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Abstract
We present a syntax-based language model for use in noisy-channel machine translation. In particular, a language
model based upon that described in (Cha01) is combined with the syntax based translation-model described in
(YK01). The resulting system was used to translate 347 sentences from Chinese to English and compared with the
results of an IBM-model-4-based system, as well as that of (YK02), all trained on the same data. The translations
were sorted into four groups: good/bad syntax crossed with good/bad meaning. While the total number of trans-
lations that preserved meaning were the same for (YK02) and the syntax-based system (and both higher than the
IBM-model-4-based system), the syntax based system had 45% more translations that also had good syntax than
did (YK02) (and approximately 70% more than IBM Model 4). The number of translations that did not preserve
meaning, but at least had good grammar, also increased, though to less avail.

1 Introduction
Statistical machine translation (MT for short)

typically takes as its basis a noisy channel model in
which the target language sentence, by traditionE

is seen as distorted by the channel into the foreign
languageF . Thus the fundamental equation for de-
coding in these systems is as follows:1

argmaxEp(E j F ) = argmaxEp(E)p(F j E)
(1)

Adopting the usual terminology we refer to the first
component on the right-hand side as the language
model, and the second as the translation model.

While Equation 1 leaves much unresolved con-
cerning how the actual translation is to be per-
formed, typically such systems are derived from the
early IBM Models 1-5(BPPM93) and work at the
word level. That is, the translation process is one
of translating words and then rearranging them to
recover the target language sentence.

Recently there has been considerable interest in
MT systems based not upon words, but rather syn-
tactic phrases (AMG00; YK01; MR01). One such
system is that of (YK01), which performs the trans-

1The one system of which we are aware that ostensi-
bly rejects the noisy channel model is (ON02) However,
even there, the actual system incorporates Equation 1 as
a major component of the system.

lation by assuming that during the training phase the
target language (but not the source language) speci-
fies not just the words, but rather the complete parse
of the sentence. As this system has been shown to
outperform IBM model 5 on the task of Chinese to
English translation it seems worthwhile to take it as
a starting point.

One sub-optimal part of this system is its incom-
plete use of the syntactic information available to it.
In particular, while the decoder has been optimized
for use in this environment (YK02), the language
model has not. In this paper, we describe a system in
which the translation model of (YK01) is “married”
to the syntax-based language model of (Cha01) and
show that it leads to a significant improvement in
translation quality. We also show that as a “bonus”
this system is able to integrate the decoding and lan-
guage modeling components.

The remainder of this paper describes the base
system (not using the parsing model), then gives
some details of the parsing model (with particular
emphasis on how it had to be changed from that in
(Cha01) and on how the decoding fits here), and fi-
nally presents some evaluation results.

2 The Base MT System

We use a translation model as described in
(YK01) and (YK02). It is a tree-to-string translation



model, i.e., it accepts an English parse tree as input,
and produces a Chinese sentence as output. As such
it operates on a more specific version of Equation 1

p(E j F ) /
X

�

p(E; �)p(F j E; �) (2)

where� is a parse tree of an English sentence, in this
case produced by the parser described in (Col97).

If we restrict consideration to�s whose yield is
the sentenceE (that is,f� j Y(�) = Eg) we get

p(E j F ) /
X

�

p(�)p(F j �) (3)

where� is the set of trees with yieldE, and� varies
over this set.

Internally, the model performs three types of op-
erations on each node of a parse tree. First, itre-
ordersthe child nodes, such as changingVP ! VB
NP PP into VP ! NP PP VB. Second, itinserts
an optional word at each node. Third, ittranslates
the leaf English words into Chinese words. These
operations are stochastic and their probabilities are
assumed to depend only on the node, and are in-
dependent of other operations on the node, or other
nodes. The probability of each operation is automat-
ically obtained by a training algorithm, using about
780,000 English parse tree - Chinese sentence pairs.
The probability of these operations�(eki;j) are as-
sumed to depend on the edge of the tree being mod-
ified, eki;j but independent of everything else, giving
the following equation,

p(F j �) =
X

�

Y

�(eki;j)

p(�(eki;j) j e
k
i;j) (4)

where� varies over the possible alignments be-
tween theF andE and�(eki;j) is the particular oper-
ations (in�) for the edgeeki;j .

The model is further extended to incorporate
phrasal translations performed at each node of the
input parse tree (YK02). An English phrase covered
by a node can be directly translated into a Chinese
phrase without regular reorderings, insertions, and
leaf-word translations.

As seen in Equation 1, the direction of the real
translation task (decoding) is the reverse of the di-
rection of the translation model. For the tree-to-
string translation model, a decoder is given a sen-
tence in Chinese, and looks for the best parse tree

S1.0-10 0.61! NPB.0-10
S1.0-10 0.55! S.0-10
S.0-10 0.40! NPB.0-2 VP.2-10
NPB.0-10 7.7e-06! NPB.3-10 NN.0-2
NPB.0-2 0.97! NN.0-2
NN.0-2 0.00017! ”firm”
VP.2-10 0.15! VB.2-3 NPB.4-10 PP.3-4
PP.3-4 0.80! ”against each other”

Figure 1: A small portion of a parse forest output by
the translation model

of the English translation, according to the language
modelp(E) and the translation modelp(F j E).

As the task of the decoder is to build a parse
tree from a sentence, the decoding algorithm is quite
similar to a regular parser, i.e., a parser building an
English parse tree from an English sentence. As we
want to parse in a exotic way in which we build an
English parse tree from a Chinese sentence, we use a
special grammar for decoding. We first extract CFG
rules from the parsed corpus of English2, and then
extend it with the translation model. For each non-
lexical English CFG rule (such asVP ! VB NP
PP), we supplement it with all possible reordered
rules (e.g.VP ! NP PP VB, andVP ! PP NP
VB, etc.) We also add extra rules such as “VP !
VP X” and “X ! word” for insertion operations of
the model. For translation operations, we add rules
such as “englishWord! chineseWord”. With this
extended grammar, we can now parse a Chinese sen-
tence to build adecoded-tree, from which we can ex-
tract an English parse tree by removing leaf Chinese
words, and by recovering the reordered child nodes
into the English order.3

In (YK02), a standard bottom-up parser is used
for decoding. For all subtrees covering the same
span, the cost of a subtree is calculated based on
p(E) andp(F j E), and subtrees with a cost below
a predefined threshold are discarded.

A simple trigram was used forp(E) in (YK02).
To experiment with more sophisticated language
models, such as (Cha01), we break up the decod-

2The training corpus for the syntax-based model is a
pair of English parse trees and Chinese sentences.

3The supplemented reordered rules keep a pointer to
the original English CFG rule.



ing process into two steps. The first step is to build a
forest using the bottom-up decoding parser as above,
but using the cost only fromp(F j E). A small frag-
ment of such a forest is shown in Figure 1. The sec-
ond step is to pick the best tree from the forest with
a language model, to which we now turn.

3 The Parser/Language-model

As noted previously, we used the syntax-based
language-model described in (Cha00) and (Cha01)
for both MT decoding and language modeling. As
the language model used here is virtually identical
to the one described in (Cha01),4 here we give only
the briefest introduction to that system, concentrat-
ing on those aspects which, while peripheral to that
paper, are central to this project. We then describe
the modifications needed to this system to enable it
to work in an MT environment.

3.1 Parsing and Decoding

The statistical parser used here takes an English
sentence and puts it through two parsing stages. In
the first a simple, non-lexical, PCFG is used to create
a large parse forest (hundreds of thousands of edges
for a typical sentence). This is not a complete parse
forest for the sentence, but it is sufficiently large that
something very close to the correct parse is in there
someplace, albeit hidden like the proverbial needle.
In the second stage a much more sophisticated lex-
icalized PCFG is applied to the sentence. Because
of its complexity it is not possible to apply the lex-
icalized PCFG to the entire phase-one parse forest.
Rather a pruning step is inserted between the two
phases. This pruning step is based upon the follow-
ing equation:

p(eki;j j w1;n) =

�(nki;j)p(rule(eki;j))
Q

nn
l;m

2rhs(eki;j)
�(nnl;m)

p(w1;n)
(5)

Hereeki;j denotes a single expansion of a constituent
in the parse forest:nki;j ! nci;a:::. Also, rule(eki;j) is

4In particular, it uses a trihead language-modeling
scheme used in (Cha01) rather than the bi-head version
used in (Cha00) for just parsing and not language model-
ing.

the PCFG rule that underlies this edge, and rhs(eki;j)

is the set of constituents into which the left-hand-
side constituent expands.

While this equation should be familiar to those
deeply acquainted with the PCFG literature, for
those not so immersed we note that the left-hand
side of the equation is the probability (given the sen-
tence) of an edgeeki;j which spans the wordswi;j

expanding intonci;a::: Thus the higher this probabil-
ity, the more likely it is that this edge is used in the
correct parse for the sentence. Obviously this num-
ber should be a good indicator of edges in the forest
that deserve further considerations.

As our parser operates in a bottom-up manner
(as do most parsers) the inside probabilities�(nki;j)
are easy to compute, but the outside probabilities
�(nki;j) can only be computed once a parse is fin-
ished. While this is problematic in many cases, here
there is no difficulty, as we do have the finished parse
forest with which to work. Thus for every edgeeki;j
in the forest we computep(eki;j j w1;n) and edges
can be removed if it falls below an empirically set
threshold. (For our experiments we used the thresh-
old already established for parsing work, 0.00001.)

Note, however, that this probability is computed
with respect to the simplified, non-lexical, PCFG
— not with respect to the “true” lexicalized PCFG.
Thus it is possible that some edge which looks im-
plausible with respect to the first could look quite
good with respect to the second. However, empir-
ical work on parsing has shown that a threshold of
0.00001 will remove most edges, while having no
discernible effect on parsing accuracy. The reason
simply is that it will be the very rare lexical com-
bination that will enable some parse to overcome a
.00001 burden. We have assumed that a similar sit-
uation holds in the MT domain as well.

Once the parse forest has been pruned to a rea-
sonable size, the second phase of the parser estab-
lishes the best parse by re-evaluating all of the re-
maining edges in light of the lexicalized PCFG.

Now consider the output of the translation model
as shown in Figure 1. It is, in many respects, quite
similar to the output of the first pass of the parser
(we cover the differences in the next section). In
particular, it is a forest of edges (each line in Figure



1 is a single edge) and there are a lot of them (it is
common to have millions of edges for even a short
sentence).

Now Equation 5 suggests a method for pruning
these edges, except for one thing: it takes no cog-
nizance of how likely these edges are givenF , the
foreign language string.

Fortunately it is not too hard to see how to fix this
problem. Combining Equations 3 and 4 we get:

p(E j F ) /
X

�;�

p(�)
Y

ek
i;j
2�

�(eki;j) (6)

Next, the normal PCFG independence assumption
allows us to break downp(�) into the product of the
probability of each of the edges in the tree:

p(�) =
Y

ek
i;j
2�

p(eki;j) (7)

Combining Equation 6 and 7 we get:

p(E j F ) /
X

�;�

Y

eki;j2�

p(eki;j)p(�(e
k
i;j) j e

k
i;j) (8)

Thus we see that we want to find a parse in which
the edges maximize the product of the probability of
the edgeei timesp(�(i) j ei), its translation-model
probability.

This in turn suggests that we take as our figure of
meritF(ei) for pruning the forest

F(ei) = p(ei j w0;n)p(�(i) j ei) (9)

where the first term is computed from equation 5 and
the second comes to us from the probabilities that
the translation model associates with each edge, as
in Figure 1.

Thus, to use the parser as a translation decoder,
we modify it to (a) expect to get the initial parse for-
est from the translation model, rather than level-one
parsing, and (b) compute the edge figures of merit
according to equation 9. Pruning the edges accord-
ing to these values reduces the number of edges to
a reasonable number (tens of thousands, rather than
millions), so that the second pass of the parser can
examine all of the remaining edges and pull out the
most probable.

3.2 The Parser

The remaining changes to the parser fall into
three categories,

� incompatibilities with the translation-model
parser,

� phrasal translations, and

� non-linear word ordering.

We discuss these in order.
Those readers with nothing better to do than

look up each reference at the end of the paper will
have noted that the parser used in the translation
model was that of Collins (Col97) while Charniak’s
(Cha00) was used for the decoder/language model.
This creates discrepancies that should be fixed by
converting to a single parser. However, for the pur-
poses of these experiments it was easier to con-
vert the second of these systems to deal with parse
trees produced by the first. Since both are based
upon the Penn tree-bank Wall-Street Journal cor-
pus (MSM93) the differences are small, but they do
creep in. These incompatibilities were duly noted
and fixed, with one exception. The discrepancies
in the handling of punctuation is large, and rather
than fix it, we restricted consideration to sentences
without punctuation. Fortunately the number of sen-
tences in the test set with punctuation is small. How-
ever, as noted in Section 4, the current system failed
to produce output on 14 sentences upon which the
standard n-gram language model did fine. In eight
cases the cause was punctuation.

Secondly, the translation model allows for
phrasal translations — treating two or more words
as a single unit. As shown in Figure 1 phrasal trans-
lations are indicated by a single non-terminal rewrit-
ing as two or more words. A completely principled
response to this challenge would involve exploring
the issues concerning parsing with phrases, a very
interesting, but quite separate, topic. Thus we chose
a remedial response. When the parsing model en-
counters such a rule it treats the right-hand side as a
constituent to be parsed. For example, if the system
encountered

NP! ”central party committee”



it would find the parse

(NP (JJ central) (NN party)
(NN committee))

While this is not a perfect solution, it is good enough
not be be a limiting factor in the current, or any im-
mediately foreseeable, MT system.

Finally, and most importantly, it was necessary to
eliminate from the parser all traces of the assump-
tion that words and phrases come in a fixed, pre-
established, order.

In parsing all constituents must indicate where
they start and end, and while it is not necessary, it
is convenient to assume that these points are com-
pletely ordered. For normal parsing of text, this as-
sumption is valid, since the words to be parsed, are,
in fact, completely ordered. Unfortunately, this is
not the case when parsing for machine translation.
In the MT context an edge such as

S! NP VP

cannot “know” where the S starts, or ends, and sim-
ilarly for the NP and VP, except for constraints such
as the NP must start at the same location as the S.
Prior to picking the English translation there is no
predetermined length, for, say, the NP. Maybe the
phrase from the Chinese will be translated as, say,
“party committees” but then again it might be “the
party committees” or a still longer phrase.

There is nothing in chart-parsing, the basic
paradigm used in (Cha00) that commits one to the
linearity assumption, but unless one anticipates that
one is going to be using a parser far from its tra-
ditional shores, the assumption is almost inevitable,
and in the event, had to be eliminated.

4 Evaluation

We tested on 347 previously unseen Chinese
newswire sentences, with lengths ranging from 4 to
16 characters. We evaluated three systems:

� YC: the system described in this paper, i.e.,
the translation model of (YK01), the language
model of (Cha01), and the forest-based decoder
described above.

� YT: the translation model of (YK01), a stan-
dard word-trigram language model, and the de-
coder of (YK02).

� BT: the translation model of (BPPM93), a stan-
dard word-trigram, and the greedy decoder of
(GJM+01).

Figure 2 shows the evaluation results. YC far
exceeds the other systems in the number of per-
fect translations (45 versus 26 for BT), and this is
a major strength of the system. These outputs need
not be touched by human posteditors. Such evalu-
ation is often used in commercial machine transla-
tion, where human posteditors are employed.

YC also produces more grammatical output (112
total versus 37 for BT). In semantic correctness, it
is only on par with the other systems (115 versus
113 for BT). It produces far fewer “garbage” out-
puts that are neither syntactically nor semantically
correct (164 versus 223 for BN). The BLEU score
varies; it tends to reward local word choice rather
than global accuracy. In these experiments, YC
failed to return output in some cases, as noted ear-
lier, while BT always returned an output.

Figure 3 gives some sample outputs (“REF”
means a correct human reference translation). The
ability of YC to hone in on a good translation is ap-
parent, as is its failure on some simple problems.

Also striking is how different the systems’ trans-
lations are from one another. In SMT experi-
ments, one usually sees minor variations, but in this
case, radically different knowledge sources are be-
ing brought to bear. Surprisingly, if we use an ora-
cle to vary the system (YC, YT, BT) on a sentence-
by-sentence basis, we are able to obtain77 perfect
translations. This demonstrates good future pos-
sibilities for integrating the knowledge sources we
have on hand.

5 Conclusion

We have presented results showing that syntax-
based language modeling is a promising technique
for use in noisy-channel statistical machine transla-
tion. When combined with the MT-model of (YK01)
we were able to increase the number of perfect trans-
lations by 45% by improving the English syntax of



System Perfect Syntactically Semantically Wrong BLEU
Translation Correct but Correct

Semantically Syntactically
Wrong Wrong

YC 45 67 70 164 0.0717
YT 31 19 87 209 0.1031
BT 26 11 87 223 0.0722

Figure 2: Results of evaluation on 347 previously unseen Chinese sentences. YC is the system described in
this paper.

the translations. Less useful, but still relevant, is
the corresponding increase in well-phrased seman-
tic garbage. Of more interest is the differences in
translation produced by the three systems consid-
ered here, as indicated by the fact that an oracle
system could have increased the number of perfect
translations by another 70%.

In principle syntax-based language models could
be combined with a wide variety of MT systems. In
particular it is not necessary that the MT-model uses
syntax itself, as shown by the use of syntax-based
language modeling in speech recognition (XCJ02).
Nevertheless, it is certainly convenient when the
MT-model is target-language parsed, as then the in-
put to the language model is already a forest, and
a significant proportion of the parser’s work has al-
ready been done for it. As we expect that syntax-
based MT models will become more common in
the next few years, the techniques described herein
should be of increasing relevance.
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REF: this is the globalization of production
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YC: the central authorities in fact are satisfied with the policy of mr tung chee-hwa
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