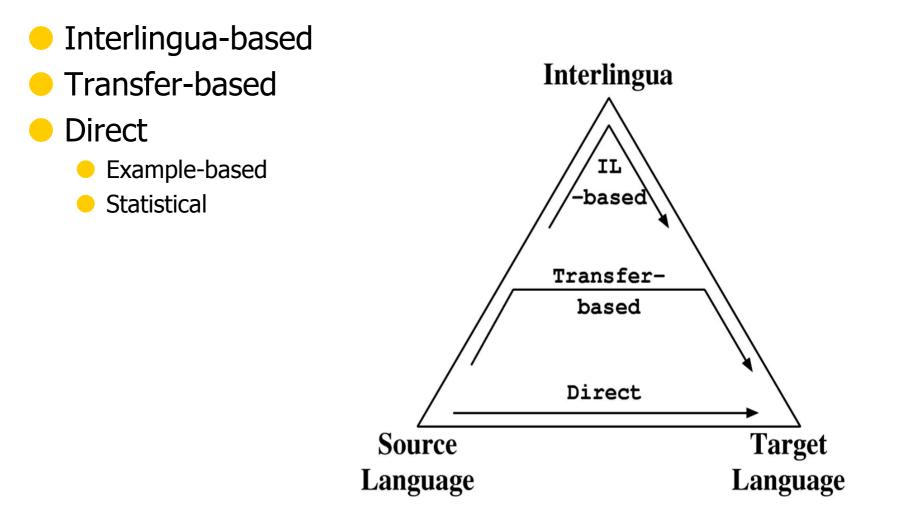
SMT – TIDES – and all that Aus der Vogel-Perspektive A Bird's View (human translation)


Stephan Vogel

Language Technologies Institute Carnegie Mellon University

Machine Translation Approaches

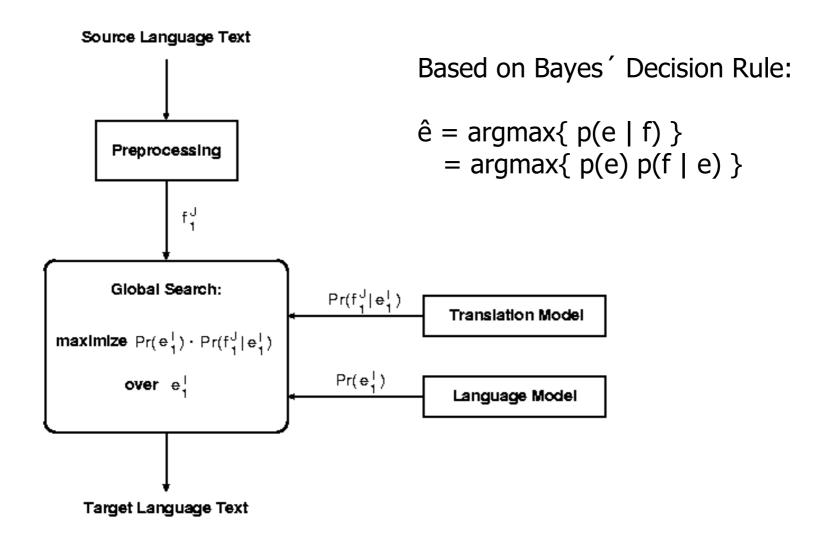
Statistical versus Grammar-Based

- Often statistical and grammar-based MT are seen as opposing approaches – wrong !!!
- Dichotomies are:
 - Use probabilities everything is equally likely (in between: heuristics)
 - Rich (deep) structure no or only flat structure
- Both dimensions are more or less continuous
- Examples
 - EBMT: flat structure and heuristics
 - SMT: flat structure and probabilities
 - XFER: deep(er) structure and heuristics
- Goal: structurally rich probabilistic models

Statistical Approach

Using statistical models

- Create many alternatives (hypotheses)
- Give a score to each hypothesis
- Select the best -> search


Advantages

- Avoid hard decisions, avoid early decisions
- Sometimes, optimality can be guaranteed
- Speed can be traded with quality, no all-or-nothing
- It works better! (in many applications)

Disadvantages

- Difficulties in handling structurally rich models, mathematically and computationally (but that's also true for non-statistical systems)
- Need data to train the model parameters

Statistical Machine Translation

Tasks in SMT

Modelling

build statistical models which capture characteristic features of translation equivalences and of the target language

Training

train translation model on bilingual corpus, train language model on monolingual corpus

Decoding

find best translation for new sentences according to models

Alignment Example

- Translation models based on concept of alignment
- Most general: each source word aligns (partially, with some probability) to each target word
- Additional restrictions to make it mathematical and computationally tractable

Translation Models

The heritage: IBM

- IBM1 lexical probabilities only
- IBM2 lexicon plus absolut position
- IBM3 plus fertilities
- IBM4 inverted relative position alignment
- IBM5 non-deficient version of model 4

In the same mood:

- HMM lexicon plus relative position
- BiBr Bilingual Bracketing, lexical probabilites plus reordering via parallel segmentation
- Syntax-based align parse trees

Training

Need bilingual corpora

- Usually, the more the better
- But needs to be appropriate domain specific and clean
- No need for manual annotation

Training of word alignment models

- Iterative training: EM algorithm
- For HMM: Forward-Backward
- For BiBr: Inside-Outside
- Often maximum approximation: Viterbi alignment
- GIZA toolkit
 - Partly developed at JHU workshop
 - Chief programmer: Franz Josef Och

How does it work?

• First iteration: start with uniform probability distribution

Bilingual Corpus:	Word Pairs:	Probabilities p(s t):
ABC#RST	A - R : 2	A - R : 2/7
E B F G # S U V	A - S : 2	A - S : 2/11
ADBE#RVS	A - T : 1	A - T : 1/3
	B - R : 1	B - R : 1/2
	B - S : 3	B - S : 3/11

 Next iteration: multiply counts by probabilities always renormalize

Phrase Translation

Why?

To capture context

Local word reordering

How?

- Typically: Train word alignment model and extract phrase-to-phrase translations from Viterbi path
- But also: Integrated segmentation and alignment
- Also: rule-base segmentation

Notes:

- Often better results when training target to source for extraction of phrase translations due to asymmetry of alignment models
- Phrases are not fully integrated into alignment model, they are extracted only after training is completed

Language Model

Standard n-gram model:

$$p(w_1 \dots w_n) = \prod_i p(w_i \mid w_1 \dots w_{i-1})$$
$$= \prod_i p(w_i \mid w_{i-2} w_{i-1})$$
trigram
$$= \prod_i p(w_i \mid w_{i-1})$$
bigram

- Many events not seen -> smoothing required
- Also class-based LMs and syntactic LMs, interpolated with word-based LM
- Use of available toolkits: CMU LM toolkit, SRI LM toolkit

Search for the best Translation

Given new source sentence

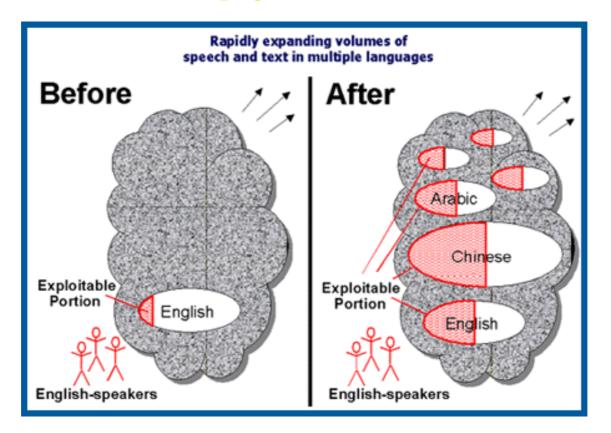
- Brute force search
 - Translation model generates many translations
 - Each translation has a score, including the language model score
 - Pick the one with the highest score
- Result
 - Best translation according to model
 - Not necessarily the best translation according to evaluation metric
 - Not necessarily the best translation according to human judgment

Realistic search

- 'Grow' many translations in parallel
- Throw away low scoring candidates (pruning)
- Search errors: found translation is not the best according to models

MT Evaluation

Human evaluation – all along


- Fluency, adequacy, overall score, etc.
- Problems: inter-evaluator agreement, reproducibility, cost
- Automatic scoring
 - Use one or several reference translation to compare agains
 - Define a distance measure, then: the closer, the better
- Different scoring metrics proposed and used
 - Position independent error rate (how many words are correct)
 - Word error rate (are the all in the correct order)
 - Blue n-gram: how many n-grams match
 - NIST n-gram: how many n-grams match, how informative are they
 - Precision Recall
- MT Evaluation hot topic, more competition in metric development than in MT development

TIDES

DARPA funded NLP project:

- T Translingual (Translation undercover ;-)
 - I Information
 - D Detection
 - E Extraction
 - S Summarization
- Large number of research groups (universities and companies)
- See <u>http://www.darpa.mil/iao/tides.htm</u>

Program Objective

 Develop advanced language processing technology to enable English speakers to find and interpret critical information in multiple languages without requiring knowledge of those languages.

Program Strategy

Research

Conduct research to develop effective algorithms for detection, extraction, summarization, and translation -- where the *source data may be large volumes* of naturally occurring speech or text in multiple languages.

Evaluation

Measure accuracy in *rigorous, objective evaluations*. Outside groups are invited to participate in the annual Information Retrieval, Topic Detection and Tracking, Automatic Content Extraction, and Machine Translation evaluations run by NIST.

Application

Integrate core capabilities to form effective text and audio processing (TAP) systems. Experiment with those systems on *real data with real users*, then refine and iterate.

MT in TIDES

Evaluations every year

- Chinese large data track: > 100m words of bilingual corpus
- Chinese small data track: 100k words bilingual corpus, 10k dictionary
- Arabic large data track: 80m words bilingual corpus
- Open data track: use whatever you can find before data collection deadline – but no significant improvement over large data track results

Many strong teams

- TIDES funded plus external groups
- Friendly competition: you tell me your trick I tell you my trick
- Exciting improvements over last two years
- Automatic metrics over-score machine translations or underscore human translations

Surprise Language Evaluation

- Do learning approaches allow to build useful NLP system for new language within weeks ?
- Ory run exercise: Cebuano
 - Only data collection
 - Most data essentially found within days
 - Very inhomogeneous corpus resulted: Bible to party propaganda
- Actual evaluation: Hindi
 - Enormous problems with different encodings, many proprietary
 - Amount of data > 2 million words bilingual
 - Several dictionaries
 - MT systems, but also NE tagging, cross-lingual IR, etc built within 4 weeks
 - Nobody liked it: only dealing with encoding, no new NLP research

The Future

 Continuous evaluations: Arabic and Chinese and perhaps new surprises

Possible other genres, not only news

- Constant improvements
 - In evaluation approaches ;-)
 - But also in translation !
- Similar comparative evaluations are underway and will follow in other projects, also for speech-to-speech translation