
Combining decision trees and transformation-based learning 
to correct transferred linguistic representations 

 
Simon Corston-Oliver and Michael Gamon 

Microsoft Research 
One Microsoft Way 

Redmond WA 98052, USA 
{simonco, mgamon}@microsoft.com 

Abstract 
We present a hybrid machine learning 
approach to correcting features in 
transferred linguistic representations in 
machine translation. The hybrid approach 
combines decision trees and 
transformation-based learning. Decision 
trees serve as a filter on the intractably 
large search space of possible 
interrelations among features. 
Transformation-based learning results in a 
simple set of ordered rules that can be 
compiled and executed after transfer and 
before sentence realization in the target 
language. We measure the reduction in 
noise in the linguistic representations and 
the results of human evaluations of end-to-
end English-German machine translation. 

1. Introduction 
In an ideal world, the transferred linguistic 

representations produced by a machine translation 
(MT) system would contain all and only the 
features needed to ensure perfect fluent and 
grammatical text realization in the target language. 
In the world that we inhabit, transferred linguistic 
representations deviate from this ideal in three 
ways: the representations may be overspecified or 
underspecified or may contain noise. 

Overspecification describes the situation in 
which more precision is given in the description of 
a linguistic constituent than is required by the 
target language. For example, a distinction in 
gender between masculine and feminine is 
semantically relevant to pronouns in English, but is 
only explicitly encoded for third person animate 
pronouns (e.g. “he” vs. “her”). Spanish, on the 

other hand, encodes a masculine vs. feminine 
distinction for inanimate third person pronouns. 
When translating from Spanish to English, we 
might see an overspecification of gender for third 
person pronouns, influenced by the lexical or 
semantic gender of the antecedent in Spanish. If 
the English sentence realization module is 
confronted with a node marked [-Animate +Pers3 
+Masc] it must decide which features are overly 
specific. Overspecification of pronouns is a 
common problem given the fact that the resolution 
of antecedents in the source language is usually 
incomplete or uncertain using current anaphora 
resolution algorithms. 

Underspecification describes the situation in 
which less precision is given in the description of a 
linguistic constituent than is required by the target 
language. For example, Japanese noun phrases are 
usually not marked for definiteness or number, 
whereas English frequently requires that these 
features be explicitly indicated by analytic or 
synthetic means. In the majority of cases, the 
machine translation system must make reasonable 
inferences concerning the source language to 
satisfy the requirements of the target language. An 
alternative approach would be to require the 
analysis of the source language to specify all the 
features required for a given target language, an 
approach that would become impractical as the 
number of target languages increases. 

Among the residual noise, i.e. errors in the 
transferred linguistic representations that are 
neither over- nor under-specification, are 
incorrectly specified lexical items, gross errors in 
the structure of the logical form, and errors 
resulting from the transfer process or from mis-
analyses of the source language. For typologically 
similar languages, in particular for those languages 



with similar feature makeup, many residual errors 
are simply minor differences in logical form 
representation. 

As analysis and transfer algorithms continue to 
be improved, we would hope to see less and less 
noise in machine translation. There remain other 
scenarios, such as dialogue (with noise inherent in 
speech recognition) and generation from non-
linguistic inputs in which a sentence realization 
module must gracefully handle erroneous input. 

We present a hybrid machine-learning approach 
to resolving errors in transferred linguistic 
representations, using a combination of decision 
tree learning and transformation-based learning. 
The resulting rule set changes binary feature values, 
thus correcting feature based deficiencies. We 
evaluate the effectiveness of this hybrid approach 
at reducing noise in transferred linguistic 
representations known as logical forms (LFs), and 
then evaluate the impact of those changes on 
translations generated in an English-to-German 
machine translation system (Dolan et al. 2001). 

2. The Microsoft Research Machine 
Translation system (MSR-MT) 

The experiments presented here were 
performed in the context of the MSR MT system 
(Dolan et al. 2001). The MSR-MT system is a 
data-driven translation system with knowledge-
engineered analysis components. At training time, 
an aligned bitext is analyzed into Logical Form 
(LF) graphs. An alignment algorithm finds 
mappings between the LF of the source and target 
language (Menezes et al. 2001). The learned 
mappings are then stored in a bilingual transfer 
memory. At translation time, a sentence in the 
source language is analyzed to LF. The resulting 
LF is then mapped onto matching LF sub-graphs 
from the transfer memory, and a target language 
LF is constituted from the matching sub-graphs. 
Finally, the target language LF is used to generate 
the target sentence string. 

The logical form that we employ is a graph data 
structure that expresses the propositional content of 
a sentence. Nodes in the graph contain citation 
forms of content words, annotated with binary 
features such as tense, aspect, definiteness, number, 
and person. Relations between nodes are indicated 
by labeled arcs. The LF normalizes surface 

syntactic alternations such as active/passive. The 
LF is described in more detail in (Heidorn 2000). 

In our experiments, we employ our approach to 
clean up features on LFs transferred from English 
to German, attempting to make the combination of 
features on each node in the transferred LFs more 
closely resemble the LFs that result from analysis 
of native German sentences.  

3. Transformation-based error-driven 
learning 

Transformation-based error-driven learning 
(Brill 1993a, 1995), commonly referred to as 
“transformation-based learning” or TBL, is an 
automatic machine learning technique. The output 
of TBL is an ordered list of rules whose 
application to data results in a reduction in error. 
The best-known application of TBL has been to the 
task of part-of-speech tagging (Brill 1992, 1994). 
TBL has also been applied to a number of diverse 
linguistic tasks such as resolving syntactic 
attachment ambiguities (Brill and Resnik 1994), 
syntactic parsing (Brill 1993b), and word sense 
disambiguation (Dini et al 1998). 

Figure 1 gives pseudo-code that describes the 
learning phase of transformation-based learning. 
As is customary, we explain the learning phase 
with respect to the task of part-of-speech tagging. 
An initial part-of-speech tag is assigned to each 
word, typically by choosing randomly among the 
parts-of-speech observed for each word, or by 
choosing the most commonly observed part-of-
speech for each word. Transformations consist of 
what Brill (1995:545) calls a “rewrite rule” such as 
“Change the tag from modal to noun” and a 
“triggering environment” such as “The preceding 
word is a determiner.” 

Assign an initial value to each data point to create 
data set, D 
Repeat 

Find the transformation Ti that gives the best 
reduction in errors in D 
If (ErrorReduction(Ti) ≥ Minimum) 

Add Ti to the ordered list of rules, R 
Apply Ti to all relevant cases in D 

End if 
Until (ErrorReduction(Ti) < Minimum) 
Emit R 

Figure 1: Pseudo-code for TBL learning 



The learning phase is a greedy search. During 
each iteration the transformation that results in the 
greatest reduction in errors in the data set D 
compared to a reference data set is selected. If 
more than one transformation yields the greatest 
reduction, one candidate is arbitrarily selected. The 
same transformation might be selected multiple 
times. 

Learning ceases when the reduction in errors is 
less than a predetermined minimum. When 
investigating the performance of the algorithm in 
the limit, a minimum value of one or two is 
typically used. For practical purposes, higher 
minima might be used to reduce learning time and 
to avoid overfitting to the training data. The 
learned list of rules can simply be applied in strict 
sequence to new situations. 

Transformation-based learning has several 
attractive properties. Most notably, the rules that 
are learned are interpretable by humans. 
Furthermore, the lists of rules tend to be more 
parsimonious than the output of a stochastic tagger. 
Brill (1995:557) for example, notes that 200 TBL 
rules trained on 64,000 words yielded comparable 
tagging accuracy to a set of 10,000 contextual 
probabilities emitted by a stochastic tagger. 

On the downside, the run-time performance of 
TBL can be prohibitive. Performance during the 
learning phase can be improved by indexing 
schemes, by sampling from the set of possible 
transformations, or by assuming independence 
among the transformations (Samuel 1998, Ngai 
and Florian 2001, Hepple 2000). Similarly, the 
application of sequences of learned rules can be 
improved by indexing schemes that eliminate the 
vacuous application of rules to new data (Satta and 
Brill 1996) and by compiling the list of rules into a 
finite state transducer (Roche and Schabes 1995). 

The most glaring deficiency of transformation-
based learning, and the motivation for the 
technique described in this paper, is the lack of a 
mechanism for navigating the space of possible 
transformations. In practice, researchers have 
managed the search for transformations by 
specifying templates that describe a set of 
transformations to be tried. For example, in part-
of-speech tagging, the pretheoretical intuition is 
that resolving part-of-speech ambiguities can be 
achieved with reference to very local contexts only. 
Templates can constrain the search space by 
considering the part-of-speech and/or lexeme of 

each token within a fairly small window of tokens 
on either side of the position under consideration. 
For example, one template might describe 
triggering environments that consider the part-of-
speech of a word to the left of the current token 
and the lexeme of the word to the right. Ramshaw 
and Marcus (1994) show that with the right set of 
templates, TBL appears to be immune to 
overtraining. If irrelevant templates are added, 
however, overtraining is likely, especially near the 
end of the list of transformations. An example of 
an irrelevant template in part-of-speech tagging is 
a triggering environment five tokens removed from 
the current token, i.e. a token that is unlikely to be 
in a dependency relation to the current token. It is 
also conceivable that omitting a relevant rule 
template could lead to a degradation in tagging 
accuracy, since some relevant phenomena will not 
be captured. 

Thus, current approaches to TBL crucially 
depend on preselecting all and only the relevant 
templates for transformations. Failure to satisfy 
this precondition will result in overtraining or 
under-performance. Satisfying this requirement has 
not been problematic in the tasks to which TBL 
has been applied to date, because a pretheoretical 
understanding of those tasks has enabled the 
formulation of appropriate sets of templates. In the 
experiments that we describe below, we did not 
have such pretheoretical intuitions to guide us. We 
have therefore formulated an approach to 
generating possible transformations by first 
building decision trees. 

4. Combining decision trees and 
transformation-based learning 

The main problem for the task of learning a set 
of rules to correct a noisy vector of features 
describing a node in the LF is the large number of 
features to be manipulated and the large number of 
features in the conditioning of the rules. On each 
LF node we have thirty-eight binary features that 
we want to manipulate. Each of those features is 
potentially conditioned on each of the remaining 
thirty-seven features on that node, as well as 
additional multi-valued features (such as the 
governing preposition) on the node and the parent 
node. Each node is described by a feature vector 
containing 370 elements—38 features to be 
manipulated, plus 332 features that are also 



considered in the triggering environment. Each of 
the 38 features to be manipulated is potentially 
dependent on a combination of one through 369 of 
the remaining features. If all features were binary, 
this would yield a search space of  
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i.e. 1.2x10111 possible transformations. Clearly it is 
not practical for TBL to consider such a large 
search space. 

In order to narrow the rule space for the TBL 
learner to consider, we begin by learning a set of 
decision trees to predict the value of each of the 
thirty-eight target features given all other features 
in the vector. We use the WinMine toolkit 
(Chickering 2002) as our decision tree learner. 
Since the leaf nodes of the decision trees produced 
by WinMine describe probability distributions over 
possible values for the feature, the features in the 
vector could in principle be binary or multi-valued. 
For our experiments, however, all target features 
were binary-valued, although some of the input 
features are multi-valued. 

For decision tree learning we use the complete 
set of feature vectors automatically extracted from 
all LF nodes in the analysis of 100k German 
sentences drawn from technical manuals. 

A first reduction of the potential rule space is 
achieved through feature selection by the decision 
tree learner: of the 370 input features, only 221 
were selected by WinMine as being predictive of 
the target features. Figure 2 illustrates a highly 
simplified fragment of the decision tree for the 
target feature [Def] (definite). On all nodes of the 
decision tree the probabilities for the 0-value and 
for the 1-value of the definiteness feature are given. 
The highlighted path through the tree is translated 
into rule format at the bottom of Figure 2. The 
feature [Proximal] is found on certain 
demonstratives. Note that in the feature notation 
used here, [-Def] does not entail [+Indefinite], e.g. 
generic NPs may occur with no explicit indication 
of definiteness. 

Figure 2: A decision tree fragment for the target 
feature [Def] (definite) 

Next, we generate a set of transformations from 
the decision trees. We extract each path from the 
root to a leaf node, as well as each sub-path from 
the root to a branching vertex for each of the 
decision trees. These paths and sub-paths 
constitute the triggering environment for a 
transformation. For each path or sub-path, we note 
the most likely value for the target feature. This 
corresponds to the rewrite part of a transformation. 
As an illustration, given the decision tree fragment 
in Figure 2, we would extract the transformations 
in Figure 3. In our experiment, 18,420 
transformations were generated from the decision 
trees. The triggering environments are formulated 
as C++ code, and then compiled.1 

                                                      
1 It would be possible to manipulate the tree data 

structures directly at run-time, but compiling these 
conditions into executable code has yielded tremendous 
benefits in execution speed. 



IF NOT(3rd Person): -Def 
IF 3rd Person: -Def 
IF 3rd Person AND Indefinite: -Def 
IF 3rd Person AND NOT Indefinite: +Def 
IF 3rd Person AND NOT Indefinite AND NOT Plural: +Def 
IF 3rd Person AND NOT Indefinite AND Plural:  -Def 
IF 3rd Person AND NOT Indefinite AND Plural AND Proximal: +Def 
IF 3rd Person AND NOT Indefinite AND Plural and NOT Proximal:  -Def 
IF 3rd Person AND NOT Indefinite AND Plural and NOT Proximal AND Part-of-Speech is 
Noun: -Def 
IF 3rd Person AND NOT Indefinite AND Plural AND NOT Proximal AND Part-of-Speech is NOT 
Noun: -Def 

Figure 3: All complete and partial paths of the  decision tree fragment in Figure 2 

The initial state of the data set used during TBL 
is set by taking the reference data (250k feature 
vectors extracted from German LF nodes) and 
randomly adding noise. Points in the vectors for 
the data set are randomly selected and changed. 
Because all target features are binary, values are 
either flipped from a one to a zero, or vice versa. 
More principled methods of adding noise might be 
appropriate in other contexts. For our experiments, 
however, we have no way of guessing what the 
pattern of errors might be in the transferred logical 
forms, since the pattern will vary according to the 
source language. Another possibility, training on 
actual transferred LFs, was not practical: The LFs 
are frequently so different from the LFs of the 
human reference translations as to make it 
impossible to align the two. 

The TBL learning proceeds as described in 
Figure 1 with some optimization added to improve 
the execution speed of the learning phase. During 
the first iteration, each transformation is 
considered, and its error reduction noted. This 
error-reduction is cached for subsequent runs. The 
best transformation is added to the list of rules, and 
applied to the data. During subsequent iterations, 
we again consider all transformations, but only 
need to recalculate the error reduction for a subset 
of the transformations. If the best transformation 
during the previous iteration changed the value of 
featurej then for the next iteration we only need to 
recalculate the error reduction for those 
transformations that make reference to featurej. 

An additional optimization also substantially 
reduces the time taken during the learning phase. 
During learning each transformation is tested on 
each case in the data set. We can skip the 

remaining cases in the data set if the number of 
errors added by the current transformation is 
greater than or equal to the number of remaining 
cases, i.e. even if every remaining case were to 
result in an improvement the net effect of applying 
this transformation would be zero. 

5. Results 
Figure 4 presents the results for a data set of 

250,000 LF nodes automatically extracted by the 
German NLPWin system from German technical 
manuals. The training set consisted of 200,000 
randomly selected cases. The blind test set 
consisted of the remaining 50,000 cases. Varying 
amounts of noise were added to the data, ranging 
from 250,000 errors to five million errors. 221 
features were used. Three multi-valued features, 
[POS] “part-of-speech”, labeled relation to the 
parent node and the citation form of the governing 
preposition for both the current node and its parent 
were part of the conditioning features. The 
remaining 215 features, including the thirty-eight 
target features, were binary-valued linguistic 
features. 

The results in Figure 4 show the reduction in 
the error rate measured against the blind test set. 
TBL learning ceased when no transformation 
yielded a net improvement of two or more. As the 
graph shows, the TBL learning is robust in the face 
of increasing amounts of noise. Furthermore, the 
TBL learning does not appear to overfit to the 
training data. As Ramshaw and Marcus (1994) 
observe, the addition of irrelevant rule templates 
does lead to overfitting. We avoid this situation by 
the automatic preselection of relevant rules. 



Reduction in error on held-out test data
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Figure 4: Reduction in error in held-out test data 
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Figure 5: Transformations selected by TBL, introduced errors=1M 

 
We experimented with two additional 

constraints that followed naturally from the fact 
that the transformations had been extracted from 
decision trees. Other things being equal: 

1. Prefer transformations with fewer 
conjuncts in the conditioning environment, 
OR 

2. Prefer the transformation with the sharpest 
separation between the two values of the 
binary feature. 



The addition of these constraints did not 
materially affect the results. Constraint (1) merely 
affected the order in which the transformations 
were selected. Constraint (2) also produced only 
minor changes in the order in which 
transformations were added. This is not surprising: 
less sharp separations in the probabilities of the 
two binary values correlate with a greater amount 
of noise introduced by that transformation during 
learning. More noisy transformations are less 
likely to be selected during the greedy search. 

The decision tree phase of the learning process 
proposed 18,420 possible transformations. With 
one million introduced errors, 894 of these 
transformations were selected. As Figure 5 shows, 
many rather complex transformations were 
selected. Seven transformations had forty or more 
conjuncts in the triggering environment. The most 
complex transformation had sixty conjuncts. The 
search for this transformation would have been 
prohibitive if the TBL stage were required to 
search more than 260 possibilities. The initial 
decision tree stage however had reduced the search 
space to a mere two transformations worthy of 
consideration. 

6. Evaluation 
To evaluate the set of learned transformations, 

we compared two translations of a blind set of data. 
One set, labeled “No TBL”, consisted of sentences 
that had been realized directly from the transferred 
LFs. For the second set, labeled “With TBL”, we 
applied the learned set of transformations to the 
transferred LFs before performing sentence 
realization. We applied the set of transformations 
learned from 250,000 data points with one million 
introduced errors. 

We took a sufficiently large sample to ensure 
that there were 250 differences in the output of the 
two systems. This sample consisted of 250 
differences, and 716 sentences that showed no 
differences for the two scenarios.  

Six independent human evaluators compared 
the output of the two systems in a randomized, 
anonymous presentation and indicated whether 
they preferred the output of one system over the 
other, or had no preference. Sentences that did not 
differ between the two systems were not evaluated. 
The results of the six human evaluators were 
averaged. An average score greater than zero 

indicates a preference for the “With TBL” scenario. 
Statistical significance was determined by Monte 
Carlo simulation. All results presented below are 
significant at p < 0.01. 

For all 966 sentences, including those with no 
differences between the two systems, the average 
score was 0.093, i.e. there was a slight preference 
for the “With TBL” scenario. Considering only the 
250 sentences with differences, the average score 
was 0.361, i.e. there was a marked preference for 
the “With TBL” scenario. 

As a simple illustrative example of an 
improvement in translation quality through a TBL 
rule, consider the following English sentence and 
its translation: 

Beachten Sie folgendes 
Note you following 
“Note the following.” 

In the German translation of the expression “the 
following”, no definite determiner is used with the 
present participle “folgendes”. TBL selected the 
following rule, extracted from the decision tree 
fragment in Figure 2. 

IF (3rd person AND NOT Indefinite AND 
Plural AND NOT Proximal AND Part-of-
Speech is NOT Noun): -Def 

In the “No TBL” scenario, the transferred LF 
node corresponding to “folgendes” was marked 
[Def], i.e. it was over-specified, influenced by the 
English source. This resulted in the ungrammatical 
German output “Beachten Sie das folgendes”. In 
the “With TBL” scenario, the application of this 
transformation removed the erroneous [Def] 
feature, resulting in the correct output, “Beachten 
Sie folgendes”.  

7. Conclusions 
We have shown that it is possible to 

automatically select a manageable set of candidate 
rules for transformation-based learning in a 
scenario where feature vectors and the possible 
conditioning environments for transformations 
would otherwise be prohibitively complex. To 
select relevant rules from a massive space of 
logically possible transformations, we employ 
decision tree learning for those features that need 
to be manipulated by transformations. From the 
resulting set of decision trees we generate 
transformations by reading off partial and complete 



paths to the leaf nodes. The set of transformations 
obtained from the decision trees is then used as the 
set of candidate rules for transformation-based 
learning. 

We have implemented this technique in the 
domain of machine translation, in order to filter 
errors in transferred linguistic representations 
which are complex and contain large numbers of 
interdependent features. We believe that the 
technique we describe is generally applicable in 
scenarios where the candidate rule-space for TBL 
is prohibitive, and where it is impossible to 
constrain the space of possible transformation by 
using pretheoretical intuition to specify rule 
templates.  
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