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Abstract

This paper presents an algorithm for

generating and �ltering an invertible

and structural analogous translation

grammar from bilingual aligned and

linguistically bracketed texts. The al-

gorithm is discussed in general terms

and applied to German-English align-

ments. It is shown that the induc-

tion of structural analogous transla-

tion grammars can lead to disam-

biguation of meaning and correction

of bracketing errors.

1 Introduction

Recent developments of Example-Based Ma-

chine Translation (EBMT) show a trend of

inducing translation grammars from aligned

texts. The aligned text, which serves as a ba-

sis for the induction of translation grammars,

consists of a set of alignments, i.e. a set of

source language/target language expressions1

which are translations of each other. A transla-

tion grammar, in turn, consist of lexical trans-

fer rules and generalizations.

The advantage of translation grammars is 1)

that they can be induced o�-line thus reduc-

ing computation time in the working-phase of

the system and 2) that consistency of the align-

ments can be checked and handled more easily.

According to (Somers, 1999), EBMT systems

di�er in the number and the quality of resources

used and in the way this knowledge is repre-

sented, stored and used for translation. How-

1These expressions are typically sentences but
can be single words, clauses or paragraphs.

ever, EBMT systems di�er also in the way gen-

eralizations are computed. In the framework of

EBMT, a number of methods have been pro-

posed for inducing translation grammars. In

so-called \pure" EBMT systems, the only avail-

able knowledge resource is the aligned text it-

self (cf. (Block, 2000; Brown, 2001)), while in

richer systems linguistic knowledge resources

are used to a varying degree (cf. (G�uvenir

and Cicekli, 1998) and this present approach).

In almost all cases where generalizations are

induced from aligned texts, a set of two or

more alignments are compared and suitable

sub-sequences are replaced by variables.

Grammar induction from sets of monolingual

examples have been studied since the 1960s.

As early as 1967, Gold showed that even regu-

lar grammars cannot be exactly identi�ed from

positive examples alone. This insight is based

on the fact that there will always be at least

two possible candidate hypotheses, i) the lan-

guage contains all possible sentences over a set

of symbols
P

�
and ii) the language corresponds

to the set of provided examples alone. While

i) is most compact and general, ii) is the most

complex and least general hypothesis. A simi-

lar situation can be constructed for the induc-

tion of translation grammars from alignments:

i) each symbol in the target language is a pos-

sible translation of every symbol in the source

language and ii) the translation grammar cor-

responds to the set of alignments alone. Nei-

ther of these hypotheses seem attractive and

so it seems desirable to �nd a compromise be-

tween the size of the hypothesis description and

their generality. The compromise for the induc-

tion of translation grammars has been to look

for collocations in the left-hand side (LHS) and



Generalization of Di�erences in Alignments (G�uvenir and Cicekli, 1998)

Alignments:

1. I took a ticket from Mary $ Mary'den bir bilet aldim

2. I took a pen from Mary $ Mary'den bir kalem aldim

Generalization of Di�erences:

3. I took a X1 from Mary $ Mary'den bir Y1 aldim

Generalization of Di�erences and Generalization of Similarities in Alignments (McTait, 2001)

Alignments:
4. The commission gave the plan up $ La commission abandonna le plan
5. Our government gave all laws up $ Notre gouvernement abandonna toutes les lois

Generalization of Di�erences:
6. (...) gave (...) up $ (...) abandonna (...)

Generalization of Similarities:
7. The commission (...) the plan (...) $ La commission (...) le plan
8. Our government (...) all laws (...) $ Notre gouvernement (...) toutes les lois

Generalization of Chunk Pairs in Alignments (Block, 2000):

Alignment:
9. das ist was Sie wollen am Mittwoch morgen zur�uckzukommen

l l l l l l

which is what you were wanting to come back Wednesday morning

Chunk Pairs Pattern Pairs
das $ which
ist $ is

das ist $ which is V ist $ V is das V $ which V
ist was $ is what V was $ V what ist V $ is V

das ist was $ which is what V ist was $ V is what das V was $ which V what : : :

ist was Sie $ is what you V was Sie $ V what you ist V Sie $ is V you : : :

...
...

...
...

...
...

Figure 1: Methods for Inducing Generalizations from Alignments



right-hand side (RHS) of the alignments and

to assume these collocations to be translated

compositionally.

In this paper, I �rst examine previous work

on how generalizations and translation gram-

mars are computed from alignments. I then

present an original approach which assumes

sub-sequences in the LHS and RHS of the align-

ment to be bracketed. These brackets are po-

tential candidates for compositional transla-

tion. From the bracketed sequences, the al-

gorithm extracts hypotheses of transfer rules,

generates generalizations and �lters a transla-

tion grammar.

The algorithm is applied to German-English

alignments. It is shown how the meaning of

ambiguous sentences can be disambiguated by

assuming structural analogy of both language

sides and how bracketing errors can be cor-

rected.

2 Previous Work

A translation grammar consists of lexical trans-

fer rules and generalizations. Generalizations

are generated while inducing a translation

grammar and di�er from lexical transfer rules

as they contain variables.

With respect to the way generalizations

are computed one can distinguish between i)

methods which generalize chunk translations

in alignments (e.g. (Block, 2000; Bostr�om,

1999) and this present approach), ii) methods

which generalize di�erences in sets of align-

ments (G�uvenir and Cicekli, 1998) and iii)

methods which generalize similarities in sets of

alignments (McTait, 2001).

In (G�uvenir and Cicekli, 1998) the system

searches for pairs of alignments where the LHS

and the RHS show similar sequences. The

di�erences are then substituted by variables

while the identical subsequences remain as non-

reduced tokens in the generalizations. An ex-

ample of this is given in �gure 1, top. The

identical parts in alignments 1 and 2 remain

unreduced in generalization 3, while the di�er-

ent parts (ticket $ bilet and pen $ kalem) are

reduced to a variable. (McTait, 2001) gener-

alizes alignments in a similar way as shown in

generalization 6 in �gure 1, middle. In addition

to this, (McTait, 2001) also generalizes similar-

ities in alignments which yields generalization

5 and 6 as a complement to generalization 4. In

contrast to the approach proposed in this pa-

per, (McTait, 2001) allows m : n mappings as,

for instance, in generalization 6.

A di�erent approach is taken by (Block,

2000). In his approach, word translations in

alignments are assigned probabilities based on

a statistical word alignment tool. Statisti-

cal word alignments are indicated by vertical

ashes (l) in the alignment 9, �gure 1, bot-

tom. Based on this statistical word trans-

lation information, so-called chunk pairs are

extracted. Subsequently, generalizations (i.e.

pattern pairs) are generated for each chunk

pair. This is achieved by replacing a chunk pair

in another chunk pair by a variable if the former

is a substrings in the latter chunk pair. An ex-

ample is given in �gure 1, bottom. The chunk

pairs das ist $ which is and das $ which have

been extracted from the alignment 7. The pat-

tern pair V ist $ V is was obtained by replac-

ing the shorter chunk pair by the variable V.

As a last step, trivial pattern pairs are �ltered

from the set of pattern pairs.

3 Overview

The algorithm I present in this paper is sim-

ilar to the approach in (Block, 2000). First,

chunk pairs (i.e. lexical transfer rules) are ex-

tracted from each alignment. Then generaliza-

tions are computed from the extracted transfer

rules and from the alignments. Last an invert-

ible translation grammar is �ltered. In contrast

to (Block, 2000) the present algorithm does

not use a statistical word alignment tool. In-

stead, constituents in both language sides of the

alignments are bracketed. From these brack-

ets, hypotheses of lexical transfer rules are ex-

tracted by combining each LHS-bracket with

each RHS-bracket. We currently use an ex-

tended version of the shallow parser KURD

(Carl and Schmidt-Wigger, 1998) for bracket-

ing, although knowledge-poor methods could

similarly be used as, for instance, described in

(Zaanen, 2000).

Generalization works similarly to the model

described in (Block, 2000), but more than one

pattern pair can be replaced in one generaliza-

tion. Also, probabilities and weights are as-

signed to each of the rules. From the set of ex-

tracted and generated rules, a compositional,

invertible and structural analogous translation

grammar is �ltered. A translation grammar is

structural analogous, if it generates structural

analogous derivations for LHS and RHS. Struc-



c1:(a) $ (e0)
c2:(a) $ (a0)
c3:(a) $ (a0b0)
c4:(a) $ (a0b0c0)

c5:(e) $ (e0)
c6:(e) $ (a0)
c7:(e) $ (a0b0)
c8:(e) $ (a0b0c0)

c9: (de) $ (e0)
c10: (de) $ (a0)
c11: (de) $ (a0b0)
c12: (de) $ (a0b0c0)

c13:(cde) $ (e0)
c14:(cde) $ (a0)
c15:(cde) $ (a0b0)
c16:(cde) $ (a0b0c0)

Figure 2: Set of lexical transfer rules C1 extracted from a1

tural analogy is achieved if each generalization

has the same number of variables in its LHS and

RHS. This implies that any LHS derivation tree

has the same depth and branching as the RHS

derivation tree, while the order of the branches

can be permuted in both language sides.

In addition, the �ltered translation grammar

does not contain ambiguous transfer rules, i.e.

each LHS and RHS in the �ltered translation

grammaroccurs exactly once. This invertibility

condition is achieved by encoding a minimal

context which makes it unique in the �ltered

translation grammar.

In the remainder of this paper, I �rst describe

how transfer rules are extracted from bracketed

alignments and how probabilities and weights

are assigned. Then I describe how a set of in-

vertible transfer rules is �ltered. Last I give

examples for inducing German-English trans-

lation grammars and discuss potentials of the

algorithm.

4 Complexity of Inducing

Translation Templates

The program assumes a bilingual text P which

consists of n alignments a1 : : : an. Each align-

ment ai consists of a left-hand side (LHS) and a

right-hand side (RHS). By means of a (shallow)

parser, both language sides are independently

bracketed (parsed) which results in a represen-

tation similar to the following2:

a1 : (a) b (c(d(e))) $ (((a0)b0)c0) d0 (e0)

Without further knowledge, one cannot know

which of the LHS-brackets translate into its

corresponding bracket in the RHS or whether a

LHS-bracket has a RHS-translation at all. But

it is assumed that if a LHS-bracket has a trans-

lation in the RHS of the same alignment then it

2The letters \abcde" represent lemmas in LHS;
the letters \a0b0c0d0e0" lemmas in the RHS. The
brackets are also annotated with a phrasal tag and
morpho-syntactic information. For the sake of sim-
plicity, I will consider this information only in the
last two sections.

would translate into exactly one bracket. As we

have no knowledge which brackets to align, we

assume that each LHS-bracket translates with

the same probability into any RHS-bracket.

For an alignment ai we can therefore extract

p � q lexical transfer rules Ci : fc1 : : : cp�qg,

where p is the number of LHS-brackets and q

is the number of RHS-brackets. The set C1 ex-

tracted from a1 is shown in �gure 2.

In a second step, translation templates (or

generalizations) are induced from the align-

ments and from the extracted lexical transfer

rules c1 : : : cp�q. While a lexical transfer rule

consists only of terminal symbols, a generaliza-

tion contains variables (so-called reductions) in

places where a shorter transfer rule matches a

sub-sequence in the LHS and in the RHS. A

generalization has thus at least one reduction

in each language side and it has an equal num-

ber of reductions in the LHS and the RHS. As

we assume a 1-to-1 mapping of the LHS and

RHS-brackets each reduction in LHS is linked

to exactly one reduction in RHS and vice versa.

From the transfer rule c16, for instance, can

be generated 4 di�erent generalizations while

from transfer rule c11 only one generalization

can be generated. These generalizations are

shown in �gure 3. From the alignment a1 can

be generated 25 generalizations by substituting

one or more transfer rules c1 : : : c16.

More generally, from a transfer rule cj which

has p brackets in its LHS and q brackets in its

RHS, an exponential number of generalizations

#Gcj
can be generated:

#Gcj
=

pX
i=0

�
p

i

�
�

�
q

i

�
=

�
p+ q

p

�

For instance, if we assume both, p and q to

be 10 and none of the 10 brackets in either

language side are included in another bracket

(i.e. all brackets are top-level brackets), more

than 180,000 di�erent generalizations can be

generated. This is a number far too big to be

computed, as 10 brackets (i.e. constituents in

the parsed sentence) is not many. Therefore,



Gci
Induced Generalization p(gk) w(gk)

Gc11
:

�
g1 : (dA) $ (A0

b
0) 0:2 0:4

Gc16
:

8>><
>>:

g2 : (cdA) $ (A0
b
0
c
0)

g3 : (cdA) $ (A0
c
0)

g4 : (cA) $ (A0
b
0
c
0)

g5 : (cA) $ (A0
c
0)

0:2 0:4

0:2 0:4

0:2 0:4

0:2 0:6

Figure 3: Set of generalizations Gc11
and Gc16

induced from transfer rules c11 and c16

a number of heuristics is proposed for generat-

ing from the set of possible generalizations only

those achieving the highest weight.

5 Probabilistic Translation

Grammars

Before introducing heuristics, I would like to

describe how probabilities and weights are as-

signed to lexical transfer rules and generaliza-

tions3. While inducing the translation gram-

mar, each alignment ai, each lexical transfer

rule cj and each generalization gk, is linked to

two sets.

ai ) fGai
; Cai

g

gk ) fRgk
; Cgk

g

cj ) fGcj
; Acj

g

Alignments ai are associated with a set of

lexical transfer rules Cai
and a set of general-

izations Gai
. The lexical transfer rules in Cai

have been extracted from alignment ai while

Gai
contains generalizations of ai. Each lexical

transfer rule cj is associated with a set Acj
of

alignments from which cj has been extracted

and a set of generalizations Gcj
which have

been generated from cj . Finally, each gener-

alization gk is associated with a set of lexical

transfer rules Cgk
which have been replaced in

the generalization (i.e. the daughters of the

generalization gk) and a set of references Rgk
.

Since generalizations are generated from align-

ments and from the extracted lexical transfer

rules, the set of references Rgk
may consist of

alignments ai and/or transfer rules cj .

The probability of an alignment ai is its fre-

quency in the aligned text P divided by the

number n of alignments in P .

3The notation used here is slightly di�erent from
a previous presentation in (Carl, 2001).

p(ai) =
f(ai)

n
(1)

The probability of a lexical transfer rule cj is

a function of the number of times cj has been

extracted from alignments ai; i = 1 : : :n, the

cardinality #Cai
of the set Cai

and the size of

P :

p(cj) =
X

ai2Acj

1p
#Cai

+ n

(2)

The probability of a generalization gk equals

the maximum probability of the reference r 2

Rgk
from which gk has been generated.

p(gk) = maxfp(r 2 Rgk
)g (3)

Based on these probabilities, a weight is com-

puted for each ai, cj , gk.

The weight w(rj) of a lexical transfer rule or

an alignment equals the maximumweight of the

generalization that has been generated from it.

w(rj) = maxfw(g 2 Grj
)g (4)

In case no generalization can be generated

from rj : w(rj) = p(rj). The weight of a gener-

alization gk equals the maximum of the proba-

bility of its reference ri 2 Rgk
plus the sum of

the weights of the lexical transfer rules which

have been replaced in ri to generate gk. (i.e.

p(ri) plus the sum of the daughters of gk for

reference ri).

w(gk) = maxfp(ri 2 Rgk
) +

X
ci2Cgk

w(ci)g (5)



From this it follows that generalizations have

higher weights if they contain i) more reduc-

tions or ii) if the reductions are to the high-

est extend compositional. As an example for

achieving higher weights for more composi-

tional generalizations, consider the following

example.

As there are 16 lexical transfer rules ex-

tracted from alignment a1 and assuming that

n = 1, each of the rules in �gure 2 has probabil-

ity 0:2. A sub-sequence in c11 : (de) $ (a0b0)

can be substituted by rule c6 : (e) $ (a0).

This substitution yields generalization g1, as

shown in �gure 3. This generalization4 is as-

signed the weight 0:4 (cf. equation 5). The

same weight is assigned to the transfer rule c11
(cf. equation 4). Subsequently, when gener-

alizing the longer rule c16 : (cde) $ (a0b0c0),

a set of four generalizations G16 is generated

from which g5 is assigned the highest weight

due to the compositional nature of the replaced

daughter c11 : (de)$ (a0b0).

6 Generating Transfer Rules

Aligned texts P : fa1 : : : ang consist of n � 1

alignments. Each alignments ai; i = 1 : : :n is

generalized in a sequential manner. For each

ai, �rst the p � q lexical transfer rules are ex-

tracted and sorted by the length of the shorter

string LHS or RHS. Transfer rules cj 2 Cai
are

then generalized starting with the shortest rule.

The crucial points in the procedure Generate-

Grammar() are lines 4 and 9. Extracting the

set of lexical transfer requires a quadratic ef-

fort in the number of brackets, while generat-

ing Gcj
from cj is exponential. To tackle this

latter complexity, a version of the A* algorithm

generates only a limited number of the highest

weighted generalization:

1 GenerateGrammar(P )
2 begin
3 for all ai 2 P :
4 extract lexical transfer rules Cai from ai;

5 for all cj 2 Cai : p(cj)+ = 1=(
p
#Cai + n);

6 add ai as c0 to Cai ;
7 sort Cai by length of shorter LHS or RHS;
8 for each cj 2 Cai starting with shortest c
9 generate Gcj from cj

10 w(cj) = maxfw(g 2 Gcj )g
11 end
12 end
13 end;

4The capital letters A, A0, B and B
0 represent

reductions of the replaced substrings where Amaps
into A

0 and B maps into B
0.

In this way generalization of lexical transfer

rules is reduced to O(k�d) where k is the num-

ber of generalizations to be generated from cj

and d is the number of daughters in a gener-

alization. In addition to this, a couple of pa-

rameters can be set to reduce the number of

extracted transfer rules and generalizations:

� Transfer rules are only extracted where the

di�erence in the number of words in LHS

and RHS does not exceed a certain thresh-

old. This constraint reects the fact that

generally the same number of (content)

words appear on both sides of a transla-

tion.

� By the same token, transfer rules and gen-

eralizations are weighted by the di�erence

of number of words in LHS and RHS.

� By means of a bilingual lexicon, transfer

rules and generalizations may be assigned

(high) priori weights.

� Only a limited number of highest weighted

translation rules and generalizations is

generated.

� A generalization can have a maximum

number of reductions.

� Transfer rules are only asserted if their

weights are above a threshold of an al-

ready existing, ambiguous transfer rule in

the database.

Note that these parameters are suitable to

reduce the number of generated generalizations

and extracted lexical transfer rules.

7 Filtering Invertible Translation

Grammars

From the set of alignments P : fa1; : : : ; ang

and their associated sets of generalizations

fGa1
; : : : ; Gan

g an invertible translation gram-

mar is �ltered in a top down fashion. The aim

here is to �nd a compositional set of transfer

rules capable of reproducing the aligned text P

in a most complete manner. To achieve this

goal, translation ambiguities in the resulting

grammar are avoided by including the small-

est possible context which disambiguates each

transfer rule. A transfer rule LHS2 $ RHS2



Default Translation Grammar Translation Grammar with Prior Lexical Knowledge

p(�) w(�)

e $ a
0 0:2 0:2

a $ e
0 0:2 0:2

dA $ A
0
b
0 0:2 0:4

cA $ A
0
c
0 0:2 0:6

AbB $ A
0
d
0
B

0 1:0 1:8

prior transfer rule p(a$ a
0) = 0:5

p(�) w(�)

a $ a
0 0:50 0:50

e $ e
0 0:24 0:24

AbcdB $ A
0
b
0
c
0
d
0
B

0 1:00 1:74

Figure 4: Translation Grammar induced from alignment (a) b (c(d(e)))$ (((a0)b0)c0) d0 (e0)

is ambiguous i� the translation grammar con-

tains a di�erent transfer rule LHS1 $ RHS1
where either LHS1 equals LHS2 or RHS1 equals

RHS2. A translation grammar is invertible i�

it contains no ambiguous transfer rules. In

an invertible translation grammar, therefore,

each LHS-string and each RHS-string occurs

exactly once. Note that an invertible transla-

tion grammar is not deterministic. More than

one translation can be generated from a source

language string by di�erently bracketing the

source string. However, each bracket has ex-

actly one translation.

The alignments ai 2 P are sorted by

their weights and for each alignment starting

with the highest weighted one, the function

FilterGrammar(ai) is called. The proce-

dure FilterGrammar() prints the highest

weighted generalizations of ai and recursively

prints their daughters. Less frequent rules, i.e.

lower weighted rules, are likely to come along

with more context. Only one generalization is

printed for each alignment.

1 FilterGrammar(ri)
2 begin
3 if Gri not empty
4 print gk : maxfw(gk 2 Gri)g
5 for all generalizations gm : delete gm n

if((LHSm = LHSk) or (RHSm = RHSk)).
6 for all cj 2 Cgk : FilterGrammar(cj)
7 else
8 print ri
9 for all rules cm: delete cm n

if((LHSm = LHSi or (RHSm = RHSi)).
10 end
11 end;

The procedure is called recursively in line 6

to print the highest weighted daughters cj of

generalization gk.

Without prior knowledge of translation

equivalences, the algorithm �lters the most

compositional, structural analogous translation

grammar. A maximal compositional transla-

tion grammar generated and �ltered fromalign-

ment a1 is shown in �gure 4, left. However,

if the program is fed with prior knowledge of

translation equivalences which do not - or only

partially - support the structural equivalence

of the bracketed alignments, a di�erent trans-

lation grammar might be generated. Thus, the

translation grammar in �gure 4, right, is gen-

erated when providing the transfer rule a$ a
0

with a prior probability of p(a $ a
0) = 0:5.

Instead of the 16 lexical transfer rules in �g-

ure 2, only 10 transfer rules are extracted from

alignment a1 as fc1; c3; c4; c6; c10; c14g are not

consistent with the prior knowledge. The pro-

gram tries to take this knowledge into account

by �ltering the most compositional translation

grammar which is consistent with the data.

8 Ambiguous Bracketing

It is not always possible to obtain unambigu-

ous brackets for every alignment. Ambiguous

brackets might be due to (mal-) performance of

the bracketing tool or to the implicit ambiguity

of the sentence.

In the worst case, every subsequence in an

alignment can be bracketed. There are max-

imally
P

n

i=1
i di�erent brackets in a sentence

of length n. For an alignment with n tokens

in LHS and m tokens in RHS, the number of

extracted transfer rules amounts, thus, to:

#C =
(n2 + n) � (m2 +m)

4

While there are many di�erent possible

translation grammars that could be generated

and �ltered from this set, the most composi-

tional grammar is very simple.

An example is given below. Assume all

proper subsequences in the LHS and RHS of

alignments a2 and a3 in �gure 5 are brack-

eted. As both sides of the alignments have



a2 abcd $ a
0
b
0
c
0
d
0

a3 acbd $ c
0
a
0
b
0
d
0

Transfer Rules Ca2

(a)
(b)
(c)
(d)
(ab)
(bc)
(cd)
(abc)
(bcd)

9>>>>>>>>>>=
>>>>>>>>>>;

�

8>>>>>>>>>>><
>>>>>>>>>>>:

(a0)
(b0)
(c0)
(d0)
(a0b0)
(b0c0)
(c0d0)
(a0b0c0)
(b0c0d0)

Translation
Grammar a2

(a) $ (a0)
(b) $ (b0)
(c) $ (c0)
(d) $ (d0)

(AB) $ (A0
B

0)

Transfer Rules Ca2

(a)
(c)
(b)
(d)
(ac)
(cb)
(bd)
(acb)
(cbd)

9>>>>>>>>>>=
>>>>>>>>>>;

�

8>>>>>>>>>>><
>>>>>>>>>>>:

(c0)
(a0)
(b0)
(d0)
(c0a0)
(a0b0)
(b0d0)
(c0a0b0)
(a0b0d0)

Possible
transfer Rules
for Translation
Grammar a3

1: aA $ A
0
a
0

2: Ac $ c
0
A
0

3: ac $ c
0
a
0

Figure 5: Maximal Ambiguous Bracketing and

Maximal Compositional Translation Grammar

four token and assuming that the entire align-

ments are not bracketed, this leads to #Ca2
=

9 � 9 = 81 transfer rules for alignment a2 and

#Ca3
= 9 � 9 = 81 transfer rules for align-

ment a3. 16 of the transfer rules in Ca2
and

Ca3
are identical such that in total 146 dif-

ferent transfer rules are generated5. In Figure

5 the LHS and RHS-brackets are plotted from

which the 146 translation rules are generated.

These rules and the alignments are then gen-

eralized and a translation grammar is �ltered

as described above. The most compositional

translation grammar �ltered for alignment a2
consists of 5 translation rules as shown in �g-

ure 5, top right. For alignment a3 only one ad-

ditional translation rule is �ltered. There are

many possibilities to adding one transfer rule to

translation grammar a2 such that the grammar

is still invertible and alignment a3 can be gen-

erated. Three possible transfer rules are shown

in �gure 5 bottom, right.

From an invertible translation grammar, dif-

ferent translations may be obtained by apply-

5Note, however, that the program indexes each
LHS and RHS only once, while the connections be-
tween LHS and RHS are realized through pointer.
This amounts to 14 indexes in each language side
of Ca2[a3 and 2 * 146 connecting pointer.

ing a di�erent subset and/or changing the or-

der of transfer rules. Adding rule 2 to transla-

tion grammar a2 increases the number of pos-

sible derivations which can be generated from

a
0
b
0
c
0
d
0 and, as a consequence of this, increases

the number of possible translations:

(a0)(b0)(c0)(d0) ! abcd

(a0)(b0)(c0(d0)) ! abdc

While bracketing a sentence in a di�erent

way may result in di�erent translations for that

sentence, in an invertible translation grammar

each bracket and thus each transfer rule has

one unique translation. To achieve higher re-

liability of the induced grammar, the function

FilterGrammar() is, therefore, tuned to �l-

ter transfer rule 3 which reduces this kind of

non-determinism.

9 Disambiguating Meaning

In the remaining part of this paper I investigate

a few implications of the algorithm applied to

German-English alignments. In this section I

show that the meaning of an alignment can be

disambiguated by �ltering a structural analo-

gous translation grammar. In the next section I

show that the algorithm can also correct wrong

brackets in alignments.

Consider the German-English alignment in

�gure 6. While there is only one non-

overlapping sequence of brackets in the German

LHS, the English translation has two interpre-

tations. From the English sentence one cannot

know whether the block is in the box or whether

the box is on the table. Accordingly, two am-

biguous brackets are generated: (the block in

the box) and (the box on the table) which ex-

press these two interpretations. In the Ger-

man translation, the relations of the phrases

(i.e. the attachment of the PPs) is clari�ed by

their cases. The dative in der Kiste expresses

the location of the Klotz, while the accusative

of auf den Tisch expresses the direction where

the Klotz is placed. Assuming the same mean-

ing of the German and the English sentences,

the block is, thus, in the box and John puts the

block on the table.

As discussed above, the algorithm �lters

transfer rules which show best structural anal-

ogy of the English and German brackets. When

generating the translation grammar, the mean-

ing of the English sentence is disambiguated ac-



(Hans)noun stellt ((den Klotz)dp in (der Kiste)dp)dp auf (den Tisch)dp
$

(John)noun puts ((the block)dp in (the box)dp)dp on (the table)dp
(John)noun puts (the block)dp in ((the box)dp on (the table)dp)dp

Filtered Translation Grammar p(�) w(�)

(Tisch)noun $ (table)noun 0.50 0.50

(Kiste)noun $ (box)noun 0.10 0.10

(Klotz)noun $ (block)noun 0.10 0.10

(Hans)noun $ (John)noun 0.10 0.10

(art fnoung
1)dp $ (the fnoung

1)dp 0.10 0.60

(fdpg1 in fdpg2)noun $ (fdpg1 in fdpg2)noun 0.10 1.30

(fnoung1 stellt fdpg2 auf fdpg3) $ (fnoung1 puts fdpg2 on fdpg3) 1.00 3.00

Figure 6: Disambiguation of PP attachment

cording to the brackets of the German transla-

tion. The �ltered translation grammar is shown

in �gure 6. Here we reproduce an experience of

(Melamed, 2001):

\... the translation of a text into another lan-

guage can be viewed as a detailed annotation

of what that text means".

In this example the translation leads to a dis-

ambiguation of the English PP-attachment.

Note that the translation (T isch)noun $

(table)noun was provided with a prior probabil-

ity of 0:5. The curely brackets in the transla-

tion grammar represent reductions previously

marked by the capital letters A and B. The fea-

tures6 fnoung and fdpg are phrasal tags of the

transfer rules and brackets which also appear

in reductions of generalizations. The super-

scriped indices 1, 2 and 3 in the LHS and

RHS-reductions denote the linking of the re-

ductions. Note also, that the algorithm works

on sequences of lemmas, rather than on the sur-

face forms of the words. The lemma art in the

German side of the transfer rule represents the

surface forms of the articles der, die, das, dem,

den, des.

Disambiguation of meanings through struc-

tural analogy does not work in cases where

both language sides are equally ambiguous as,

for instance, in the famous example:

Hans sieht den Mann mit dem Fernglas $

John sees the man with the binoculars

6Nouns and adjective-noun combinations are
marked noun, simple and complex determiner
phrases are marked dp.

1. (fnoung1 sieht fdpg
2) $

(fnoung1 sees fdpg
2)

2. (fnoung1 sieht fdpg
2
fppg

3) $

(fnoung1 sees fdpg
2
fppg

3)

Given the alignment is appropriately brack-

eted, at least two top-level generalizations are

generated.

In case there is no conicting evidence in the

aligned text, the program is likely to �lter the

more compositional generalization 1 which as-

sumes an attachment of the PPs to the close-by

object rather than an attachment to the sub-

ject as in generalization 2.

10 Correcting Bracketing Errors

Meaning of sentences and their corresponding

brackets can be ambiguous as shown above.

Bracketing can also be be misguiding or wrong.

However, if most of the brackets in a set

of alignments are correct, the algorithm is

likely to extract a correct translation grammar.

Wrong brackets in alignments are ignored when

�ltering a compositional and structural analo-

gous translation grammar from the alignments.

In the alignments in �gure 7, only nouns and

adjective-noun combinations (noun) as well as

simple and complex determiner phrases (dp)

are bracketed. While most of the brackets are

correct, some of them are linguistically not jus-

ti�ed. These unjusti�ed brackets are purposely

added to see how far the grammar induction

can tackle such cases.

In alignments 1 and 6 all brackets in the Ger-

man and English side are correct. Alignment

1 has a bracketed noun and one simple deter-

miner phrase in either language side, while in

alignment 6, complex embedded phrases are



1. (Peter)noun l�asst (das (Haus)noun)dp ungern unbewohnt. $

(Peter)noun doesn't like (the (house)noun)dp to be left empty.

2. Man hat ((Peter)noun (das (Rad)noun)dp)noun wechseln sehen. $

(Peter)noun was seen changing (the (wheel)noun)dp.

3. ((Peter)noun (der (Wolf)noun)dp)noun h�alt (ein (Referendum)noun)dp f�ur �uber�ussig. $

((Peter)noun (the (wolf)noun)dp)noun thinks (a (referendum)noun)dp unnecessary.

4. Man hat ((Peter)noun in (das (Haus)noun)dp)noun gehen sehen. $

(Peter)noun was seen to enter (the (house)noun)dp.

5. Es ist bekannt, dass ((Peter)noun (ein (L�ugner)noun)dp)noun ist. $

(Peter)noun is known to be (a (liar)noun)dp.

6. Von (Peter)noun wird erwartet, dass er mit ((den (Gesetzen)noun)dp (seines (eigenen

(Landes)noun)noun)dp)dp vertraut ist. $

(Peter)noun is supposed to know ((the (laws)noun)dp of (his (own (country)noun)noun)dp)dp.

p(�) w(�) Translation Grammar �ltered from Alignment a3
0.14 1.48 (fnoung1 h�alt fdpg2 f�ur �uber�ussig.) $ (fnoung1 thinks fdpg2 unnecessary.)
0.11 0.22 (ein fnoung

1)dp $ (a fnoung1)dp
0.11 0.11 (Referendum)noun $ (referendum)noun
0.08 1.12 (fnoung1 fdpg2)noun $ (fnoung1 fdpg2)noun
0.22 0.44 (art fnoung1)dp $ (the fnoung1)dp
0.08 0.08 (Wolf)noun $ (wolf)noun
0.60 0.60 (Peter)noun $ (Peter)noun

Translation Grammar �ltered from Alignment a6
0.13 1.47 Von fnoung

1 wird erwartet,

dass er mit fdpg2 vertraut ist.) $ (fnoung1 is supposed to know fdpg
2.)

0.07 0.75 (fdpg1 fdpg2)dp $ (fdpg1 of fdpg2)dp
0.08 0.08 (Gesetz)noun $ (law)noun
0.08 0.23 (sein fnoun

1
g)dp $ (his fnoun1g)dp

0.08 0.15 (eigen fnoung
1)noun $ (own fnoung

1)noun
0.08 0.08 (Land)noun $ (country)noun

Translation Grammar �ltered from Alignment a4
0.15 1.22 (Man hat fnoung1 in fdpg

2 gehen sehen. ) $ (fnoung1 was seen to enter fdpg2.)
0.22 0.22 (Haus)noun $ (house)noun

Translation Grammar �ltered from Alignment a2
0.15 1.21 (Man hat fnoung1 fdpg2 wechseln sehen. ) $ (fnoung1 was seen changing fdpg

2.)
0.11 0.11 (Rad)noun $ (wheel)noun

Translation Grammar �ltered from Alignment a1
0.13 1.20 (fnoung1 l�asst fdpg2 ungern unbewohnt.) $ (fnoung1 doesn't like fdpg2 to be left empty.)

Translation Grammar �ltered from Alignment a5
0.14 0.99 (Es ist bekannt, dass fnoung1 fdpg2 ist.) $ (fnoung1 is known to be fdpg2.)
0.11 0.11 (L�ugner)noun $ (liar)noun

Figure 7: Wrong Brackets in Alignments and Correct Translation Grammar



bracketed. Note that the structure of the

brackets in the LHS and RHS of these align-

ments are identical.

In alignment 2, the bracket (Peter das Rad)

is wrong as Peter is the object of the verb se-

hen and in the same time the subject of wech-

seln while das Rad is the accusative object of

wechseln. The problem here is that das Rad is

ambiguouswrt. nominative or accusative. Sim-

ilar brackets in alignment 3, (Peter der Wolf)

are correct as the nominative der Wolf modi�es

the subject Peter.

The distinction between these two cases is

di�cult to determine for a partial parser as

it requires knowledge about valency of verbs

and the type of the sentence (i.e. verb mid-

dle or verb �nal). However, if we look at

the English brackets of these alignments, one

sees that Peter and the wheel are discontin-

uous in alignment 2 while the bracket (Peter

the wolf) in alignment 3 show the same struc-

ture as German (Peter der Wolf). Since the

algorithm tries to �lter most compositional,

structural analogous translation grammars, the

wrong German bracket in alignment 2 is disre-

garded. As shown in the lower part in �gure 7,

two generalizations are �ltered for these align-

ments such that (Peter) $ (Peter) and (das

Rad) $ (the wheel) are reduced into two re-

ductions and (Peter der Wolf) $ (Peter the

wolf) is reduced into one reduction.

Hence, while correct brackets in one language

might sometimes be di�cult to determine, the

brackets of the translation can be helpful to �nd

their mutual analogous interpretation.

Two similar cases are shown in alignments 4

and 5. Here, the brackets (Peter in das Haus)

and (Peter ein L�ugner) are wrong. The al-

gorithm overrules the wrong German brackets

since their English translations are discontin-

uous. Instead most compositional, structural

analogous generalizations are �ltered by tak-

ing into consideration the brackets of the set of

alignments as a whole and their sequences of

aligned lexemes.

11 Conclusion

In this paper, an algorithm for sub-sentential

alignment of aligned texts is discussed. The

algorithm assumes both language sides to be

linguistically bracketed. From the brackets, hy-

potheses of lexical transfer rules are extracted

and a set of generalizations is generated. Each

of these transfer rules is assigned a probability

and a weight. From these rules, the algorithm,

�lters an invertible, structural analogous trans-

lation grammar. Implications and potentials of

the approach are examined on a general level

and a few examples applied to German-English

alignments are presented in more detail.
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