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Abstract
In this paper, we present several confidence measures for (statistical) machine translation. We introduce word
posterior probabilities for words in the target sentence that can be determined either on a word graph or on anN
best list. Two alternative confidence measures that can be calculated onN best lists are proposed. The performance
of the measures is evaluated on two different translation tasks: on spontaneously spoken dialogues from the domain
of appointment scheduling, and on a collection of technical manuals.

1 Introduction

With the rising number of applications of machine
translation (MT), the demand for the ability to spot
erroneous words also increases. A method for label-
ing the generated words as either correct or incorrect
enables the system to signal possible errors to the
user or to propose only those words as translations
that are likely to be correct.
Confidence measures are widely used in speech
recognition (see e.g. (Weintraub et al., 1997; Wessel
et al., 2001)), but until recently they have not been
applied in the area of MT. (Gandrabur and Foster,
2003) introduced confidence measures for a trans-
lation prediction task in an interactive environment.
They estimate confidence for up to four predicted
words. Unlike this, our approach allows for the cal-
culation of confidence for each word in a sentence
generated by the system. Thus, it can be applied to
interactive systems like the one described in (Och et
al., 2003), e. g. to mark words with a low confidence
for correction.
We present methods for the calculation of confi-
dence measures for MT that rely only on informa-
tion contained in the output of an MT system. They
are based on word graphs andN best lists. For each
word in a target sentence, the posterior probability
is computed and employed as confidence measure.
Furthermore, alternative confidence measures com-
puted onN best lists are introduced and compared
to the word posterior probabilities.
The remainder of the paper is organized as follows:

A short introduction to Statistical Machine Trans-
lation (SMT) is given in Section 2; and Section 3
presents the proposed confidence measures. Sec-
tion 3.2 explains the computation of word posterior
probabilities on word graphs, and Section 3.3 that on
N best lists. The two alternativeN best list based
confidence measures are introduced in Section 3.4.
In Section 4, the different confidence measures are
evaluated on two different translation tasks. The
conclusions are given in Section 5.

2 Statistical Machine Translation
The goal of machine translation is the translation

of an input stringf1 . . . fJ in the source language
into a target language stringe1 . . . eI . We choose
the string that has maximum probability given the
source string,Pr(eI

1|fJ
1 ). Applying Bayes’ decision

rule yields the following criterion:
êI
1 = arg max

eI
1

Pr(eI
1|fJ

1 ) = (1)

= arg max
eI
1

{Pr(eI
1) · Pr(fJ

1 |eI
1)} .

The correspondence between the words in the source
and the target string is described by alignments
which can be viewed as mappingsB : i → Bi ⊂
{1, . . . , J} assigning a setBi of source positions to
each target positioni (including the empty position
zero). Note that this conception is different from
the one introduced in (Brown et al., 1993) where
the alignment assigns (exactly) one target position
to each source position.
The search (denoted by thearg max operation in



Eq. 1) explores the space of all possible target lan-
guage stringseI

1 and all possible alignmentsBI
0 be-

tween the source and the target language string to
find the one with maximum probability. Applying
the maximum approximation, this yields

(êI
1, B̂

I
0) = arg max

eI
1, BI

0

Pr(eI
1, BI

0 | fJ
1 ) . (2)

This decision criterion aims at the minimization of
the expected number ofsentenceerrors.
For descriptions of SMT systems see for exam-
ple (Och and Ney, 2002; Vogel et al., 2000;
Takezawa et al., 1998; Yamada and Knight, 2002).

3 Confidence Measures

For a given translation produced by an MT system,
we want to measure the confidence of being correct
for each generated word. That is, for each word in
the target hypothesis, the confidence is to be calcu-
lated and compared to a tagging threshold which has
been optimized on a development corpus. All words
whose confidence is above this threshold are tagged
as correct and all others are tagged as false.
Unlike the criterion given in Eq. 2, this approach
aims at the minimization of the expected number of
worderrors instead of sentence errors.

3.1 Word Posterior Probabilities

In speech recognition, confidence measures based
on word posterior probabilities as proposed in (Wes-
sel et al., 2001) have proven to be among the very
effective methods known. We transfer this concept
to the area of machine translation and show that it
can be applied successfully as well.
We compare two different approaches to the calcu-
lation of word posterior probabilities:

1. We regard the target positioni in which
the word e occurs in a specific hypothesis
and determine the word posterior probability
pi(e|fJ

1 ).

2. Word posterior probabilitiespB(e|fJ
1 ) are de-

fined for a target worde, considering the setB
of source positions that is aligned to this word
in a specific hypothesis.

The difference between the two approaches is illus-
trated in the example in Table 1 which will be ex-
plained in detail at the end of this subsection.
The word posterior probability can be determined by

summing up the posterior probabilities of all sen-
tences which contain this specific word in positioni
or aligned to the source positionsB. Let

p(eI
1, B

I
0 , fJ

1 ) =

=
I∏

k=0

{
p(fBk

|ek) · p(Bk|Bk−1) · p(ek|ek−1
1 )

}
,

where p(fBk
|ek) =

∏
j∈Bk

p(fj |ek) is the proba-

bility of translating the source words inBk with
ek, p(Bk|Bk−1) is the alignment probability, and
p(ek|ek−1

1 ) is the language model probability.
For criterion 1 introduced above, we obtain the word
posterior probability by the following summation

pi(e|fJ
1 ) = (3)

=
1

p(fJ
1 )

∑

(BI
0 , eI

1): ei=e

p(eI
1, B

I
0 , fJ

1 ) .

Applying criterion 2 instead leads to

pB(e|fJ
1 ) = (4)

=
1

p(fJ
1 )

∑

(BI
0

, eI
1
):

∃i: (ei,Bi)=(e,B)

p(eI
1, B

I
0 , fJ

1 ) .

Table 1 shows a German input sentence together
with four different translations. The aligned source
positions of each generated target word are given as
index. We see that the position of a word in the tar-
get sentence can differ due to insertions, deletions
and reordering of words. If we want to determine the
confidence of the word ’?’ in Translation 1, the two
rightmost columns show the sentences that are taken
into account for the summation in Eqs. 3 and 4, re-
spectively. For criterion 2, we have more sentences
that match, yielding a more reliable confidence esti-
mation (as the experiments in Section 4 will show).
The posterior probability can directly be used as a
measure of confidence as described above. We de-
note these two confidence measures by

Ctarget(e) = pi(e|fJ
1 )

and Csource(e) = pB(e|fJ
1 ) .

These confidence measures are probabilistic and ex-
ploit only information which is contained in the out-
put of an SMT system.



Table 1: Illustration of Eqs. 3 and 4: Sentences taken into account for the calculation of the word posterior
probability of the word ’?’ in Translation 1 are marked with a ’+’.

Source was hast du gesagt ? target (criterion 1) source (criterion 2)
Translation 1 what1 did2 you3 say4 ?5 + +
Translation 2 what1 have2 you3 said4 ?5 + +
Translation 3 what1 did2 you3 just0 say4 ?5 +
Translation 4 what1 you3 did2 say4 .5

3.2 Word Posterior Probabilities on Word
Graphs

Using an SMT system, we construct a word graph
as described in (Ueffing et al., 2002): The nodes rep-
resent sets of covered source sentence positions and
differentiate between different language model his-
tories. An edge is labeled with the target word gen-
erated as a translation of the covered source posi-
tion(s). The edges are also annotated with the prob-
abilities of the different translation submodels. Each
path from the source of the graph (i.e. the node with
zero covered source sentence positions) to the sink
(i.e. the node where all source sentence positions are
covered) is an alternative target sentence hypothesis.
Thus, the word graph contains the most probable
sentence hypotheses that survived the pruning dur-
ing search and can be used to approximate the word
posterior probabilities as defined in Eqs. 3 and 4.
The word graphs are then compressed by merging
all nodes which have the same coverage vector and
the same source position covered last into one.

The information relevant for determining the
word probabilities of a worde in the best generated
target sentence is the following:

• the translation probabilityp(fB|e), wherefB is
the set of source words aligned toe,

• for Ctarget: the positioni of worde in the target
hypothesis,

• for Csource: the set B of source positions
aligned toe,

• the alignment probabilityp(B|B′), whereB′ is
the set of source positions covered by the pre-
decessor target word ofe.

The language model probabilities can be calculated
on the fly.
The computation of word posterior probabilities
on word graphs can be performed by applying a

forward-backward algorithm. Assume we use a tri-
gram language model. The formulae we are going to
present can be extended to capture for longer histo-
ries as well, but in order to keep the presentation un-
derstandable, we will show them only for trigrams.

Target position dependency
Let Ci be the coverage set of the partial hypothesis

e1 . . . ei, i.e. Ci =
i⋃

k=1
Bk. Throughout the paper,

we denote the complement of a setC by C.
If we applyCtarget and keep thetargetposition fix,
we can compute the forward probability as follows:
Φi(ei−1, Ci−1; ei, Bi) = (5)

= p(fBi |ei) ·
∑
ei−2

∑

Bi−1

{
p(Bi|Bi−1)

· p(ei|ei−1ei−2)

· Φi−1(ei−2, Ci−1 \Bi−1; ei−1, Bi−1)
}

,

which is calculated recursively in ascending order
of i.
For the computation of backward probabilities, the
probability of completing a sentence from worde in
positioni is

Ψi(ei, Bi; ei+1, Ci) = (6)

= p(fBi |ei) ·
∑
ei+2

∑

Bi+1

{
p(Bi+1|Bi)

· p(ei+2|ei+1ei)

·Ψi+1(ei+1, Bi+1; ei+2, Ci+1)
}

.

This can be recursively determined in descending or-
der ofi.
Using the forward-backward algorithm, the word
posterior probability can be calculated according to

pi(ei|fJ
1 ) =

1
p(fJ

1 )

∑
ei−1

∑
ei+1

∑

Ci−1

∑

Bi

p(ei+1|eiei−1)

·Φi(ei−1, Ci−1; ei, Bi) ·Ψi(ei, Bi; ei+1, Ci)
p(fBi |e)



with the normalization term
p(fJ

1 ) =
∑

I

∑
eI

∑

BI

∑
eI−1

ΦI(eI−1, BI ; eI , BI)

=
∑
e1

∑

B1

∑
e2

Ψ1(e1, B1; e2, B1)

·p(e2|e1) · p(e1) .

Here, I is the last position in the generated target
sentences.

Source position dependency
Instead of regarding the position of worde in the
target sentence, we determine the posterior proba-
bility according to the setB of source positions that
e is aligned to. This approach allows for the di-
rect comparison of translation hypotheses of differ-
ent lengths.
Applying this view, we cannot calculate a posterior
probability for zero fertility words, because there are
no source words that generate them. Therefore, we
assign them a posterior probability of one.
Analogously to Eq. 5, the forward probability can be
computed according to

ΦB(e′, C ′; e) =
= p(fB|e) ·

∑

e′′

∑

B′⊆C′
ΦB′(e′′, C ′ \B′; e′)

· p(e|e′e′′) · p(B|B′) ,

whereB′ is the set of source positions covered by
the predecessor worde′, andC ′ ⊆ B.
The backward probability is determined as

ΨB(e; ẽ, C̃) =

= p(fB|e) ·
∑

˜̃e

∑

B̃⊆C̃

ΨB̃(ẽ; ˜̃e, ˜̃C)

· p(˜̃e|ẽe) · p(B̃|B) ,

whereC̃ ⊆ B. This yields the word posterior prob-
ability formula

pB(e|fJ
1 ) =

1
p(fJ

1 )

∑

e′

∑

ẽ

∑

C′⊆B

p(ẽ|ee′)·

ΦB(e′, C ′; e) ·ΨB(e; ẽ, C ′ ∪B)
p(fB|e)

with the normalization term
p(fJ

1 ) =
∑

I

∑
eI

∑

BI

∑
eI−1

ΦBI
(eI−1, BI ; eI)

=
∑
e1

∑

B1

∑
e2

ΨB1(e1; e2, B1)

·p(e2|e1) · p(e1) ,

whereBI is the set of source positions covered by
the last word of the generated target sentences, and
B1 those covered by the first word, respectively.

3.3 Word Posterior Probabilities onN Best
Lists

From a word graph, we can easily extract anN
best list containing theN target sentences that ob-
tained the highest probability by the translation and
language model. They can be used as a representa-
tion of the possible target sentences as well, and we
can determine the sum in Eq. 3 over the sentences in
theN best list.
As mentioned already in Section 3.1, the generated
target sentences may have different lengths and the
position of a word within different sentences in the
N best list might differ due to reorderings, deletions,
and insertions. Thus, we determine the Levenshtein
alignment (Levenshtein, 1966) on the sentences ac-
cording to the best target sentence. That is, for each
word êi in the best target sentenceêI

1, we determine
the corresponding wordw in any of the other sen-
tences in theN best list. We denote the Leven-
shtein alignment of two sentencesêI

1 and wIn
1 by

L = L(êI
1, w

In
1 ) and that of word̂ei by Li(êI

1, w
In
1 )

for n = 2, . . . , N .
Using this Levenshtein alignment, we can easily
compute word posterior probabilities for each word
êi in the best target sentence. We sum over the prob-
abilities of all sentences containing the word in a
position that is aligned toi in the Levenshtein align-
ment:

pi(êi|fJ
1 , êI

1,L) =

=

N∑
n=1

p(fJ
1 |wIn

1 ) · p(wIn
1 ) · δ(êi,Li(êI

1, w
In
1 ))

N∑
n=1

p(fJ
1 |wIn

1 ) · p(wIn
1 )

,

whereδ(., .) is the Kronecker function.
This yields the confidence measure

Cprob(êi) = pi(êi|fJ
1 , êI

1,L) .

3.4 Alternative Confidence Measures onN
Best Lists

Apart from the word posterior probabilities as pre-
sented in Section 3.3, we investigated two simple
confidence measures onN best lists: The relative
frequency of a word in the list and the sum of the



ranks of the target sentences containing this word.
Those values can be calculated onN best lists pro-
duced by any MT system which does not have to be
statistical.

Relative Frequency
For each word̂ei in the best target sentence, we de-
termine the number of sentences in theN best list
containing this word in a position aligned toi. Then,
we take the relative frequency of word̂ei in the N
best list with respect to the Levenshtein alignment
directly as a confidence measure:

Crel(êi) =
1
N

N∑

n=1

δ(êi,Li(êI
1, w

In
1 )).

Rank sum
Another simple confidence measure that can be
computed onN best lists is the sum of the ranks
of those target sentences containing wordêi as
Li(êI

1, w
In
1 ) (normalized by the total rank sum):

Crank(êi) =

N∑
n=1

(N − n) · δ(êi,Li(êI
1, w

In
1 ))

N
2 (N + 1)

.

Since we want ranks near to the top of the list to
score better, we sumN − n instead of the rankn.

3.5 Scaling of the Probabilities

During the translation process, the language model
probability is raised to the power of 0.8 in order
to give the language model probabilities a higher
weight in the decision process. For the calculation
of word posterior probabilities, we varied this scal-
ing factor and optimized it on a development corpus
in order to minimize the decision errors.

4 Results

4.1 Corpora

We performed experiments on two different cor-
pora. One is the trilingual corpus which is succes-
sively built within the LC-STAR project. It com-
prises the languages English, Spanish, and Cata-
lan. Experiments were carried out for all six transla-
tion directions. At the time of our experiments, we
had about 13k sentences per language available; the
statistics are given in Table 2. The corpus consists
of transcriptions of spontaneously spoken dialogues

in the domain of appointment scheduling and travel
arrangements.
The second task we worked on is the TransType2
corpus. It consists of technical manuals like user
guides, operating guides, and system administration
guides for different devices. It comprises three lan-
guage pairs, each of which contains English (E). The
other three languages are French (F), Spanish (S),
and German (G). The corpus statistics can be seen
in Table 3.

4.2 Experimental Setup

We performed translation experiments with
an implementation of the IBM-4 translation
model (Brown et al., 1993). A description of the
system can be found in (Tillmann and Ney, 2003).
The experimental setup for the two corpora is
described in Table 4. It shows the baseline word
error rate (WER), the graph error rate (GER), and
the word graph density (WGD) for the different lan-
guage pairs. The WER is based on the Levenshtein
distance and computes the minimum number of
substitution, insertion, and deletion operations that
have to be performed to convert the generated string
into the reference string. The GER is computed
by determining the sentence in the word graph
that has the minimum Levenshtein distance to a
given reference. Thus, it is a lower bound for the
word error rate. The WGD is computed as the total
number of word graph edges divided by the number
of words in the reference sentence.

Table 4: Experimental setup

Corpus WGD GER WER

LC-STAR C–E 12.6 19.8 31.7
S–E 10.7 20.6 31.3
C–S 24.7 8.5 18.4
S–C 20.2 10.1 20.4
E–C 21.0 19.7 33.5
E–S 19.8 18.8 33.5

TransType2 E–S 14.6 22.8 31.2
S–E 16.1 20.2 30.5
F–E 33.8 43.0 58.1
E–F 29.5 46.0 62.0
G–E 45.8 47.2 63.6
E–G 46.7 53.2 69.3



Table 2: Statistics of the LC-STAR corpus

English Spanish Catalan
Training Sentences 13 352

Words 123 454 118 534 118 137
Vocabulary Size 2 154 3 933 3 572

Develop Sentences 272
Words 2 267 2217 2211

Test Sentences 262
Words 2 626 2 451 2 470

Table 3: Statistics of the TransType2 corpora

Spanish English French English German English
Training Sentences 54 806 51 797 50223

Words 747 918 670 207 732 348 641 897 586 613 618 637
Vocabulary Size 11 932 8 196 10 323 7 973 17 788 7 877

Develop Sentences 1 012 994 964
Words 16 262 14 701 12 903 11 345 11 141 11 152

Test Sentences 1 128 984 995
Words 11 481 9 969 12 723 11 576 12 416 12 613

4.3 Evaluation Metrics

After computing the confidence, each generated
word is tagged as eithercorrect or false, depend-
ing on whether its confidence exceeds the tagging
threshold that has been optimized on the develop-
ment set beforehand. The performance of the confi-
dence measure is evaluated using two different met-
rics:
• ConfidenceError Rate
The CER is defined as the number of incorrectly as-
signed tags divided by the total number of gener-
ated words in the translated sentence. The baseline
CER is given by the number of substitutions and in-
sertions, divided by the number of generated words.
The CER strongly depends on the tagging threshold.
Therefore, the tagging threshold is adjusted before-
hand on a development corpusdistinct from the test
set.
• DetectionError Tradeoff curve
The DET curve plots thefalse rejection rateversus
the false acceptance ratefor different values of the
tagging threshold. The false rejection rate is defined

as the number of correctly translated words that have
been tagged as wrong, divided by the total number
of correctly translated words. It is also referred to
astype I error. The false acceptance rate (ortype II
error) is calculated as the number of incorrect words
that have been accepted, divided by the total number
of incorrectly translated words. If the type I error is
restricted by a givenα > 0, the type II error usually
cannot be restricted; both error rates depend on each
other.

4.4 Experimental Results

Confidence Error Rates

Table 5 contains the CER for all language pairs of
the two tasks. We compared the confidence mea-
sures determined on word graphs and those onN
best lists. For each language pair, the minimal CER
is shown in bold face.
We see thatCsource, the word posterior probabili-
ties calculated on word graphs with respect to the
aligned source position(s), outperformCtarget and
theN best list based measures in most of the cases.
Nevertheless, theN best list based confidence mea-



sure Crank significantly decreases the CER, like-
wise, and shows best performance among all mea-
sures for some of the language pairs.
Regarding the results of the confidence measures
computed onN best lists, we see that the perfor-
mance of the word posterior probabilitiesCprob stays
behind that of the simple measures. Here, the rank
based criterionCrank produces best results among
theN best list based measures.
For some of the confidence measures and some lan-
guage pairs, the CER does not decrease, but even
slightly grows compared to the baseline. This is the
case for the word graph based measure that depends
on the target position of the word,Ctarget, and for the
probabilisticN best list measure,Cprob. We believe
that this is due to the fact that both of the measures
refer to the position of the generated word in the tar-
get sentence which might differ between alternative
hypotheses – even if theN best list method tries to
compensate for this by determining the Levenshtein
alignment.

Detection Error Tradeoff Curves
The DET curves for two language pairs are shown in
Figures 1 and 2. They support the analysis presented
above: The word graph based confidence measure
Csource produces best results, closely followed by
theN best list based measureCrank. The confidence
measureCprob clearly performs worst.
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5 Conclusion

We presented several concepts of confidence mea-
sures for (statistical) MT systems. Applying them,
the words in the generated target sentence can be
tagged as correct or false, e.g. to facilitate post-
editing or work in an interactive translation environ-
ment.
Word posterior probabilities were computed from
information contained in the output of an SMT sys-
tem, either from a word graph or anN best list. Fur-
thermore, two alternative confidence measures com-
puted onN best lists were introduced and their per-
formance was compared with that of the word poste-
rior probabilities. Those two methods are applicable
to non-statistical MT systems as well.
A systematic evaluation was presented on the
LC-STAR corpus which consists of spontaneously
spoken dialogues in the domain of appoint-
ment scheduling and travel arrangement, and the
TransType2 corpus comprising technical manuals.
Experiments showed that the word graph based con-
fidence measureCsource, depending on the source
position(s) covered by the target word, yields best
results. Nevertheless, a simple rank based crite-
rion calculated onN best lists also performed well.
Both of them significantly reduce the confidence er-
ror rate.
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Table 5: Word Graph andN best list CER for LC-STAR and TransType2 [%]

Corpus Baseline Word Graph 1000 best list
Ctarget Csource Cprob Crank Crel

LC-STAR C–E 16.7 16.3 15.8 16.7 15.5 16.0
S–E 14.8 14.4 14.0 14.7 13.8 14.1
C–S 10.3 9.3 10.2 10.3 10.1 10.3
S–C 11.9 11.1 11.0 11.9 11.9 11.9
E–C 19.2 19.0 17.0 19.2 17.3 18.1
E–S 19.0 18.7 18.4 18.9 16.6 17.3

TransType2 S–E 13.7 13.6 13.2 13.7 13.1 13.4
E–S 17.4 17.3 16.1 17.4 16.8 17.0
F–E 32.3 28.9 26.3 32.3 27.3 28.1
E–F 37.0 31.8 29.9 36.9 31.0 32.1
G–E 37.4 29.5 30.2 35.9 30.2 31.0
E–G 44.5 31.6 29.4 36.1 30.3 32.3
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