
An Algorithm for Word-Level Alignment of Parallel 
Dependency Trees1 

Yuan Ding        Daniel Gildea        Martha Palmer 
Department of Computer and Information Science 

University of Pennsylvania 
Philadelphia, USA 

{yding, dgildea, mpalmer}@linc.cis.upenn.edu 

Abstract  

Structural divergence presents a challenge to the use of syntax in statistical machine translation.  We 
address this problem with a new algorithm for alignment of loosely matched non-isomorphic 
dependency trees.  The algorithm selectively relaxes the constraints of the two tree structures while 
keeping computational complexity polynomial in the length of the sentences.  Experimentation with 
a large Chinese-English corpus shows an improvement in alignment results over the unstructured 
models of (Brown et al., 1993). 
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Introduction 
The statistical approach to machine translation, 
pioneered by (Brown et al., 1990, 1993), estimates 
word to word translation probabilities and sentence 
reordering probabilities directly from a large corpus 
of parallel sentences.  Despite their lack of any 
internal representation of syntax or semantics, the 
ability of such systems to leverage large amounts of 
training data has enabled them to perform 
competitively with more traditional interlingua 
based approaches.  In recent years, hybrid 
approaches, which aim at applying statistical 
models to structural data, have begun to emerge.  
However, such approaches have been faced with the 
problem of pervasive structural divergence between 
languages, due to both systematic differences 
between languages (Dorr, 1994) and the vagaries of 
loose translations in real corpora. 

Syntax-based statistical approaches to alignment 
began with (Wu, 1997), who introduced a 
polynomial-time solution for the alignment problem 
based on synchronous binary trees. (Alshawi et al., 
2000) extended the tree-based approach by 
representing each production in parallel 
dependency trees as a finite-state transducer.  Both 
these approaches learn the tree representations 
directly from parallel sentences, and do not make 

allowance for non-isomorphic structures.  (Yamada 
and Knight, 2001, 2002) model translation as a 
sequence of operations transforming a syntactic tree 
in one language into the string of the second 
language, making use of the output of an automatic 
parser in one of the two parallel languages.  This 
allows the model to make use of the syntactic 
information provided by treebanks and the 
automatic parsers derived from them.  While we 
would like to use syntactic information in both 
languages, the problem of non-isomorphism grows 
when trees in both languages are required to match.  
The use of probabilistic tree substitution grammars 
for tree-to-tree alignment (Hajic et al., 2002) allows 
for limited non-isomorphism in that n-to-m 
matching of nodes in the two trees is permitted.  
However, even after extending this model by 
allowing cloning operations on subtrees, (Gildea, 
2003) found that parallel trees overconstrained the 
alignment problem, and achieved better results with 
a tree-to-string model using one input tree than with 
a tree-to-tree model using two. 

In this paper we present a new approach to the 
alignment of parallel dependency trees, allowing 
the tree structure to constrain the alignment at the 
high level, but relaxing the isomorphism constraints 
as necessary within smaller subtrees. The algorithm 
introduced in this paper addresses the alignment 



task on its own, rather than viewing it as a part of a 
generative translation model.  The algorithm uses 
the parallel tree structure to iteratively add 
constraints to possible alignments between the two 
input sentences.  In each iteration, the algorithm 
first estimates the word-to-word translation 
parameters, then computes the scores of a heuristic 
function for each partial alignment, fixes the more 
confident partial alignments, and re-estimates the 
translation parameters in the next iteration. 
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We first give a formal definition of the alignment 
problem and introduce the iterative framework of 
the algorithm in section 2.  Then we explain the 
usage of dependency trees and two heuristic 
functions in sections 3 and 4.  The formal algorithm 
and an example for illustration are given in sections 
5 and 6. The alignment results are evaluated in 
section 7. 
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2 The Framework 

2.1 The Alignment Problem 

Mathematically, the machine translation task can be 
viewed as a noisy channel. Given the task of 
translating a foreign language sentence to English, 

we have:
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 where  and 

 are source and target language sentences. We 
want to find e . The 

conditional probability part of the right hand side is 
usually referred to as the translation model (TM). 
During the construction of a machine translation 
pipeline, the alignment problem is usually handled 
as part of the TM and P , 

where  is any possible alignment between  e  and 
.  This approach requires a generative translation 

model. 
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However, when the alignment problem is viewed 
on its own, a generative model is not necessary. In 
other words, we can simply maximize  
using a conditional model. More straightforwardly, 
the alignment problem can be defined as Definition 
(1), which is equivalent to the alignment problem 
definition in (Och and Ney, 2000): 
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ds for the “empty symbol”, which means  
ld be aligned to nothing. This definition does not 
w multiple English words being aligned to a 
e foreign language word. 

jf

 Algorithm Outline 

 introduce the framework of the alignment 
orithm by first looking at how the IBM models 
dle alignment.  In Model 1, all connections for 
h foreign position are assumed to be equally 
ly, which implies that the orders of the words in 
h sentences do not matter.  Model 2 more 
listically assumes that the probability of a 
nection depends on the position which it 
nects to and on the length of the two strings.  In 
dels 3, 4 and 5, the foreign language string is 
eloped by choosing for each word in the English 
g, first the number of words in the foreign 
guage string it will generate, then the identity of 
h foreign language word, and finally the 
itions that these foreign language words will 
upy.  Briefly, Model 1 removes all the 
itioning information from the sentence pair and 
 be viewed as a “bag of words” model. And 
ting with Model 2, word positioning 
rmation is gradually added. 
e do not have to model word positioning 

rmation the way Models 2 to 5 did if we can 
 an alternative source for positioning 
rmation.  Syntactic structures offer a promising 
ice.  We use automatic syntactic parsers to 
duce the parallel unaligned syntactic structures: 
llins, 1999) for English, (Bikel, 2002) for 

inese.  The syntactic trees model the interaction 
ween words within one language, instead of 
wing them as a linear sequence.  If two syntactic 
s are partially aligned, the freedom of alignment 

 the rest of the unaligned nodes in the two trees is 
tricted by the aligned nodes, and these unaligned 
es are no longer free to be aligned to any 
ition in the counterpart sentence. 
bserving this, an iterative algorithm for MT 
nment that bootstraps between statistical 
deling and the parallel tree structures can be 
structed.  The following description of the 



algorithm views the alignment problem as a 
labeling task as mentioned in Definition (1): 

In each iteration of the algorithm, some unfixed 
node pairs are fixed.  As the algorithm walks 
through the iterations, we have an increasing 
number of fixed node pairs, together with 
increasingly fine-grained treelet pairs in step 4. The 
algorithm stops when enough labels are fixed. 
Overall, each foreign word is free to be aligned to 
any English word initially.  As the algorithm 
continues, both the foreign and the English treelets 
get smaller in size and the complexity of labeling is 
reduced. 

 
Step 0. Unfix all the labeling for  except the 

root; initialize the two trees for e  and  as 
the only tree pair. 

jf
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Step 1. Train a statistical translation model on all 
the tree pairs to acquire word-to-word 
translation probabilities. The tree pairs are 
used as “bags of words” in this step and a 
statistical model such as IBM Model 1 can be 
used. 3 Using Dependency Trees 

Step 2. Compute the labeling for all unfixed nodes. 
Use a heuristic function to select confident 
labelings, and merge these labelings into the 
fixed labeling set. 

This framework of alignment utilizes tree structures 
to provide the positioning information. At a glance, 
phrasal structure trees (treebank style trees) seem to 
be a natural choice.  However, phrasal structure 
trees have two types of nodes, namely nonterminals 
and lexical items. The projected labelings always go 
to the lexical items while the domain information is 
stored in the nonterminals.  It is difficult to 
determine how to partition a phrasal structure tree. 
To solve this problem, we use dependency trees. 

Step 3. Project the fixed labeling set back onto the 
English and foreign language tree structures as 
fixed nodes 

Step 4. Partition the both the English and foreign 
language trees with the fixed nodes, producing 
a set of “treelet” pairs. 

Step 5. Go to Step 1 unless enough nodes fixed 
In addition, the dependency representation has 

the best phrasal cohesion properties. The percentage 
for head crossings per chance is 12.62% and that of 
modifier crossings per chance is 9.22%, according 
to (Fox, 2002). 

 
We call the resulting trees from a tree partitioning 

operation “treelets” instead of “subtrees” since they 
do not necessarily go down to every leaf. An 
example of a tree partition operation is shown in 
Figures 1a and 1b.   Dependency trees can be constructed from 

phrasal structure trees using a head percolation 
table (Xia, 2001). Each node of a dependency tree 
dominates its descendents.  If the dependency tree is 
stored with local word order information at its 
nodes, a tree traversal algorithm starting at any 
arbitrary node of the tree always generates a chunk 
in the original sentence.  The sentence “The quick 
brown fox jumps over the lazy dog” is represented 
as a dependency tree in Figure 1a.   

Figure 1a 
“The quick brown fox jumps over the lazy dog.” When some of the nodes in a dependency tree are 

fixed, we can partition the tree with each of the 
fixed nodes as a new root for the resulting treelets. 
Figure 1b shows the resulting three treelets by 
fixing the words “jumps”, “fox” and “dog”. 
Algorithmically, fixing one node in a treelet will 
result in two subsequent treelets.  The treelet rooted 
at the original root is called the “outside treelet” and 
the treelet rooted at the newly fixed node is called 
the “inside treelet”.  This is shown in Figure 2.  As a 
result, if we have n  fixed nodes in a dependency 
tree, we will always have n  treelets (assuming the Figure 1b 

Partitioning by fixing “fox” “dog” and “jump” 



root of the whole tree is always fixed).  This 
guarantees that whenever we fix a pair of nodes, the 
resulting partitioned treelets are always matched in 
pairs. 

 
Figure 2 Inside and Outside Treelets 

Partition “a recently built house” by fixing “built” 

The correctness of the algorithm lies in what we 
refer to as our partition assumption: 
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outputs a certain value which corresponds to 
confidence in this labeling. Here we introduce two 
heuristic functions. 

4.1 Entropy 

Since the label for the foreign language word  is 

computed by simply choosing arg , 

where 
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English treelet, and t is the probability of 

 being translated to , we have 
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translation probabilities will provide a distribution 
with a high concentration of probabilities on the 
chosen labels. Intuitively, the conditional entropy of 
the translation probability distribution will serve as 
a good estimate of the confidence in the chosen 
labeling. Let ∑

∈

=
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S
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a random variable. 
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his assumption is much looser than requiring 
 two dependency trees of the two languages to be 

orphic. A typical violation of this assumption 
the set of crossing-dependency alignments 
ween two structures shown in Figure 3 below: 

 
Figure 3. A crossing-dependency alignment  

(dotted lines stand for the alignment) 

hile such violations of the partition assumption 
st in real language pairs (as reported by (Fox, 
2) to be around 10%), the hope is, if we only fix 
e pairs above and below such violations, the 
g of words” translation model will correctly 
n the words with crossing-dependency 
nments. 

Heuristics 
 heuristic function in Step 2 takes a tentative 
e pair (  from the two treelets and ),
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Since we need to compute conditional entropy 
given , here the translation probabilities are 
normalized. The first heuristic function is defined 
as: 

jf
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4.2 Inside-Outside Probability 

Suppose we have two trees initially, T  and 
. When we fix a pair of words , both 

trees will be partitioned into two treelets. Here we 
borrow the idea from PCFG parsing, and call the 
treelets rooted with e  and  inside treelets 

 and . And the other two 

treelets are called outside treelets T  and 

. So, we have: 
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Define the size function to be the number of 
nodes in a treelet. And let 
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ForThe above two probabilities are derived using 

ideas from IBM Model 1. Similarly, define the 
second heuristic function as: 

L

    ))(|),(),((),(2 eTeffTPefh
jj ajaj =

L
4.3 Fertility Threshold 

Again, let us suppose we want to create two treelet 
pairs by fixing the node pair . In the first 
heuristic, the size and topology of the two resulting 
treelet pairs are not taken into consideration.  If we 
are unlucky enough, we may well end up having a 
treelet pair with one node on one side and 9 nodes 
on the other.  So we set a fertility threshold to make 
sure that the resulting treelet pairs have reasonable 
sizes on both sides.  Currently it is set to be 2.0.  
Any labeling resulting in a treelet pair that the 
number of the nodes on one side is larger than twice 
the number of the nodes on the other will be 
discarded. 
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5 Formal Algorithm 
{

Here we present the formal algorithm. The 
following invariant holds at Step 1 of each iteration 
because every new treelet created by the tree 
partition operation in Step 3 is an inside treelet 
rooted by a fixed node. Hence it is guaranteed that 
each partition operation in Step 3 will create a new 
treelet pair.  }
  } //
An Invariant of the Algorithm: 

At Step 1 of each iteration, 
 if and only if 

exists  such that 
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 Step 4: goto Step 1 unless enough nodes fixed Iteration 3: 
Partition and form three treelet pairs. 

Align “1947” and “1947”, “here” and “zheli” In IBM Model 1, P has a unique local 
maximum, so the values in the 

)|( ef
t  table are 

independent of initialization. In Step 1, the values in 
t  table converge to a unique set of values. So 
theoretically, the result of this algorithm is only 
dependent on the choice of the heuristic function . 
The algorithm calls the heuristic function h  
linearly to the size of the treelet. So the time 
complexity of the algorithm is

h

))(hTnO( × , 
whereT is the time complexity for the heuristic 
function and n  is the length of the shorter sentence 
of the sentence pair. 

)(h

 
 

Figure 4. An Example 

7 Evaluation 
We used the LDC Xinhua newswire Chinese – 
English parallel corpus with 60K+ sentence pairs as 
the training data. 1  The parser generated 53130 
parsed sentence pairs. We evaluated different 
alignment models on 500 sentence pairs provided 
by Microsoft Research Asia. The sentence pairs are 
word level aligned by hand.  

6 An Example 
An example of iterative partitioning of the treelets is 
given below to illustrate the algorithm. The Chinese 
is given in romanised form. 

 [English] I have been here since 1947. In Tables 1 and 2, the numbers listed are the 

F-scores for the alignments. 
||||
||2

GA
GA

+
F ∩
= , 

where  is the set of word pairs aligned by the 
automatic alignment algorithm and G  is the set of 
word pairs aligned in the gold file.  

A

 [Chinese] 1947 nian yilai wo yizhi zhu zai zheli. 
 

Iteration 1: 
One dependency tree pair. Align “I” and “wo” 

 

In Table 1, the IBM models are bootstrapped 
from Model 1 to Model 4. The evaluation F-scores 
did not show significant improvement from Model 
1 to Model 4, which we believe is partially caused 
by the difference in the genres of the training and 
evaluation data. Also the IBM models showed signs 
of overfitting. 

Itn# IBM 1 IBM 2 IBM 3 IBM 4
1 0.0000 0.5128 0.5082 0.5130
2 0.2464 0.5288 0.5077 0.5245
3 0.4607 0.5274 0.5106 0.5240
4 0.4935 0.5275 0.5130 0.5247
5 0.5039 0.5245 0.5138 0.5236
6 0.5073 0.5215 0.5149 0.5220
7 0.5092 0.5191 0.5142 0.5218
8 0.5099 0.5160 0.5138 0.5212
9 0.5111 0.5138 0.5138 0.5195

10 0.5121 0.5127 0.5132 0.5195

 
Iteration 2: 

Partition and form two treelet pairs. 
Align “since” and “yilai” 

 
Table 1: Evaluation results for IBM Models 1-4 

                                                      
 1 The original LDC Xinhua newswire corpus is very noisy and 

we filtered out roughly half the sentences. 



In Table 2, Models h1 and h2 are our models that 
use heuristic function h1 and h2, respectively.  We 
find that with the current parameter settings, 
Models h1 and h2 tend to overfit after the second 
iteration.  Table 2 shows results after one iteration 
of steps 2 through 4 of our algorithm, after 
successive iterations of IBM Model 1 in step 1 of 
the second iteration.  The two iterations of the 
algorithm take less than two hours on a dual 
Pentium 1.2GHz machine for both heuristics.  Error 
analysis showed that the overfitting problem is 
mainly caused by violation of the partition 
assumption in fine-grained dependency structures.   

M1 Itn# Model h1 Model h2 
1 0.5549 0.5151 
2 0.5590 0.5497 
3 0.5632 0.5515 
4 0.5615 0.5521 
5 0.5615 0.5540 
6 0.5603 0.5543 
7 0.5612 0.5539 
8 0.5604 0.5540 
9 0.5611 0.5542 

10 0.5622 0.5535 
Table 2: Evaluation results for our algorithm with 

heuristic function h1 and h2 
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Conclusion 
Our model, based on partitioning sentences 
according to their dependency structure, 
outperforms the unstructured IBM models on a 
large data set.  The model can be thought of as in 
sense orthogonal to the IBM models in that it uses 
syntactic structure but no linear ordering 
information. 

Possible future extensions to the model include 
adding information on linear order, allowing 
alignments that violate the partition assumption at 
some cost in probability, and conditioning 
alignment probabilities on part of speech tags. 
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