
Specification and Evaluation of Machine Translation Toy Systems
- Criteria for laboratory assignments –

Cristina Vertan, Walther v. Hahn
University of Hamburg, Natural Language Systems Division

Hamburg, Germany
{cri,vhahn}@nats.informatik.uni-hamburg.de

Abstract

Implementation of machine translation “toy” systems is a good practical exercise especially for com-
puter science students. Our aim in a series of courses on MT in 2002 was to make students familiar
both with typical problems of Machine Translation in particular and natural language processing in
general, as well as with software implementation. In order to simulate a software implementation proc-
ess as realistic as possible, we introduced more than 20 evaluation criteria to be filled by the students
when they evaluated their own products. The criteria go far beyond such “toy” systems, but they
should demonstrate the students, what a real software evaluation means, and which are the particulari-
ties of Machine Translation Evaluation.

1 Introduction
Machine Translation (MT) is an important sub-
field both of Computational Linguistics and Natu-
ral Language Processing. Therefore academic edu-
cation in MT addresses students in linguistics and
computer science. Usually, according to the back-
ground of the students, courses are given separately
to these two groups but with different methodolo-
gies: theoretical aspects and demonstration of tools
for the linguists (Somers, 2001) on one hand, im-
plementation of clearly defined algorithms for the
computer science students on the other hand.

The alternative, to implement a realistic MT-
system in one course is not feasible, due to the lack
of time and missing background knowledge by the
students. Very often they are facing the field for the
first time.

A solution in between may be the implementation
of one or several “toy systems”, with rather limited
language resources and limited functionality. In (v.
Hahn and Vertan, 2002) the reader will find de-
tailed examples of such toy systems, which have
been developed mainly by courses for computer
science students, but also including students from
linguistics.

In one these courses the students had to implement
(in small groups) parallel small systems based on
either pattern matching, or word-to-word transla-

tion, or syntactic translation, or semantic transla-
tion. These sub-systems processed a corpus of app.
100 sentences, each, being controlled by a common
user interface. The aim was to get a realistic idea of
the possible contribution of each module in a real
MT system.

In another course the students had to implement a
classical centralised integrated system with a word-
to-word pre-processor, syntactic and semantic
modules, domain knowledge with an ontology and
a user interface.

Pattern Matching

User Interface

Syntactic Transl.

Word-to-Word

Semantic Transl.

In
pu

t

O
ut

pu
t

Backbone

In
pu

t

O
ut

pu
t

W
or

d-
to

-w
or

d

Se
m

an
tic

s

User Interface

Pa
rs

er

D
om

ai
n

The aim of designing such systems is not only
o to offer to the students some interesting

programming exercise, but
o to make them conscious of what the imple-

mentation of a real system means.

The remaining pages of this paper will explain
details of this last topic of the courses, where we
made the students reflect on questions like:

- “How will the system react with huge
amounts of data or maximal throughput?”,

- “How well are changes of the domain or
changes of the languages supported?”,

- “What about maintenance by users?”
- Or, more complicated: “What type of ar-

chitecture is optimal for my required func-
tionality?”,

- “What kind of grammar is more suitable?”
- “How much from the original plans did we

realise?”
- Which is the intuition of a possible user?”

In order to give the students the opportunity to
reflect on all these types of questions, we asked the
students, as integrated part of the laboratory as-
signment, to check 17 criteria for software quality
evaluation (among them maintainability, system
work-flow integration, or efficiency) and 7 criteria
for the linguistic functionality, like lexical cover-
age, syntactic coverage or compatibility with
(European) standards and formats.

The aim was to familiarise students with the
evaluations of software projects. For some criteria,
however, like maintanability or domain coverage,
there was apparently no reasonable answer when
working with a “toy” system, but the idea was to
expose the students early enough to all aspects of
software evaluation in general and machine trans-
lation in particular.

To make the whole implementation process more
realistic, we also prepared criteria for the specifi-
cation of the software, which had to be fulfilled
before the implementation process. Both software
evaluation and specification criteria follow general
software engineering theory (Somerville, 1990)

In the following we will explain in detail each of
the specification and evaluation criteria (both soft-
ware specific and linguistic), and we will report

about what the students learned from following
such schemata.

2 Specification Criteria
a) Functional requirements: mainly the behaviour
of input and output, both at system and module
level

- On the system level the specification has to
define the type and form of the input (e.g. speech
or text, format of the input, e.g., file format and
which other formats are supported, restrictions of
text input from keyboard, menu-selection, audio
formats, etc.) as well as the type and form of the
output. To demonstrate the generality of the cri-
teria we included such cases, where the output of
a natural language processing system may be
something else than a natural language utterance
again.: A record from a databank or an action (in
case of a robot system), or simply specific terms
or web-links.
- The other part of the functional require-
ments concerns the module interfaces of the sys-
tem. Specifying formats for input and output of
each module right from the beginning, makes it
much easier to work afterwards independently
among the teams of this course. Each group can
develop and test their modules with simulated in-
put-data without waiting for completed work of
the others.

b) Performance requirements
The students were asked to estimate which time
behaviour has or is required for their system, and
which resources it will need.
c) Usage requirements
Among students, this criterion usually is the most
neglected parameter. They tend to assume that if
input and output are in natural language, no special
attention has to be paid to a user interface. A po-
tential user, in their view, needs only a text field,
where to type the input, and another part of the
screen for the presentation of the output. We tried
to raise their awareness for more specific require-
ments, esp. in MT systems: Dialogue windows for
unknown words and errors in the input or the
proper selection of labels and controls, facilities for
reading in files, for pre-processing etc.

d) Embedding requirements
Under this heading the students are asked to spec-
ify, which hardware is needed for their system and
which operating systems will be supported. A real-
istic scenario for the application has also to be dis-
cussed.

3 General Evaluation Criteria
The first group of criteria evaluates the usage of
software, seen from the perspective of the user,
under i) there follow criteria for the software prod-
uct itself and under j) process quality critera

a) Adequacy
This point has to be assessed in reference to 2.c, i.e.
how much from the specified user requirements are
fulfilled, how user-friendly the system interface is,
etc.. The students have to give precise examples, of
situations where their system reacts adequate, and
cases where improvements seem necessary.

b) Transparency
This evaluation criterion includes reasonable user
estimations about processing errors, the plausibility
of the system’s behaviour in general or reasonable
help facilities. Example: In a translation tool the
user (ideally) has to be informed, whether a non-
translated term is a word “out of dictionary”, a
proper name or simply an input error by the user.
Of course at the level of toy systems we can not
expect from the students (especially under time
constraints) to tackle such problems, but they must
be aware of their existence.

c) work-flow integration
As mentioned under paragraph 2.d, a possible sce-
nario has to be specified initially for the system. In
the evaluation statements the students are requested
to explain to what extent their system would fit into
an assumed work flow and with which additional
time and costs their product can be adapted to other
scenarios or work flow environments. Further, how
flexible it is to functional extensions, because in a
course such toy systems are designed exactly for
the given or defined scenario. By including such a
criterion we force the students to reflect about the
difficulties of building a system, which is general
enough to cover different scenarios and different
work flow environments.

d) Specifications match
This requires a detailed comparison with all speci-
fication criteria, which of them are met by the im-
plementation, what is still missing, and more, what
is not conform with the specification criteria at all
and why. The students must provide reasons why
for example input and output formats were
changed, or not supported, in the given form.

e) Reliability
The deterministic behaviour of the product, and its
components has to be evaluated. As there is, e.g.

no additional sensor input, translation systems must
be deterministic.

f) Robustness
This is again an issue, where students have to learn
a lot about real software behaviour and to make a
very detailed evaluation. From our experience, they
assume that their system works with all input data
in the form that they require, and that the system
runs in a “similar” way as with their test sentences.
Their specifications usually cope only with the
positive functionality “What to do” , not with func-
tions to avoid certain behaviour. What happens, if
the user forgets to specify parameters, if the user
makes none of necessary actions, enters corrupted
data etc. What to do about faulty input?

g) Failure safety
This criterion is mentioned only to familiarise the
students with large scale evaluation procedures. For
a prototype toy system it is not assumed that the
implementation will include restart facilities, or
that there are backup copies, but such aspects are
important for real systems.

h) Efficiency
The efficiency of the program has to be estimated
in terms of hardware requirements and consump-
tion of resources, as well as the time required to
perform certain operations.

i) Product quality
Under this title the students will correctly under-
stand to briefly explain whether the program exe-
cution is correct, i.e. the expected behaviour is
delivered. To refine the discussion we introduced
the following sub-criteria:

- correctness (e.g. correct processing, com-
plete correspondence to specifications)

- comprehensibility (e.g. structure of pro-
grams, choice of designators and names in
the code)

- testability
- maintainability
- changeability

o structural changes
o functional changes
o problem-type changes

The criteria mentioned so far are valid for any
software product. In our case of toy translation
tools, the problem of correctness is much more
complicated due to the translation specific features.
In contrast to classical software products where to
any input a unique correct output must correspond,
translation translation theory say clearly, that there

is more than one correct translation of the same
input sentence. Moreover, the assessment “cor-
rect” for a translation is relative. For example, in
the case of the Verbmobil system evaluation (Tes-
siore and v. Hahn, 2000), a lot of users were pre-
pared to classify the output as “correct” already, if
they could understand the meaning and pragmatics
of the translation.

Usually the existent evaluation methodologies of
machine translation, require the existence of a ref-
erence translation. A set of metrics are defined in
the literature (Dabbadie and al., 2002) starting from
the output and the reference translation. Our expe-
rience proved, that the existence of a reference
translation can be even misleading for the students.
For at least two of the toy systems, which were
developed in our courses, we provided the students
with a test corpus, consisting of about 70-100 sen-
tences and their reference translations. At least
three problems were encountered:

1. The students had a strong fixation on our
reference translation: either they tried to tune
their system artificially to deliver exactly the
given reference, or they classified all transla-
tions as incorrect, which did not met perfectly
the reference.
2. The construction of the (bilingual) lexicons
is done strictly according to the reference
translation: Only the morphology, meanings
etc. encountered in the test corpus are included.
As a consequence, the students did face the
problem of disambiguation only in those cases,
where we included it intentionally.
3. The development of the system was done
strictly to cover the test corpus. Any additional
sentence, would fail.

The scenario which we are applying now after
this experience is rather different: At the beginning
the students get no test corpus. Their first task to-
gether with the requirements in the specification
task is to estimate what kind of sentences can occur
in the given domain, and to design subsequently a
lexicon which covers such situations. After the
design phase and during evaluation we provide a
test corpus, but only with sentences in the source
language. This test corpus prevents the students
from choosing only very simple cases, e.g., no
anaphora and ellipses, no sub clauses or defective
sentences

j. Process quality (e.g. quality of the implemen-
tation process, certification, quality of specifica-
tion)

In contrast to the evaluation of the product, which
addresses only the results delivered by the system
and it’s overall behaviour, process evaluation
means the evaluation of the conditions, under
which the software was produced. This covers the
methodology for compiling the specifications, se-
curity measures, the design of tests, and the coop-
eration among the groups and with the customer.
Here, the students have the opportunity to reflect
about the quality of their production process and
about the results of , e.g., underestimating time
resources etc. Obviously, under time constraints,
the code is not always documented, not always,
explicit enough.

The aim of this “professional” software evaluation
is not to over-criticize the results of the students but
to show them what requirements are expected at a
commercial level even for tasks, which are, by
nature, not completely and formally defined and,
by nature, vague, because this is the nature of lan-
guage.

4. Criteria for Linguistic quality evaluation
In section 3 we presented evaluation criteria, which
are valid for all software products. In the following
we will concentrate on specific criteria for linguis-
tic processing, in particular for translation tools.

a) Coverage
- Lexicon
- Syntax
- Semantics

As explained in section 2 .i), in a toy system the
students will implement a reduced lexicon, a
grammar which covers only part of the language
and will deal only with restricted semantic prob-
lems. In our opinion, however, it is important that
the student can define exactly the amount of lin-
guistic features that they cover. Therefore they are
asked to indicate:

- how many entries the lexicon has and to
give examples of important word, which
may occur in the given domain, but were
not included,

- the annotations in the lexicon, the choice of
lexicon type (stem lexicon versus full-form
lexicon) and correspondingly, their mor-
phological processing,

- types of sentences that can be processed,
and types of realistic sentences which will
fail,

- semantic phenomena, which are tackled
and solved

b) Pragmatics
Here the students have to evaluate to which extent
their software covers pragmatics aspects of the
languages. Good examples are common directive
speech acts like “The course is given in the city
centre” (≠ Das Seminar wird in der Stadtmitte ab-
gehalten”, = in the university main building, not in
CS building).

c) Compatibility
Translation tools make use of lots of resources
(corpora, lexicons, grammars, etc.). Their devel-
opment is time consuming, and therefore standardi-
zation efforts have been made since many years.
The aim is to provide reusable resources. Therefore
the students are asked to discuss, whether

- the format of their data, e.g., to what extent
these meet existing standards and formal-
isms. If not, is the lexicon encoded in a re-
usable format (at least some XML ver-
sion)?

- the grammar follows a well-known for-
malism (HPSG, functional grammar, etc.)
and, on which basis the choice was done.

Concerning the languages, we usually define
right from the beginning what is the source and
what is the target language for the translation proc-
ess. The students, however, must discuss if their
program:

- can it be (easily) reversed to translate
backwards: from target to source

- can it be adapted to new language pairs,
and with which amount of work,. Here the
general translation paradigm (transfer ver-
sus interlingua) can be addressed

Especially the linguistic evaluation can be a
starting point for a broader discussion in the semi-
nar about rather difficult issues in NLP:

- how much does a change of the lexicon de-
sign influences the design and the function-
ality of the whole system,

- is the lexicon part of the grammar (transition
networks), then changes have influence on
the whole grammar and the parser,

- how do technical ad-hoc decisions (easy im-
plementation, time constraints, programming
languages) restrict the whole system design
and inhibit reasonable linguistic solutions.

Similar discussions can be triggered concerning
the change of the domain. The change of the do-

main involves major re-implementations of at least
the lexical resources and the pragmatic processes.

5 Conclusions

In this paper we presented criteria for the specifi-
cation and evaluation of toy machine translation
systems. to asses their quality The criteria can be
grouped in two classes: general software evaluation
criteria and specific linguistic ones. Both are used
by the students to evaluate their own pro-
grammming. It is quite clear, that many of these
criteria are by far too complex for such toy sys-
tems. The main aim is to familiarize computer sci-
ence and linguistics students with real evaluation
methodology. From our experience, the students
had real difficulties to asses each point of the crite-
ria list. However, at the end of the evaluation, they
got some general ideas about why perhaps some of
the methods, although locally successful, are not
general enough, from which issues the success of
an implementation depends and, last but not least,
why the implementation of a machine translation
system is not a trivial task.

6 Bibliographical References
Marianne Dabbadie and Anthony Hartley and Margeret

King and Keith J. Miller and Mustafa El Hadi and
Andrei Popescu-Belis and Florence Reeder and Mi-
chelle Vanni. 2002. A Hands-On Study of the Reli-
ability and Coherence of Evaluation Metrics. In Pro-
ceedings of the Workshop Machine Translation
Evaluation – Human Evaluators meet Automated Met-
rics, Third International Conference on Language Re-
sources and Evaluation LREC 2002, pp. 8-16

Walther v. Hahn and Cristina Vertan. 2002. Architec-
tures of “toy” systems for teaching Machine Transla-
tion. In Proceedings of the 6th EAMT Workshop on
“Teaching Machine Translation”, Manchester, pp.
69-78.

Harald Somers. 2001. Three Perspectives on MT in the
Classroom. In Proceedings of the Workshop on
Teaching Machine Translation VIIIth MT Summit,
Santiago de Compostella

Ian Somerville. 1990. “Software Engineering”, third
edition. Addison-Wesley Publishing Company, Mas-
sachusetts

Lorenzo Tessiore and Walther v. Hahn. 2000. Func-
tional Validation of a Machine Interpretation Sys-
tem:Verbmobil. In Verbmobil: Foundations of
Speech-to-speech Translation, W. Wahlster ed.,
Springer Verlag, Berlin, pp. 611-634.

