on both language 
sides. 

3.2     The One Tree Principle 
Translation templates are induced from translation 
examples by replacing the maximum of non-overlapping 
chunks through constraint variables. At most one 
translation template is induced at a time. Once a 
translation examples' language side has been turned 
into chunks, no alternative decomposition is consid- 
ered to find possibly different generalizations. This 
induction strategy leads to one derivation tree only 
for each translation example. It is assumed that a 
target language sentence is an instantiation of only 
one source language generalization. 
To exemplify the implications of the one tree prin- 
ciple consider translation example 37. Based on the 
translation examples 24, 25 and 26 in theory three 
generalizations are possible which are shown in 27t1, 
27t2 and 27t3. In 27t1 the items b and y have been 
reduced and in 27t2 and 27t3 the respective chunks ab 
and xy and bc and yz are generalized. 
To obtain a maximum homogeneous and consistent bi- 
grammar, a strict segmentation strategy is respected. 
Currently, decomposition proceeds from left to right 
and the first longest chunks are considered for reduc- 
tion only. Due to this strategy, template 27t2 will be 
induced. This processing strategy might have nega- 
tive consequences but there is currently not sufficient 
experience to evaluate the implications. The problem 
is to decide which of the overlapping chunks are more 
appropriate and to select the most suitable of the tem- 
plates 27t2 or 27t3. 

We are, however, experimenting with weighting the 
translation examples and translation templates. Weights 
are computed in an alignment process where transla- 
tion examples are automatically extracted from a bi- 
text. The weights assigned to the translation examples 
are computed based on lexical translation probabilities 
and their degree of ambiguity. A segmentation is to 
be chosen which achieves the best overall weights. 
An alternative processing strategy could be to search 
for the overall longest chunks or to make use of chunk- 
initial and/or chunk final item probabilities to find the 
most likely segmentation. 

4    Reduction and Generalization 

In this section I shall examine how information con- 
tained in different features of the input sentence's FBs 
may be distributed over different entries of the CB and 
how the information is gathered from different trans- 
lation examples in the target language.   I shall fur- 
ther show that EDGAR achieves computational power 
equivalent to indexing grammars (IG). IG recognize 
indexing languages — so-called mildly context-sensitive 
languages — which are known to be a subset of context- 
sensitive languages but are more powerful than context- 
free languages.    According to (Partee et al.,  1990) 
there is no phenomenon known in natural languages 
that falls outside indexing languages, so that they 
“provide us with a kind of upper bound for syntac- 
tic phenomena” of natural languages. 

4.1     Representational Richness 
Each side of a translation example is annotated with a 
set of features which is part of its external constraints. 
The number of different features/values which describe 
the set of examples in the CB, (i.e. the cross product 
of the external constraint's values) is referred to as the 
richness of the description language. 
The completeness of a CB is independent from the 
representational richness of its description language. 
A CB is complete if it contains all translation ex- 
amples required to translate a source language into 
a target language. As the use of language is a creative 
process which generates new meanings every day, for 
general purpose natural language translations the CB 
can hardly ever be complete. However, a rich descrip- 
tion language can partially compensate the necessary 
incompleteness of translation examples. 
To illustrate how in absence of a complete CB a partly 
matching input sentence can be generalized consider 
the following example. The English word old can be 
a noun or an adjective dependent on the context in 
which it occurs. In case there is only a translation 
example  for  old  associated  with  the type noun, there 
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would be no chance to generalize the word old if it 
occurs with its adjective interpretation. 
This can be circumvented by considering one example 
for generalizing type information (i.e. variable fea- 
tures) another example for generalizing token infor- 
mation (i.e. fixed features). In this way the set of 
features matched against the CB is distributed over 
distinct sets of examples. 
Consider a CB containing the entries 28 and 29 and 
the input sentence aß to be translated. 

The token a matches the entry 28 whereas its type fea- 
tures ßs match entry 29. In absence of a full match, 
the input sentence can nevertheless be generalized into 
one reduction where the fixed features are taken from 
entry 28 and  the  variable  features  are taken from entry 
29. This will yield the reduction  
Here γs is the phrase tag from the matching token en- 
try and ßs is percolated from the input sentence into 
the reduction node by means of reduction rules. The 
internal constraints 29 + 28 memorize the matching 
entries for the variable and the fixed features respec- 
tively. 
When specifying the reduction in the target language 
the feature sets of the two entries are merged together 
just as they were decomposed in the source language: 

 The token x and the phrase tag γt  
are taken from entry 28 and the variable features ßt  
are taken from entry 29. 

4.2    Context-sensitive languages 
Reduction rules may either copy features from the 
matched chunk of the input sentence into the reduc- 
tion or they may interpret a feature as a stack and 
push or pop an item to or from it. A feature may thus 
work like a counter which is percolated over general- 
ization levels by eventually adding or deleting items 
from it. If the feature stack is simply copied into 
the reduced node, the production rule works just like 
a context-free grammar. The context sensitivity of 
indexing grammars thus stems from its capacities to 
push and/or pop items to or from the feature stack. 
When applying a reduction (or refinement) rule, fea- 
tures may be checked to fill certain constraints. A 
translation template may only match if a feature stack 
contains a certain element. 
Consider the CB containing entries 30, 32 and 32t. 
These bilingual mapping rules recognize the language 
anbn, n > 0 and map it into the target language xnyn. 
A source language derivation tree of the input sen- 
tence a4b4 is shown in Figure 5 (left). Indices 2, 3 and 
4 in the reductions are generated by reduction rules 
which push an item at each generalization level into a 
feature stack. At level 3 the whole input string is rec- 
ognized and the internal constraint 32t(32t(32)) in the 
reduction X memorizes the order of the invoked trans- 
lation examples and translation templates. Each time 
translation template 32t applies for reduction, the ex- 
ternal  constraint  is  incremented  by 1. The external 

constraint thus implements a counter which indicates 
the level of generalization. 
Context-sensitive languages can equally be recognized 
from a finite set of translation examples and transla- 
tion templates and mapped into a structurally iden- 
tical target language. Translation examples 34 and 
35 identify the language anbncn and map it into the 
target language string xnynzn for n = 2 and n = 3 
respectively. In order to generalize the mapping for 
any n > 3 the complex mapping anbncn ↔ xnynzn 
is simplified into the concatenation of the mapping 
aiaabbbi ↔ xixxyyyi and bccci ↔ yzzi, i > 1. 

 
Translation examples 32 to 35 are generalized into 
translation templates 32t to 35t according to the prin- 
ciples outlined in the previous sections. 
Translation templates 32t and 33t recognize the two 
sublanguage mappings aiaabbbi ↔ xixxyyyi and 
bcci ↔ yzzi, translation templates 34t recognizes 
the language bccc2i ↔ yzzz2i. 
Successive generalizations of the input string aaaabbb- 
bcccc are shown in Figure 5 (right). At level 1, the 
translation examples 32 and 33 match the chunks aabb 
and bcc which are respectively reduced into the nodes 
X2

32 and Y2
32 The external constraint 2 is copied from 

the translation examples. In successive levels of gen- 
eralization, the external constraints are incremented 
by means of reduction rules. 
Arriving at level 3, a reduction rule checks whether 
index i + 1 in daughter nodes X equals index j :~in 
daughter node Y. If this is the case, the string ajbjcj 
is recognized. The input string is thus accepted if it 
has entirely been recognized by any of the translation 
examples 34 or 35 or if it is recognized by translation 
template 35t with the index of the left daughter be- 
ing equal to the index of the right daughter plus one. 
The recognized input string, then, consists of j a's 
followed by j b's followed by j c's, j > 3. 
The source language generalization is then expanded 
in the target language by specifying the internal con- 
straints and successively refining the retrieved tar- 
get language examples. However, general translation 
templates for a mapping of structural different lan- 
guages such as anbn ↔ (ab)n cannot be induced in 
EDGAR. Translating such languages into each other 
would require either for each n a separate translation 
example or for the aide of reduction and/or refinement 
rules to rearrange the generalization tree. 

- 256-  



MT Summit VII                                                                                                                                                                              Sept.   1999 

 

  

  

5    Conclusion 

This paper describes an example-based machine trans- 
lation system which makes use of morphological knowl- 
edge, shallow syntactic processing, translation exam- 
ples and an induction mechanism which induces trans- 
lation templates from the translation examples. 
Induced translation templates determine a) the map- 
ping of the word order from the source language into 
the target language and b) the type of sub-sentential 
phrases to be generated. Morphologic knowledge al- 
lows the abstraction of surface forms of the involved 
languages, and together with shallow syntactic pro- 
cessing and the percolation of constraints into reduced 
nodes new input sentences to be translated can be gen- 
eralized. The generalized sentence is then specified 
and refined in the target language where refinement 
rules may adjust the translated chunks according to 
the target language context. 
This paper investigates the computational power of 
the generalization process and describes in more de- 
tail the possibilities and limits of the translation tem- 
plate induction mechanism. Translation templates are 
seen as generalized translation examples. The tem- 
plate correctness criterion (TCC) formally defines the 
correctness of induced translation templates and the 
one tree principle implies a strict segmentation strat- 
egy. 
Due to the induction capacities of the system the rule 
system remains relatively simple if the source and tar- 
get language are structural similar. The conjunction 
of different resources allows for the analysis and gen- 
eration of context-sensitive languages. Mapping of 
structurally different languages remains, however, be- 
yond the capacities of the induction mechanism. 
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