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Abstract

Data-Oriented Translation (DOT), which is based on Data-Oriented Parsing (DOP), comprises an
experience-based approach to translation, where new translations are derived with reference to gram-
matical analyses of previous translations. Previous DOT experiments [Poutsma, 1998, Poutsma, 2000a,
Poutsma, 2000b] were small in scale because important advances in DOP technology were not incorpo-
rated into the translation model. Despite this, related work [Way, 1999, Way, 2003a, Way, 2003b] reports
that DOT models are viable in that solutions to ‘hard’ translation cases are readily available. However, it
has not been shown to date that DOT models scale to larger datasets. In this work, we describe a novel
DOT system, inspired by recent advances in DOP parsing technology. We test our system on larger, more
complex corpora than have been used heretofore, and present both automatic and human evaluations which
show that high quality translations can be achieved at reasonable speeds.

1 Introduction

[Poutsma, 1998, Poutsma, 2000a, Poutsma, 2000b]
presents a statistical approach to machine transla-
tion (MT) based on Data-Oriented Parsing (DOP:
[Bod, 1998, Bod, Scha and Sima’an, 2003]). DOT
models constitute an experience-based approach to
translation, in that translations of previously un-
seen input are derived with reference to a set of
linked � source,target � tree fragments in the system’s
database. In section 2, we present some characteris-
tics of the DOP approach to parsing, and show how
the DOP fragmentation operations of root and fron-
tier are ported to DOT. We also show how the DOP
composition operation is adapted to data-oriented
models of translation, and give equations which
demonstrate our probability model for DOT. We
also describe the innovative notion of ‘link depth’
which we consider to be a more motivated method
(compared to the more arbitrary notion of fragment
depth) of pruning the example base from which sam-
ples are taken (the ‘competition set’) in order to try
to derive new translations.

We describe Poutsma’s DOT models of transla-
tion in section 3. A DOT system consists of a
DOP parser which has been extended to handle pairs
of fragments rather than single fragments. There-
fore, parsing technology forms the backbone of any
DOT system and all of the challenges of develop-
ing a DOP parser must also be met when imple-
menting DOT. Advances in high-performance pars-
ing technology are essential to any DOT system if
large-scale translation experiments on complex lin-
guistic data are to be carried out. We describe
our implementation of a DOT system incorporat-
ing optimisations—inspired by those developed for
DOP—in section 4. Our translation model facilitates
increased efficiency in terms of fragment extraction,
the building of a compact representation of the trans-
lation space and the selection of the most probable
translation.

In section 5, we describe a set of experiments car-
ried out on a large subset of the HomeCentre cor-
pus to test our DOT system. The HomeCentre cor-
pus contains 810 aligned English-French sentence
pairs from Xerox documentation parsed into LFG



c(onstituent)- and f(unctional)-structure representa-
tions. This bilingual treebank provides us with a lin-
guistically complex fragment base on which to per-
form experiments on a larger scale than those car-
ried out to date. [Frank, 1999] observes that the cor-
pus contains many ‘hard’ translation examples, in-
cluding cases of nominalisations, relation-changing,
passivisation, headswitching, complex coordination,
and combinations thereof. Accordingly, the cor-
pus would appear to present a challenge to any MT
system, but given that these cases are widespread
in real data, any MT system will ultimately be
judged—on the level of quality, at least—on how
it copes with such phenomena. We present the re-
sults of these experiments in terms of an automatic
and a human evaluation of the output translations.
Notably, our system achieves high quality transla-
tions in reasonable time. We contrast our results
with previous data-oriented models of translation,
and comment on some of the common errors that
we suggest could easily be fixed by a more lin-
guistically sophisticated system such as LFG-DOT
[Way, 1999, Way, 2003a, Way, 2003b]. Finally, we
conclude and provide some avenues for further re-
search.

2 Theoretical Background

2.1 Data-Oriented Parsing

Data-oriented models of language, e.g. [Bod, 1998,
Bod, Scha and Sima’an, 2003], are based on the as-
sumption that humans perceive and produce lan-
guage by availing of previous language experi-
ences rather than abstract grammar rules. Tree-
DOP models exploit treebanks comprising phrase-
structure trees representing previously occurring ut-
terances. Analyses of previously unseen input
sentences are produced by combining these frag-
ments and the most probable analysis is determined
via their relative frequencies. LFG-DOP models
[Bod and Kaplan, 1998] extend DOP by incorporat-
ing the representations of Lexical Functional Gram-
mar (LFG) which can capture and represent linguis-
tic phenomena other than those occurring at surface
level.

Drawbacks of the DOP approach centre around
issues of efficiency. Recent advances in parsing

have sought—with some success—to address these
issues. As the set of fragments extracted from a tree-
bank of reasonable size is generally both extremely
large and extremely redundant, pruning strategies
have been developed in an attempt to constrain the
number of fragments without reducing parse accu-
racy [Bod, 2001]. This work has led to the formation
of the DOP hypothesis, which states that parse accu-
racy increases with increasing fragment size. Opti-
mised algorithms to compute the parse space of an
input sentence over large fragment bases have also
been developed [Goodman, 1996, Sima’an, 1999].
Extraction of the most probable parse constitutes an
NP-complete problem [Sima’an, 1999] as many dif-
ferent derivations can result in the same parse and,
therefore, the most probable derivation (MPD) and
the most probable parse (MPP) are not necessarily
the same. Monte-Carlo sampling involves searching
over a reduced random sample of the search space.
It has been proposed as a method for calculating the
MPP in DOP [Bod, 1998] and the approach has been
further refined by [Chappelier and Rajman, 2003].

2.2 Data-Oriented Translation

Data-Oriented Translation exploits bilingual tree-
banks comprising linguistic representations of previ-
ously seen translation pairs, as well as explicit links
which map the translational equivalences present
within these pairs at sub-sentential level. Analyses
and translations of the input are produced simultane-
ously by combining source and target language frag-
ment pairs from the treebank. That is, there is no
distinction between the separate phases of analysis,
transfer and generation as in transfer-based MT, for
instance. In this sense, a DOT system can be viewed
as a DOP parser which has been adapted to process
fragments which consist of pairs of subtrees rather
than single subtrees.

The tree fragment pairs used in Tree-DOT are
called subtree pairs. The two decomposition oper-
ators, which are similar to those used in Tree-DOP
but are refined to take the translational links into ac-
count, are as follows:

� the root operator which takes any pair of linked
nodes in a tree pair to be the roots of a subtree pair
and deletes all nodes except these new roots and all
nodes dominated by them;



� the frontier operator which selects a (possibly
empty) set of linked node pairs in the newly cre-
ated subtree pairs, excluding the roots, and deletes
all subtree pairs dominated by these nodes.

The DOT composition operator is defined as fol-
lows. The composition of tree pairs � s � ,t ��� and� s � ,t ��� ( � s � ,t ����� � s � ,t ��� ) is only possible if

� the leftmost non-terminal frontier node of s 	 is of
the same syntactic category (e.g. S, NP, VP) as the
root node of s 
 , and

� the leftmost non-terminal frontier node of s 	 ’s
linked counterpart in t 	 is of the same syntactic cat-
egory as the root node of t 
 .

The resulting tree pair consists of a copy of s � where
s � has been inserted at the leftmost frontier node and
a copy of t � where t � has been inserted at the node
linked to s � ’s leftmost frontier node.

As in DOP, the DOT probability of a translation
derivation is the joint probability of choosing each
of the subtree pairs involved in that derivation. The
probability of selecting a subtree pair is its number
of occurrences in the corpus divided by the number
of pairs in the corpus with the same root nodes as it:

�� ����������� ������ ������� �! #"$�%�&�' �)( '  #*,+ -/. &0' �1( '  #*32543-/. &06 �)( 6  !*32 � �87��)� 79 :"$�
The probability of a derivation in DOT is the prod-
uct of the probabilities of the subtree pairs involved
in building that derivation. Thus, the probability of
derivation � s � ,t ����� ... � � s ; ,t ;<� is given by

�=� ��> � �1? �@�A�,BCBCBD� ��> ; �1? ;�����FEHG �=� ��> G �1? G ���
Again, a translation can be generated by many dif-
ferent derivations, so the probability of a transla-
tion w �JILK w � is the sum of the probabilities of its
derivations:

�=� ��M@���1MN� �����% � � �PO � �  5O "RQ G ��SUT � �8V � � V  " �� �W?1� O �1?�� O ���
While the translation process under DOT clearly

mirrors the DOP parsing process, DOT fragments
suffer from limited compositionality where DOP

does not [Way, 2003a, Way, 2003b]. In DOP, a frag-
ment with root category NP can be freely com-
posed with any fragment whose leftmost substitu-
tion site is also of category NP. Under DOT, how-
ever, a source fragment with root category NP can
only be composed with a fragment whose left-
most substitution site is of category NP if their
target categories also correspond—for example, a
pair with roots � NP,PP � cannot be composed with
a pair whose leftmost substitution categories are� NP,NP � . Thus, the number of potential compo-
sitions is reduced. Our DOT model is no different
from those of Poutsma in this respect.

2.3 Pruning: link depth

The refinement of the fragmentation process to ac-
count for translational links may (and often does)
result in a smaller number of DOT fragment per tree
pair than would be the case with DOP. However,
pruning methods to constrain the size of the frag-
ment base are still necessary. Several pruning cri-
teria have been proposed [Bod, 2001], one of which
involves restricting the fragment base with respect to
depth: fragments above a certain depth are excluded
from the fragment base. Since, for fragments con-
sisting of a single tree, any node can be designated
a substitution site, such fragments can be pruned
at any node. However, the definition of fragment
depth becomes less obvious when the fragments in
question consist of pairs of linked subtrees. For
linked subtree pairs, only linked nodes can be des-
ignated substitution sites and, therefore, such frag-
ments can only be pruned at linked nodes—to do
otherwise would result in source substitution sites
with no linked counterpart in the associated target
trees. Furthermore, as linked source and target trees
frequently differ with respect to depth, an arbitrary
decision would have to be taken as to whether depth
is calculated over the source or target trees. Conse-
quently, we replace the notion of fragment depth—
the greatest number of steps taken to get from the
root node to any frontier node—with the notion of
link depth for fragments comprising linked subtree
pairs. The link depth of a fragment is the greatest
number of steps taken which depart from a linked
node to get from the root node to any frontier nodes.
This yields the same result whether calculated over
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Figure 1: source depth = 3, target depth = 6, link
depth = 2

the source or target fragment, as shown in Figure 1.

3 Poutsma’s original DOT systems

In developing his DOT2 system,1 Poutsma does not
take advantage of the optimisations which have been
developed for DOP. Rather, fragments are created
explicitly and converted to rewrite rules of the form�

root
� ,root

� ��� K� (frontier � � ...frontier � � � ),( � frontier � � ...frontier � � ) �
with links indicating translational correspondences
between frontiers. He then relies on standard pars-
ing algorithms to generate the chart representing the
parse space. He uses Monte-Carlo sampling during
disambiguation in order to determine the most prob-
able translation, limiting the sample size to 1500
derivations.

Poutsma’s model [Poutsma, 2000b] is tested via
experiments carried out on a subset of the Verbmobil
corpus, which contains transcribed spoken dialogues
in the domain of appointment scheduling in German,
English and Japanese. Poutsma uses just the English
and German strings in his experiments—the English
Verbmobil strings are annotated with Penn-II Tree-
bank annotations, and the German strings with the
Tübingen scheme. He manually analysed each tree
pair and inserted translational links where necessary.
In total, his dataset comprises 266 tree pairs yielding
a maximum of 33,479 fragments.

1For the purposes of this discussion, we ignore here the orig-
inal DOT1 model [Poutsma, 1998] which was shown to derive
wrong translations where the

�
source,target � word order differ-

ered to any degree [Way, 1999]. This was due to the fact that
the recombination operator in DOT was defined on source trees
only rather than

�
source,target � pairs of trees. Poutsma named

his subsequent model of translation DOT2, which overcomes
this particular problem of DOT1.

Poutsma uses 226 of the 266 Verbmobil tree pairs
as a training set, holding out 40 tree pairs to test
the system. He translates both from English to Ger-
man and from German to English, and each time
uses a different training–test split to provide more
representative results. In a manual evaluation, he
provides figures for exact match, alternate (a dif-
ferent, though reasonable translation from the one
given), wrong (invalid translations), and partial ex-
act/alternate. Comparative results are provided us-
ing Babelfish as a baseline. Poutsma also provides
separate results depending on what depth of frag-
ment is included in the system database.

For both language pairs, DOT2 generated more
exact match translations than Babelfish—about
2.5% more for German–English and 8-10% more
for English–German. Where Babelfish outperforms
DOT is in the ‘alternate’ translation category—
15-23% more for German–English and 32-35%
more for English–German. DOT also produces
many more ungrammatical translations for English–
German (14% more), but far fewer for German–
English (8% fewer). As for ‘wrong’ translations,
Babelfish generates far more of these—for English–
German, 17-30% more, and for German–English,
28-34% more. It is impossible to provide compara-
tive results for ‘partial’ translations as Babelfish does
not produce these.

It is reasonably easy to provide an explanation as
to why DOT outperforms Babelfish in certain cate-
gories: given that DOT was trained on Verbmobil
data whereas Babelfish is a general purpose MT sys-
tem, one would expect DOT to do well when con-
fronted with similar test data. Nevertheless, it seems
from Poutsma’s figures that for German–English,
DOT is about as likely to produce an exact (13-15%)
translation as an ungrammatical (13%) one, while
‘wrong’ translations also appear maximally 13% of
the time. For English–German, DOT is more likely
to generate an ungrammatical translation (32%) than
an exact one (19%), with ‘wrong’ translations ap-
pearing around 5% of the time. Disappointingly, and
contrary to the DOP hypothesis, the performance of
the DOT model does not improve when fragments
of greater depth are included in the system database.
Poutsma explains this by the fact that “the trees in
our corpus contained a lot of lexical content ... at
very small tree depths”.



Poutsma’s system would appear to be feasible
solely because his experiments were carried out on
a small scale. However, having implemented a DOP
parser using similar rewrite rules and conventional
parsing techniques, it is clear to us that such systems
cannot work with larger fragment bases. Therefore,
we feel that it would not be possible to carry out
further experiments with a larger fragment base us-
ing his approach. His system is simplistic, and yet
despite this, the results in [Poutsma, 2000b] are not
overly encouraging.

4 Optimised Data-Oriented Translation

As the driving technology behind any DOT system
is a DOP parser, DOT can only be implemented effi-
ciently and robustly if advances in DOP technology
are incorporated.

4.1 Creation of the fragment base

In order to test our MT system, we employed a
dataset comprising the first 605 aligned English-
French sentence pairs from the HomeCentre cor-
pus which we manually annotated with translational
links. In total, our dataset yields in excess of 343
million fragments. Although fewer fragments are
extracted per tree pair than for DOP, the number of
bilingual fragment pairs extracted is still significant
and, as we are dealing with pairs of trees, the num-
ber of actual fragments created is double this figure.
Clearly, generating, storing and searching this num-
ber of fragments, as well as gathering frequencies
of occurrence for each subtree pair, is a non-trivial
task.

We have developed a dynamic method to gen-
erate a compact representation of all fragments
which can be derived from a particular tree pair
[Hearne and Way, 2003]. Fragments generated by
the root operation are extracted as usual. These
fragments are then decorated with a set of unique
identifiers referring to each fragment which can be
extracted via the frontier operation. Frequency in-
formation is calculated by recursively comparing
all decorated trees and identifying duplicates. This
method allows us to store and access only the orig-
inal treebank trees, thus alleviating the need to ex-
plicitly create the fragment base—a task which,

given a corpus of reasonable size and complexity,
quickly becomes unfeasible. Instead, we can effi-
ciently retrieve only those fragments directly useful
in translating the given input string.

4.2 Construction of the translation space

A chart built during the analysis phase is a compact
representation of all possible derivations leading to
valid parsed translations of the input string, which
can be constructed either bottom-up or top-down. In
order to build a translation chart using conventional
chart-parsing techniques, each fragment pair must
be expressed as a rewrite rule where links between
frontiers are preserved and a direct reference to the
original fragment structure is be retained—this is
the approach taken by Poutsma. However, these ap-
proaches are not equipped to handle the sheer num-
bers of fragments involved in large-scale translation
within the data-oriented framework.

We have developed a two-phase analysis compo-
nent based on the DOP optimisation proposed by
Sima’an [Sima’an, 1999]. However, we have opti-
mised for top-down computation of the most proba-
ble translation rather than bottom-up computation of
the most probable derivation. The first phase of anal-
ysis involves using the context-free grammar under-
lying the source side of the corpus to compute an
approximation of the parse space for the input using
the CKY algorithm. Given that the grammar under-
lying the English section of the HomeCentre corpus
comprises just 2606 rules, this clearly constitutes a
dramatic reduction of the initial search space. Dur-
ing the second phase, the set of bilingual fragments
is applied to this reduced parse space to generate the
exact DOT translation space for the given input. In
order to do so, a correspondence is drawn between
the context-free grammar rules used during the first
phase and the tree fragments we wish to insert into
the chart during the second phase. The fragmenta-
tion process described in the previous section pro-
vides these correspondences because they allow the
extraction of unique identifiers for all fragments as-
sociated with each context-free grammar rule. The
appropriate fragments are rebuilt using these iden-
tifiers, thus allowing for a highly optimised sec-
ond analysis phase. Further details can be found in
[Hearne and Way, 2003].



4.3 Computation of the output translation

Disambiguation, the final stage in the transla-
tion process, involves selecting the most proba-
ble translation or derivation from the translation
chart. Monte-Carlo sampling has been proposed
as a method for maximisation of the MPP in the
DOP framework [Bod, 1998] and we have applied
this technique to selection of the MPT for DOT. A
fragment is chosen at random from the top of the
chart. Fragments chosen at random from appropri-
ate chart positions and which have appropriate root
categories are then successively composed with this
fragment until there are no open substitution sites
left, at which point the derivation is complete. When
sufficient samples have been seen, the translation
which occurs most frequently in the sample corre-
sponds to the MPT.

5 Experiments and Results

Having manually aligned the � source,target � tree
fragments from the first 605 aligned English-French
sentence pairs from the HomeCentre corpus, we
divide our dataset into 8 different training/test set
splits, where each training set contains 545 parsed
sentence pairs and each test set 60 sentence pairs.
One restriction was placed on the training/test splits,
namely that all words occurring in the source side of
the test set had to also occur in the source side of the
training set, but not necessarily with the same lexi-
cal category. All translations carried out were from
English into French. Finally, we limited the number
of samples taken during the disambiguation process
to 5000.

Link Depth 1 2 3

No. fragments 4,506 23,478 104,400
Secs/sentence 17.80 16.27 15.33

Coverage (%) 66.47 67.92 67.92
Type 1 fail (%) 11.46 11.46 11.46
Type 2 fail (%) 1.04 1.04 1.04
Type 3 fail (%) 21.04 19.58 19.58

Table 1: Quantitative evaluation of DOT on the
HomeCentre Corpus

5.1 Coverage

As the size of the fragment base increases, the num-
ber of sentences for which translations can be pro-
duced remains relatively steady. As can be seen in
Table 1, there is a slight increase in coverage from
66.47% at link depth 1 to 67.92% at link depth 2 and
no increase at link depth 3. There are 3 possible rea-
sons why a particular sentence cannot be translated,
which we have classified as types 1, 2 and 3.

� A type 1 failure occurs where a complete parse
space cannot be constructed for the source sentence
using the CFG underlying the source side of the
training set. As all words in the test set also occur
in the training set, this generally indicates a word
of unknown category—this is also a major problem
for DOP [Bod, 1998].

� A type 2 failure occurs where a complete parse
space can be constructed for the source sentence us-
ing the CFG but not using the fragments extracted
from the source side of the training set. This situ-
ation does not arise using a monolingual fragment
base as the minimal set of depth 1 fragments corre-
sponds exactly to the set of underlying CFG rules.
This is not the case for DOT, however, as the min-
imal set of fragments is of link depth 1 rather than
depth 1 (cf. Figure 1).

� A type 3 failure occurs where a complete parse
space can be constructed for the source sentence us-
ing both the CFG and the fragment base extracted
from the source side of the training set but a com-
plete translation space cannot be constructed using
the bilingual fragment base as DOT fragments suf-
fer from reduced compositionality.

5.2 Automatic evaluation of quality

Table 2 shows IBM Bleu scores using the NIST
MT Evaluation Toolkit2 for DOT at each link depth.
The Bleu scores range from 0.7018 when only frag-
ments of link depth 1 are considered, to 0.7838 when
all fragments up to link depth 3 are included in
the competition set. The Bleu scores that our sys-
tem achieves considerably improve upon previously
published results. Such high scores are possible
given the linguistic sophistication of the treebank—
the availability of good contextual information en-
sures that only suitable fragments are considered

2http://www.nist.gov/speech/tests/mt/mt2001/index.htm



where translations are derived by recombining dif-
ferent subtree pairs. Of course, this is only achiev-
able given the effort taken to manually construct the
set of � source,target � tree fragments in the system’s
database. However, we are confident that better Bleu
scores are achievable when we augment our transla-
tion models with the syntactic information contained
in the LFG f-structures in the Homecentre corpus.

Link Depth 1 2 3

Score 4 (%) 60.12 74.13 75.52
Score 3 (%) 27.32 14.18 13.22
Score 2 (%) 8.40 7.38 5.95
Score 1 (%) 4.15 4.31 4.31

BLEU score 0.7018 0.7456 0.7838

Table 2: Qualitative evaluation of DOT on the
HomeCentre Corpus

5.3 Manual evaluation of quality

In order to manually evaluate the quality of our MT
system, we assigned each translation produced to
one of the following categories:

� Category 4: perfect translation (exact/alternative);

� Category 3: good quality translation with minor
syntactic or translation errors;

� Category 2: partially intelligible translation with
major syntactic or translation errors;

� Category 1: unintelligible.

Two native speakers of French with fluent English
carried out this task. As shown in Table 2, trans-
lation quality improved consistently as the size and
complexity of the fragment base increased. Perfect
translations ranged from 60.12% to 75.52% as link
depth increased. Note that the Bleu scores in Table 2
are quite similar to these Category 4 manual evalu-
ations, which bears out the claim that Bleu scores
are intended to correlate highly with those of human
evaluators. Furthermore, minor and major grammat-
ical and translation errors decreased, ranging from
27.32% to 13.22% and from 8.40% to 5.95% respec-
tively, as more fragments were included. A good ex-
ample is the page is printed. � le page est imprimé.
Here we see two agreement errors: between the de-
terminer and noun, and between the subject NP and

the ending on the past participle. Both errors would
be easy to fix in LFG-DOT given the availability of
syntactic information in the f-structures. The num-
ber of translations so poor as to be unintelligible
remained relatively stable, ranging from 4.15% to
4.31%. These results appear to confirm that the DOP
hypothesis also holds for DOT as we have observed
that translation accuracy also increases as larger sub-
tree pairs are included in the fragment base.

5.4 Time

From Table 1 we observe that, contrary to intu-
ition, the average time taken to translate each sen-
tence decreases as more fragments are included in
the fragment base. During the disambiguation pro-
cess, fragments are sampled from the chart and sub-
stituted into the current derivation until no open
substitution sites remain in that derivation. Where
large fragments are selected, fewer fragments are
subsequently sampled in completing the derivation,
thus resulting in reduced disambiguation time. It is
unclear—and, indeed, unlikely—that this trend will
continue as link depth is increased; further experi-
ments at greater link depths will be required to ver-
ify this.

Given that most criticisms of DOP-based ap-
proaches centre on problems of efficiency, we con-
sider the translation times of between 15–18 sec-
onds per sentence to be quite reasonable, particu-
larly when the translation quality is taken into ac-
count. These were achieved on a Pentium 4 with
1.7GHz CPU and 750Mb RAM.

5.5 Contrasting Results

In terms of quality, we achieve perfect exact or al-
ternative translations in 60.12%–75.52% of cases,
whereas Poutsma reports results of 18.92%–24.33%
for the same category. Our results, which also show
increased quality as fragment depth increases, pro-
vide initial confirmation that the DOP hypothesis
also holds for DOT, contrary to Poutsma’s findings.
He suggests that this is due to the fact that his dataset
contained much lexical context at small tree depths,
and also that his dataset was small and of poor qual-
ity [Poutsma, 2000a]. Our findings would appear
to confirm this conclusion as our dataset is of high



quality and contains a greater degree of linguistic
complexity.

Our innovation of link depth may also be impor-
tant in confirming the DOP hypothesis for DOT as
Poutsma does not describe how he calculates the
depth of a linked subtree pair. While these issues go
some way towards explaining why our results have
improved on those of Poutsma, it is also the case
that our experiments have been performed on a dif-
ferent language pair. Therefore, we intend to extend
our experiments both by translating from French to
English and by working with the English-German
section of the HomeCentre corpus.

6 Conclusions and future work

We have developed a high-performance data-
oriented MT system which incorporates and adapts
optimisations originally developed for DOP. We
have tested this system on the complex and challeng-
ing HomeCentre corpus and have achieved promis-
ing results, both in terms of results and efficiency.
We intend to perform further experiments—using
alternative translation directions, language pairs
and pruning parameters—in order to test our sys-
tem comprehensively and, consequently, establish
the data-oriented translation models as viable ap-
proaches to MT.

As the corpus is aligned at sentence level, sub-
sentential translational equivalences must be in-
serted manually—to date we have completed 75%
of the alignment process. Despite the reduced num-
ber of fragments produced for DOT, pruning of the
search space is still essential. This involves redefin-
ing pruning parameters used for DOP—such as max.
depth, max. no. of lexical entries, max. no. of sub-
stitution sites etc.—to render them functional with
DOT fragments. We intend to complete this align-
ment process and test our system on the whole of
the Homecentre corpus to see whether our good, in-
terim results can be maintained.

We provided instances of translation errors which
would be corrected in an LFG-DOT system. Er-
rors of determiner-noun and subject-verb agreement,
for example, would not be made if the syntac-
tic information available in the LFG f-structures
were available in the translation model. In ad-
dition, [Way, 2003a, Way, 2003b] has shown (al-

beit on small datasets) that the DOT problem of
limited compositionality, whereby fragments can-
not be adequately generalised and are therefore
only reusable in very restricted circumstances with
very small probabilities, can be avoided in LFG-
DOT. We intend in further work to create a
parser and translation system based on LFG-DOP
[Bod and Kaplan, 1998], where the full LFG repre-
sentations are allied with the techniques of DOP. We
hope that the extension of our prototype DOT sys-
tem to LFG-DOT will imporove upon the encourag-
ing results achieved here when experiments are car-
ried out using the f-structure annotations provided in
the HomeCentre corpus.
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