
Practical Machine Translation System
allowing Complex Patterns

Mihoko Kitamura and Toshiki Murata
Oki Electric Industry Co., Ltd.

Osaka, Japan
{kitamura655, murata656}@oki.com

Abstract

Pattern-based machine translation systems can be easily customized by adding new patterns. To gain full profits from
this character, input of patterns should be both expressive and simple to understand. The pattern-based machine
translation system we have developed simplifies the handling of features in patterns by allowing sharing constraints
between non-terminal symbols, and implementing an automated scheme of feature inheritance between syntactic
classes. To avoid conflicts inherent to the pattern-based approach the system has priority control between patterns and
between dictionaries. This approach proved its scalability in the web-based collaborative translation environment
‘Yakushite Net.’

1 Introduction
There have been many attempts at using translation
examples to improve the quality of translation
systems. One practicable approach would be to
combine a machine translation system with a
translation memory(ATLAS,02). Sentences already
present in the translation memory can be translated
directly, while sentences not yet translated have to
go through machine translation, and can be added to
the translation memory after post editing. This
combination improves the translation system as it
enables correct translation results to be reused.
However, as accumulated translation examples are
used only literally, they don’t affect the quality of
machine translation itself.

In order to use examples to improve the
translation process itself, we developed a
pattern-based machine translation system that
utilizes translation patterns created by decomposing
translation examples.

Pattern-based translation systems execute the
parsing, transferring and generating processes by
using only translation patterns, all the knowledge
necessary for the translation being written in
patterns. This provides good readability for all this
knowledge, and what is more, it is easy for users to
add new translation patterns. However, in previous

pattern-based systems, writing new patterns was
difficult due to the lack of flexibility in the way to
describe constraints on the features associated with
a non-terminal, requiring for instance a new
non-terminal for each semantic condition, so that a
deep understanding of the internals of the system
was necessary in order to add new patterns
(Takeda,96).

HPSG parsers(Oepen,00) are stronger, their use
of feature unification allowing for maximal
flexibility, but they require deeper grammatical
knowledge for the development of grammatical rule.
The integration of syntactical and semantical
information requires the use of many features
making the task of writing patterns too difficult for
a non-specialist. This is a major drawback as we
hope that users add various patterns.

We have built a pattern-based machine
translation system with good readability by writing
all the conditions, including semantics, gender and
number of non-terminals and words as a
combination of features, and making it possible to
match, share and inherit features, but without full
feature unification. Moreover, this system solves
the problem of large computation times, by
implementing feature inheritance through copying
rather than unification, and by drastically reducing

the number of candidates through the pruning of the
features kept on each non-terminal symbol.

Rich expressiveness enables the user to enter
accurate patterns, reducing potential conflicts with
other patterns. The user need not know the details
of how the pattern will be processed during
translation. It is also possible to enter translation
patterns acquired by statistical methods directly.

The system provides also priority control
between patterns and between dictionaries in order
to avoid an explosion of the number of candidates
and reduce side effects caused by newly introduced
patterns.

Special cases where patterns cannot handle
generation in the target language are processed by a
post generator.

The next section shows the outline of the
pattern-based translation system we have developed.
Section 3 describes the implementation, the
evaluation and the application. Section 4 presents
the related works and section 5 concludes.

2 Pattern-Based Machine Translations
Figure 1 shows the architecture of our system.
Thick arrows show the flow of the translation, thin
arrows show the data flow for memorization of
translation examples, and dotted lines show the
sequence for referring dictionaries

First, the source sentence is analyzed
morphologically, normalizing words and decorating
them with morphological features. This decorated
sequence of words is then passed to the parser. The
sentence is parsed by using the source side of
translation patterns in the appropriate user and
system dictionaries, and combining them bottom-up.
When the sentence has been parsed successfully,
the parse tree is translated by top-down generation
of the parse tree of the target language, using the
target side of patterns.

Then, some features of the generated tree are
handled by the Post Generator to produce refined
sentences.

Lastly, the morphological synthesizer adjusts
inflection and conjugation, and the translated
sentence is output.

Automatic feedback of correct post-edited
translations and accumulation of translation
examples improve the quality of future translations.

2.1 Morphological Analyzer

Morphological analysis uses a morphological
dictionary, and associates to each surface form a
normalized form, together with features specifying
the part of speech, agreement, surface conjugation,
and case. In most cases only one normalized form
will be associated with a surface form, eventually
with some of its features being multi-valued (for
instance, for a verb in basic form, its agreement
might be all persons except 3rd singular). In the
special case of homonyms, the same surface form
comes from two different dictionary words, and the
result of the morphological analysis contains
several different candidates for an input word. This
is later handled by trying all these candidates in the
parsing phase.

 To simplify our presentation we will omit this
case, and suppose in the following that the result of
the morphological analysis is a linear sequence of
words decorated with (eventually multi-valued)
morphological features.

 Failure
Recovery
 Dict.

General

Dict.

Bilingual
Texts

Source
Sentences

Morphological
Analyzer

Parser/Generator

Translation
Sentences

Post-edited
Sentences

Morphological
Synthesizer

Figure 1: The Architecture of
Pattern-Based MT system

Sentennce
Dict.

Pattern
Dict.

Post Generator

Translation Engine

User Dictionary

System Dictionary

(a) [en:VP:sSem=human play:pos=v:*[1:NP:sem=instrument]] (b) [en:VP:sSem!=human play:pos=v:*]
 [ja:VP [1:NP] を:pos=particle 弾く:pos=v:*]; [ja:VP 鳴る:pos=v:*];

(c) [en:VP:sSem=human play:pos=v:* [1:NP:sem=sport|game]] (d) +[en:VP:sSem=human play:pos=v:*]
 [ja:VP [1:NP] を:pos=particle する:pos=v:*]; [ja:VP 遊ぶ:pos=v:*];

(e) [en:N piano:pos=n:sem=instrument:*] (f) [en:N tennis:pos=n:sem=sport:*]
 [ja:N ピアノ:pos=n:*]; [ja:N テニス:pos=n:*];

(g) [en:N Ken:pos=n:sem=human:*] (h) [en :Adv never :pos=adv :*]
 [ja:N 健:pos=n:*]; [ja: Fs決して:pos=adv:*:postGen=neg];

 (i) [en:SentenceSub when:pos=conj [1:Sentence:*]] (j) [en:NP [1:N:*]]

[ja:SentenceSub [1:Sentence:sentenceType=sub:*] 時:pos=conj]; [ja:NP [1:N:*]];

(k) [en:S [1:Sentence:*]]
 [ja:S [1:Sentence:sentenceType=main:*]];

(l) [en:Sentence [1:NP:sem={SEM}:personNum={NUM}] [2:VP:sSem={SEM}:personNum={NUM}:*]]
 [ja:Sentence:sentenceType=main [1:NP] は:pos=particle [2:VP:*]];

(m) - [en:Sentence [1:NP:personNum={NUM}] [2:VP:personNum={NUM}:*]]
 [ja:Sentence:sentenceType=main [1:NP] は:pos=particle [2:VP:*]];

(n) [en:Sentence [1:NP:sem={SEM}:personNum={NUM}] [2:VP:sSem={SEM}:personNum={NUM}:*]]
 [ja:Sentence:sentenceType=sub [1:NP] が:pos=particle [2:VP:*]];

Figure 2 : Examples of Translation Patterns

2.2 Parser and Generator

Figure 2 shows examples of translation patterns
used in English to Japanese translation1. Examples
(a)-(i) in Figure 2 are vocabulary patterns, (j)-(n)
are grammatical patterns. In rule-based translation
systems, vocabulary patterns would correspond to
dictionaries, and grammatical patterns to grammar
rules. As Figure 2 shows, patterns allow writing
grammar rules and dictionaries in a united form
without any specific distinction. All patterns are
entered together in the system dictionary.

One can understand pattern (a) as the following
CFG rules.

English: VP -> play NP
Japanese: VP -> NP を(wo) 弾く(hiku)

1 Real patterns contain more features, but we omitted here features that
are not required by our examples.

A pattern starts with the name of the language, and
category and features on the left-hand side of the
CFG rule (the parent node in the parse tree),
followed by descriptions of non-bracketed words
and bracketed non-terminals on the right-hand side
of the CFG rule, in their textual order. ‘:’ is a
separator between features of a pattern element, and
space a separator between pattern elements.

Patterns come in pairs: one pattern for each
language. The mandatory numerical index in
non-terminals allows relating non-terminals
elements between source and target patterns.

Analysis uses source language patterns, marked
by ‘en’ here. By applying patterns bottom-up, one
can reduce word sequences to the corresponding
left-hand side, and eventually reach the ‘S’
non-terminal (the root of the parse tree).

Once the source parse tree has been completed, it
is sufficient to convert each node using the
corresponding target language pattern, marked by
‘ja’. Since there is a one-to-one relation between

non-terminals in the source and target patterns,
generation of the target parse tree is carried out
immediately.

Translation patterns can specify one or more
features for both terminal and non-terminal symbols,
such as ‘pos=verb’ (the part of speech is verb),
‘personNum=3sg’ (third person and singular),
‘sem=human’ (the semantics is human). They can
allow one or more values for one feature and also
can specify negative information as in ‘pos!=verb’
(the part of speech is not verb).

The features in the right-hand side of the source
language patterns express conditions, either by
requiring a specific value for a feature, or
expressing a sharing constraint between two
features, through unification variables (in curly
brackets, like ‘{SEM}’ or ‘{NUM}’). Matching
succeeds if all these conditions are satisfied.
Corresponding words in the input sequence are then
replaced by the non-terminal on the left-hand side,
while the corresponding parse tree is built.

In order to ease the propagation of features inside
the parse tree, one of the right-hand side pattern
elements is designated as head, and marked by a “*”.
Its features are inherited by the left-hand side
non-terminal, except for those already defined in
the left-hand side, which are ignored. Features on
the left-hand side of source-language patterns,
together with inherited features, appear in the newly
replaced non-terminal, and they will be matched
later by the right-hand side of other patterns.

Word selection in the target language is realized
by checking features. In simple cases, the condition
is directly applied to a symbol in the pattern. For
instance, in patterns (a) and (c), “play” is associated
with different semantic values according to whether
its object is a music instrument, or either a sport or
game; then it is translated into proper words in these
different situations: “play the piano” gives “ピアノ
(piano)を(wo)弾く(hiku)”, but “play tennis” gives
“テニス(tenisu)を(wo)する(suru)”.

More complex cases, like the difference between
“a piano plays” and “Ken plays”, use sharing
constraints and feature inheritance. Here the
semantic features ‘instrument’ and ‘human’ are
inherited from both name patterns and verb phrases,
and they are checked in the sentence construction
pattern (l). Only agreeing subject and verb will be
accepted, enabling the system to provide the proper

translations “ピアノ (piano)は (ha)鳴る (naru)”
and “健(ken)は(ha)遊ぶ(asobu)”.

In (l), (m) and (n), sharing constraints are also a
concise way of uniting person and number
information.

In target language patterns, propagation works
the other way round: features on the left-hand side
of the target pattern act as constraints for the
generation process, and features on the right-hand
side are propagated to child nodes. Inheritance goes
from the parent node to the head node, with the
same overriding mechanism for features present in
both.

The matching of the target language features
makes it possible to provide proper translations in
different grammatical situations. For example,
differences such as the one between the subordinate
clause “私(watashi)が(ga)ピアノ(piano)を(wo)弾
く(hiku)時(toki)” (“... when I play the piano”) in (n)
and the complete sentence “私 (watashi)は(ha)ピ
アノ(piano)を(wo)弾く(hiku)” (“I play the piano”)
in (l) can be translated accurately.

Lastly, two decisions were taken to avoid
multiplication of candidates. One is that the set of
features each non-terminal symbol can have is
limited according to a feature definition table as
seen in Figure 3. For instance the CFG rule for ‘S’
does not need any longer conjugation, which is one
of the features of head ‘VP’. With this limitation,
every non-terminal symbol has only necessary
features, which simplifies parsing trees. This is
effective for reducing the number of candidates, in
that non-terminals symbols that have the same
combination of feature values can be merged, and a
disjunctive tree can be formed from the tree
structure during parsing.

Sentence = { sentenceType };
VP = { personNum

 conjugation
 subjSem };

NP = { personNum
 sem };

Figure 3 : The example of Feature
Definition Table

The other decision is that generation in the target
language is not allowed to fail and backtrack: one
can only choose between two patterns on the basis
of target side constraints if the source side pattern is
identical (i.e., the decision is local). Otherwise,
failures in feature constraints are ignored, and
generation goes on assuming they succeeded.

2.3 Our Approach to Search Space Control

The main problem pattern-based translation faces is
that of effectively controlling the search space. If
strict conditions are set for patterns, the translation
is likely to end up in failure, however if patterns
with very few conditions are used, too many
patterns are applied, and the number of candidates
increases explosively. To avoid this problem, we
have introduced two priority control systems for
patterns.

2.3.1 Control of Priority in a dictionary
Figure 2 (l) shows a translation pattern in which the
semantics of the subject is limited so that it can
respond to different situations. However, if a user is
not careful enough and does not give accurate
semantics information in his/her pattern, it will not
be matched and the translation will fail. To protect
the system from such mistakes, translation patterns
without limitation of meaning are also needed.
However, when the strict pattern succeeds, the
unlimited one will also succeed, and the number of
candidates increases combinatorially. Even worse,
unless one pattern is given preference, after the
parsing process the system cannot judge which
result is better and cannot choose a unique plausible
translation.

To avoid these situations, the system provides a
way to mark a pattern as being applicable only
when patterns with more detailed conditions are not
matched, by putting a “-“ (minus) mark before it as
in (m). This avoids the situation where both patterns
are applied. Experience showed us that we needed
three priority levels. So there is also “+” in (d) for
higher priority patterns.

An additional criterion we use to select patterns is
to choose a parse tree using a minimal number of
patterns, as it will include patterns closer to the
input sentence. This information is combined with
the above priority of individual patterns to provide a
comprehensive evaluation of parse trees.

2.3.2 Control of Priority between Dictionaries
Two problems may arise when users input a large
number of patterns. One is a potential slowdown in
translation speed, which is affected by the overall
number of patterns. The other is that newly
introduced patterns may conflict original ones and
cause unstable translation behavior. We solve the
two problems by developing a pruning mechanism,
which would consider user patterns first, and then
some dictionaries correlated with the user
dictionary, and finally system dictionaries during
translation. This pruning avoids an explosion of the
number of candidates, and side effects caused by
newly introduced user patterns are limited to this
user dictionary.

2.3.3 Failure Recovery Dictionary
We have introduced the Failure Recovery
Dictionary using the above pruning mechanism.
Failure recovery dictionary is referred last among
sub-dictionaries in the system dictionary. In other
words, the failure recovery dictionary acts only
when the normal parsing process using other
dictionaries has failed.

The Failure Recovery Dictionary contains
patterns with grammatical mistakes and patterns
that help avoiding unsuccessful translation. For
instance the following pattern allows the use of a
subject and a verb for which agreement rules are not
satisfied.

[en:Sentence [1:NP] [2:VP:*]]
[ja:Sentence:setenceType=main [1:NP] は

[2:VP:*]];

By default the system will work on a rigid
translation that is grammatically correct, but does
not consider rare phrase structures. This avoids
slowing down translation of simple sentences.
Whenever normal translation fails, the system tries
again to translate with more patterns, which is
slower but much more robust.

2.4 Post Generator

Generation using a synchronized grammar depends
strongly on the structure of source language
patterns, so pattern-based methods are weak at
generating expressions peculiar to the target
language.

Some features of the generated tree are handled
by the Post Generator to produce refined sentences.
To take a simple example, although the Japanese
translation for the English word “never” is “決して
(kesshite) ... ない(nai)”, the pattern of figure 2-(h)
cannot lexicalize “ない(nai)”. Because the verb
which “never” qualify cannot be identified when
figure 2-(h) is applied.

The feature ‘postGen=neg’ within “決して
(kesshite)” is matched by a post generator rules
which generates “ない(nai)” at the end of the verb
phrase which includes “決して(kesshite)”.

Figure 4 indicates an example of the rule for Post
Generator. The rule means, if a word holds
“postGen=neg”, put “ない (nai)” backmost of
VP(verb phrase) which includes the word. The rule
is written in XML notation.

3 Implementation and Evaluation

3.1 Process for Development of Patterns

The number of grammatical patterns is about 2,000
and the vocabulary patterns are about 180,000.
Vocabulary patterns were built based on
dictionaries for a rule-based machine translation
system which we had developed before.
 Grammatical patterns newly was designed and
developed to cover Collins' grammar (Collins,90).
For each item in the grammar we made an example
and then created the corresponding pattern by hand.
We also created various test examples for each item
in the grammar and used them to check for conflicts
in subsequent patterns.

The conflict rate is about 3% when we added new
grammatical patterns. But our debugger, which can
indicate visually the pattern selection process and
the result of applied patterns, facilitated the
detection of the cause of conflicts. Furthermore
when we detected the cause, we could adjust
patterns easily by refinement and addition of
conditions.

3.2 Implementation and Evaluation of the
Translation Engine

The above English-Japanese machine translation
system has been implemented in Java.

The parser uses the Earley algorithm. At the time
of this writing, the number of non-terminal symbols

is about 80, and about 60 types of features are
defined.

Most of the vocabulary patterns are managed in
databases. The databases are converted into pattern
format for entry into the dictionary.

The number of rules for the post generator is
about 280.

Using only system dictionaries, we evaluated the
translation quality using the JEIDA
English-Japanese translation evaluation set
(JEIDA,95), which is composed of 770 bilingual
sentences. The failure recovery dictionary was
referred by 9 sentences and the number of sentences
that failed to parse is 10. The percentage of
translations that were judged correct by
professional translators was about 94 percent.

Moreover, the speed is acceptable and the
translation time is roughly proportional to the
length of sentences. Figure 5 shows processing
time per sentence on a Pentium III machine at
933MHz. Translation times are noticeably slower

<Rule NAME= “postGen=neg”>
<StartLeaf>

<Feature NAME=”postgen” VALUE=”neg”/>
</StartLeaf>
<Scope TYPE=”NEAREST”>
 < Feature NAME=”category” VALUE=”VP”/>
</Scope>
<OriginalLeaves>

<OriginalLeaf ID=”1” DIR=”LtoR”>
 <Feature NAME=”postgen” VALUE=”neg”/>

</OriginalLeaf>
<OriginalLeaf ID=”2” DIR=”RtoL”>

 < Feature NAME=”pos” VALUE=”v”/>
</OriginalLeaf>

</OriginalLeaves>
<EditedLeaves>
 <EditedLeaf ID=”1” COPYFROM=”1”/>
 <EditedLeaf ID=”2” COPYFROM=”2”/>
 <EditedLeaf ID=”2” DELTA=”1”>
 < Feature NAME=”pos” VALUE=”aux”/>
 < Feature NAME=”baseForm” VALUE=”ない”/>
 </EditedLeaf>
</EditedLeaves>
</Rule>

Figure 4 : Example of the Rule for
Post Generator

when a sentence contains several structurally
ambiguous constructions, such as coordination.

3.3 Application to Collaborative Translation
Environment “Yakushite Net” on Internet

Pattern-based translation systems get better as many
users from various backgrounds use them, and enter
lacking patterns, particularly technical words and
idioms, which have an immediate impact on
translation quality. For this purpose, we applied our
system to the Collaborative Translation
Environment ‘Yakushite Net’ on Internet
(Shimohata,01) (Murata,03).
. The environment has ‘community’ dictionary,
which the user selects according to his/her needs
and can be improved by contributions from
members of the community, distributed over the
Internet.

The collaborative translation environment has a
lot of communities, with their community
dictionaries structured in a hierarchical directory,
shown in figure 6.

When translating in a certain community
environment, the translation engine refers first the
community’s own dictionary, and subsequently to
dictionaries with ordering priority from the nearest
parent community to the top. These community
dictionaries except the top dictionary correspond to
user dictionaries in figure 1, which are referred
stepwise. The top dictionary is domain-independent,
and corresponds to the system dictionary in figure
1.

We see the construction of well-targeted domain
specific dictionaries and their use according to the
context as the best solution to avoid unwieldy
addition of user patterns.

4 Related Works
Now, we compare the translation patterns used in
rule-based machine translation system and with
those of our pattern-based machine translation
system.
 ALT-J/E(Hayashi,01), is a transfer-based
machine translation system employing ‘transfer
patterns’ as verbal word selection rules. Transfer
patterns are similar to our patterns, as below

ex1: N1(subject) が N2(permission) を 取る
=>N1 take N2

ex2: N1(subject) が N2(hotel) を 取る
=>N1 reserve N2

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

number of words per sentence
Figure 5 : Translation Speed

time(seconds)

Top

internet

Computer Sports

software

D

D D

D

‥

‥ ‥ soccer
D

‥ ‥ ‥ ‥ ‥

Figure 6 : Tree Structure of
Community Dictionaries

Jakarta
D

D

Transfer-based machine translation applies the
patterns after the parsing completes and transfers
the structure from source language to target
language. Consequently it allows only particular
patterns that have explicit parsing result, and cannot
describe patterns as freely as our method.

TDMT(Kashioka,99) could be described as
pattern-based, it is however limited in a number of
ways. First, each pattern, called ‘transfer
knowledge,’ must contain constituent boundary
either a functional word or a special part-of-speech
bigram marker, inserted by the morphological
analyzer. Then, pattern features are very limited,
allowing for semi-automatic acquisition, but
precluding efficient generalization.

These limitations mean that some complex
phrase structures cannot be analyzed, and that even
simple patterns must be given in lots of instances to
overcome the absence of generalization.

5 Conclusion
The machine translation system we have developed
has two major advantages.

(1) The system is pattern-based, but it is possible to
share constraints and inherit features between
non-terminal symbols, simplifying input of
patterns.

(2) The system has two priority control systems.
One is the priority control among patterns in a
dictionary. The other is the priority order between
dictionaries using a pruning algorithm. The
dictionary with the least priority is the failure
recovery dictionary.

This machine translation system is already available
to users on Internet as the collaborative translation
environment ‘Yakusite Net.’

We have two future plans: adding the capability
to extract translation patterns from bilingual
corpora and supporting multilingual translation.

A translation pattern extraction tool, able to
automatically extract translation patterns containing
non-terminal symbols with appropriate constraints
from translation examples(Kitamura,96), would
help users to produce translation patterns.

Our interest in multilingual translation stems
from the language independence of our parser and

generator. It shall be possible to build a translation
system for a new language using just decomposed
translation examples as pattern dictionary, without
deep knowledge of the language itself. In such a
context, the above translation pattern extraction tool
would allow to extract patterns from translation
examples of the new language, and ideally to build a
system from examples alone.

Acknowledgment

This research is supported by a grant from
Telecommunications Advancement Organization of
Japan (TAO).

6 Bibliographical References
ATLAS, http:// software.fujitsu.com/en/atlas/
Takeda, K. 1996. “Pattern-Based Context- Free

Grammars for Machine Translation”. In proceedings of
the 34th Annual Meeting of the Association for
Computational Linguistics, pp.144-151.

Oepen, S., Flickinger, D., Uszkoreit, H., and Tsujii, J.
2000. “Introduction to this Special Issue”, Natural
Language Engineering, 6(1):1-14, pp1-12

Collins, Collins Cobuild English Grammar. 1990.
COBUILD. London

JEIDA, JEIDA (the Japan Electronic Industry
Development Association). 1995. “Evaluation
Standards for Machine Translation Systems (in
Japanese)”. 95-COMP-17. Tokyo.

Shimohata, S., Kitamura, M., Sukehiro T., and Murata, T.
2001. “Collaborative Translation Environment on the
Web”. In proceedings of the MT Summit VIII,
pp331-334.

Murata, T., Kitamura, M., and Tatsuya, S. 2003.
“Implementation of Collaborative Translation
Environment: Yakushite Net”, In proceedings of the
MT Summit IX.

Hayashi, M., Yamada, S., Kataoka, A., and Yokoo, A.
2001, “ALT-J/C A Prototype Japanese-to-Chinese
Automatic Language Translation System”, In]
proceedings of the MT Summit VIII, pp157-161.

Kashioka, H., and Ohta, H. 1999. “Applying TDMT to
Abstracts on Science and Techology”, In proceedings
of the MT Summit VII, pp213-219.

Kitamura, M., and Matsumoto, Y. 1996. “Automatic
Extraction of Word Sequence Correspondences in
Parallel Corpora”. In proceedings of the 4th Annual
Workshop on Very Large Corpora, pp79-87.

