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1 Introduction

Homogeneity of large corpora is still a largely
unclear notion. In this study we first make a
link between the notions of similarity and ho-
mogeneity : a large corpus is made of sets of
documents to which may be assigned a score
in similarity defined by cross-entropic measures,
such similarity being implicitly expressed in the
data. The distribution of the similarity scores
of such subcorpora may then be interpreted as a
representation of the homogeneity of the main
corpus. A blatant fact is that the quality of
an example-based machine translation (EBMT)
system will depend heavily on the training ex-
amples it is fed. Being able to tune an MT
system to a specific application through a wise
selection of training data is therefore a critical
issue. From this viewpoint, such a representa-
tion of homogeneity may be used to perform
corpus adaptation to tune an EBMT system to
the particular domain, or sublanguage, of an ex-
pected task. In the following study we further
describe this framework and compare it with
existing methods based on computing linguistic
feature frequencies.

(Cavaglià 2002) made the general assump-
tion that a corpus-based NLP system generally
yields better results with homogeneous rather
than heterogeneous training data, and experi-
mented on a text classifier system (Rainbow1),
with mixed conclusions. Not finding such an
assumption completely straightforward, we re-
assess it by experimenting on language model
perplexity, and on a grammar-based EBMT sys-
tem translating from Japanese to English, in or-
der to see if there is a real correlation between
EBMT system performance and the homogene-
ity of the corpus of examples.

1See http://www.cs.cmu.edu/mccallum/bow .

2 A framework for corpus
homogeneity

2.1 Previous work on corpus similarity
and homogeneity

Corpus similarity has been extensively studied
in past literature, and a wide range of mea-
sures have been put forward : (Kilgarriff and
Rose 98; Kilgarriff 2001) investigated the sim-
ilarity and homogeneity of corpora and pro-
ceeded to compare “Known Similarity Corpora”
(KSC) using perplexity and cross-entropy on
words, word frequency measures, and a χ

2-
test which they found to be the most robust.
However (as acknowledged in (Kilgarriff and
Rose 98)), such a comparison methodology re-
quires that the two corpora chosen for compar-
ison are sufficiently similar that the most fre-
quent lexemes in them almost perfectly over-
lap. Whereas intuition would hint at this be-
ing true for very large corpora, (Liebscher 2003)
showed by comparing frequency counts of differ-
ent Google Group corpora that it is generally
not the case. Furthermore, measuring homo-
geneity by counting word / lexeme frequencies
introduces another additional difficulty : this
assumes that the word is a clearly defined unit,
which is not the case in the Chinese (Sproat
and Emerson 2003) or Japanese language (Mat-
sumoto et al., 2002), for instance, where there
is no word segmentation.

We claim that similarity between corpora can
be adequatly quantified with a coefficient based
on the cross-entropies of probabilistic models,
built upon reference data. The approach needs
no explicit selection of features and is lan-
guage independent, as it relies on character-
based models (as opposed to word-based mod-
els) thus bypassing the word segmentation issue
and making it applicable on any electronic data.

The cross-entropy HT (A) of an N-gram model
p constructed on a training corpus T , on a test
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corpus A = {s1, .., sQ} of Q sentences with si =
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j=1 −logp
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j]
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i
j = p(ci

j |c
i
j−N+1..c

i
j−1).

We therefore define a scale of similarity be-
tween two corpora on which to rank any third
given one. Two reference corpora T1 and T2 are
selected by the user, and used as training sets to
compute N-gram character models. The cross-
entropies of these two reference models are es-
timated on a third test set T3, and respectively
named HT1

(T3) and HT2
(T3) as in the notation

in Eq. 1. Both model cross-entropies are es-
timated according to the other reference , i.e.,
HT1

(T2) and HT1
(T1), HT2

(T1) and HT2
(T2) so

as to obtain the weights W1 and W2 of refer-
ences T1 and T2 :

W1 =
HT1

(T3) − HT1
(T1)

HT1
(T2) − HT1

(T1)
(2)

and :

W2 =
HT2

(T3) − HT2
(T2)

HT2
(T1) − HT2

(T2)
(3)

after which W1 and W2 are assumed to be the
weights of the barycenter between the user-
chosen references. Thus

I(T3) =
W1

W1 + W2
(4)

is defined to be the similarity coefficient be-
tween reference sets 1 and 2, which are respec-
tively corpus T1 and corpus T2 . Let us point out
that given the previous assumptions, I(T1) = 0
and I(T2) = 1 ; furthermore, any given corpus
T3 is then awarded a score between the extrema
I(T1) = 0 and I(T2) = 1

This framework may be applied to the quan-
tification of the similarity of large corpora, by
projecting them to a scale defined implicitly
via the reference data selection. In this study
we specifically focus on a scale of similarity
bounded by a sublanguage of spoken conver-
sation on the one hand, and a sublanguage of
written style media on the other.

2.2 Experimental data used

To set up a scale of similarity between spoken
conversation style data and written style docu-

ments, we need to select reference data which
shall implicitly bound the scale.

For the sublanguage of spoken conversa-
tion we used for both English and Japanese
languages the SLDB (Spontaneous Speech
Database) corpus, a multilingual corpus of raw
transcripts of dialogues described in (Nakamura
et al., 1996).

For the sublanguage of written style me-
dia, we used for the English language a part
of the Calgary2 corpus, familiar in the data-
compression field, containing several contem-
porary English literature pieces3, and for the
Japanese language a corpus of collected articles
from the Nikkei Shinbun newspaper4.

The large multilingual corpus that is used in
our study is the C-STAR5 Japanese /English
part of an aligned multilingual corpus, the Basic
Traveller’s Expressions Corpus (BTEC).

Statistical aspects for each corpus are shown
in Tables 1 and 2 for English and Japanese.

A prerequisite of the method is that levels of
data transcriptions are strictly normalized, so
that the comparison is not made on the tran-
scription method but on the underlying signal
data itself.

2.3 A comparison with other existing
similarity measures

As mentioned in Section 2.1, a number of sim-
ilarity measures have been investigated, which
make use of linguistic feature counts such as the
frequency lists of words or lexemes. Such meth-
ods assume that the word is a well-defined unit,
or rely on the use of segmenters when dealing
with languages in which text is not segmented
into words. We wish to compare our proposed
method to two measures based on feature fre-
quency computation, which have been previ-
ously applied to English corpora in past litera-
ture : Chi Square (χ2) and Log-likelihood (G2).
Both measures are symmetric, and compare one
document to another via their feature frequency
lists. The ouput number is interpreted as an

2The Calgary Corpus is available via anony-
mous ftp at ftp.cpcs.ucalgary.ca/pub/projects-
/text.compression.corpus .

3Parts are entitled book1, book2 and book3.
4The use of classical Japanese literature is not ap-

propriate as (older) copyright free works make use of a
considerably different language. In order to maintain a
certain homogeneity, we limit our study to contemporary
language.

5See http://www.c-star.org .
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English corpora SLDB BTEC Calgary
Word/Sent. 11.27±6.85 5.94±3.25 20.21±15.18
Char./Sent. 64.51±35.95 31.15±17.02 107.70±84.69
Char./Word 5.72 5.24 5.33

Total Char. 1,037K 5,026K 757K
Total Words 181.2K 964.2K 142.2K
Total Sent. 16,078 162,318 7,035

Table 1: Statistical aspects of several English corpora. (Mean ± std. dev)

Japanese corpora SLDB BTEC Nikkei
Char./Stce (Mean) 32.61±22.22 14.45±7.12 44.21±28.34
Total Char. 20,806K 2,426K 2,772K
Total Sent. 84,751 162,318 253,016

Table 2: Statistical aspects of several Japanese corpora. (Mean ± std. dev)

inter-document distance.

2.3.1 Similarity measures in previous
works

The Chi Square measure (χ2), as in (Kilgarriff
2001) : the number of occurrences of a feature
that would be expected in each document is cal-
culated from the frequency lists. If the sizes of
documents A and B are respectively NA and
NB , and feature w has been observed with a
frequency of ow,A in A and ow,B in B, then the
expected value ew,A is :

ew,A =
NA(ow,A + ow,B)

NA + NB
(5)

and likewise for ew,B for document B. The χ
2

value for the document pair A and B is then
computed as follows :

χ
2 =

n∑

i=1

(oi − ei)
2

ei

(6)

with the sum over the n features.
The Log-likelihood measure (G2) : (Dunning

1993) showed that G
2 is a better approximation

of the binomial distribution than χ
2, especially

for less frequent events. It was shown to work
well with documents of various sizes and to al-
low the comparison of both frequent and rare
events. G

2 is the sum of the log-likelihoods G
2
w

of all n features w :

G
2
w = 2(a log(a) + b log(b) + c log(c) + d log(d)

− (a + b) log(a + b) − (a + c) log(a + c)

− (b + d) log(b + d) − (c + d) log(c + d)

+ (a + b + c + d) log(a + b + c + d)) (7)

Doc.A Doc.B
w a b
¬w c d

Table 3: Contingency table for feature w in doc-
uments A and B.

a, b, c and d being defined for each feature by
the contingency table given in Table 3, so that
in the end :

G
2 =

n∑

i=1

G
2
i (8)

Both measures yield a value which is inter-
preted as the inter-document distance between
two documents. Such distances can in turn be
transposed in the view of our framework, so as
to define similarity coefficients based on G

2 and
χ

2 (i.e., character cross-entropy HT (A) is re-
placed in our framework by χ

2 or G
2 measures).

2.3.2 Evaluation

In order to compare our method with the alter-
native similarity coefficients based on G

2 and
χ

2, we use the method of Known Similarity Cor-
pora (KSC) as in (Kilgarriff 2001). The com-
parison will be performed on Japanese, a lan-
guage without clear word segmentation, so that
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text data will first have to be run through an
analyser when using G

2 and χ
2 distances. To

allow a fair comparison, our method will be ap-
plied on raw unsegmented data. We construct
three sets of KSCs with the previously described
SLDB, BTEC and Nikkei corpora (See Section
2.2) : slices of 10, 000 words (or their equivalent
in unsegmented data) are taken from each cor-
pus and randomly rearranged so that each KSC
set includes different mixes of one pair of cor-
pora. For instance, the KSC set of SLDB and
BTEC includes a subset s10b0 containing ten
slices of SLDB and zero slices of BTEC (100%
SLDB, 0% BTEC), a subset s9b1 of nine slices
of SLDB and one slice of BTEC (90% SLDB,
10% BTEC), and so on. Each subset is made
of ten slices and is therefore the equivalent of
100, 000 words of data, on which we can pro-
duce a number of Gold Standard assertions,
such as “s10b0 should be ranked with a lower
coefficient than s9b1 because all its data comes
from the corpus SLDB” (if we assume that cor-
pora more similar to SLDB get low coefficients,
and more similar to BTEC, high coefficients).
Each KSC set is made of 11 subsets of 100 000
words of data. The equivalent of 500, 000 words
of data is left out to be used as references for
distance/entropy estimation in our framework.
As in (Cavaglià 2002), frequency lists include
the 500 most frequent features in each docu-
ment (preliminary experiments having shown
that best results were achieved for 320 to 640
features).

Once KSC sets have been prepared they are
scored on the three coefficients and ranked ac-
cordingly. The ranks are then compared to the
Gold Standard rankings through the computa-
tion of Kappa coefficients, and Spearman rank
order correlations. Results are shown in Table 4.

The KSC method has the following limita-
tions to its validity : firstly, it does not compare
different language varieties but rather mixes of
the same varieties. Secondly, the size of slices
may be too small to allow a fair comparison,
as one corpus used in a KSC set might include
highly heterogeneous parts. All three measures
display very high correlations with the Gold
Standard rankings. This only tends to con-
firm their validity as similarity indicators, at
least when dealing with mixes of the same vari-
eties of language. The best scores differ depend-
ing on the KSC sets, showing no superiority of
one measure over the other two. However, our

method could be applied to Japanese data with
no prior preprocessing, such as word segmenta-
tion, which makes its range of application wider
than any measure relying on counting linguistic
features such as words or lexemes.

2.4 Representing corpus homogeneity

Corpora are collected sets of documents usu-
ally originating from various sources. Whether
a corpus is homogeneous in content or not is
scarcely known besides the knowledge of the na-
ture of the sources. As homogeneity is multidi-
mensional (see (Biber 1988) and (Biber 1995)
for considerations on the dimensions in register
variation for instance), one cannot trivially say
that a corpus is homogeneous or heterogeneous :
different sublanguages show variations that are
lexical, semantic, syntactic, and structural (Kit-
tredge and Lehrberger 1982).

In this study we wish to implicitly capture
such variations by applying the previously de-
scribed similarity framework to the representa-
tion of homogeneity. Coefficients of similarity
may be computed for all smaller sets in a cor-
pus, the distribution of which shall depict the
homogeneity of the corpus relatively to the scale
defined implicitly by the choice of the reference
data.

Homogeneity as depicted here is relative to
the choice of reference training data, which im-
plicitly embrace lexical and syntactic variations
in a sublanguage (which are by any means not
unidimensional, as argued previously). We fo-
cus on a scale of similarity bounded by a sublan-
guage of spoken conversation on the one hand,
and a sublanguage of written style media on the
other.

3 A study of the homogeneity of a
large bicorpus: the BTEC

The BTEC is a collection of sentences originat-
ing from 197 sets (one set originating from one
phrasebook) of basic travel expressions. Here
we examine the distribution of the similarity co-
efficients assigned to its subsets.

Whereas the corpus may be segmented in a
variety of manners, we wish to proceed in two
intuitive ways : firstly, by keeping the original
subdivision, i .e ., one phrasebook per subset ;
secondly, at the level of the sentence, i .e ., one
sentence per subset .

Figure 1 shows the similarity coefficient dis-
tributions for Japanese and English at the sen-
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Kappa IEntropy Iχ2 IG2

SLDB-BTEC 0.5 0.7 0.8
SLDB-Nikkei 0.9 0.7 0.7
BTEC-Nikkei 0.6 0.9 0.9

Spearman IEntropy Iχ2 IG2

SLDB-BTEC 0.918 0.973 0.990
SLDB-Nikkei 1.000 0.936 0.990
BTEC-Nikkei 0.982 1.000 1.000

Table 4: Kappa coefficients (ten intervals) and Spearman correlation scores of rank orders produced
by similarity coefficients based on entropy, χ

2 and G
2 compared to the Gold Standard ranks.

tence and subset level, and Table 5 shows their
means and standard deviations.

Coefficient Japanese English

Phrasebook 0.330±0.020 0.288±0.027
Line 0.315±0.118 0.313±0.156

Table 5: Means ± standard deviations of the
similarity coefficient distributions in Japanese
and English.

The difference in means and standard devi-
ation values is explained by the fact that all
phrasebooks do not have the same size in lines6.
The distribution of similarity coefficients at the
line level, however similar to the distribution at
the phrasebook level, suggests in its irregulari-
ties that it is indeed safer to use a larger unit to
estimate cross-entropies. Moreover, we wish not
to tamper with the integrity of the original sub-
sets, that is to keep the integrity of phrasebook
contents as much as possible.

Let us point out that on the phrasebook level,
the similarity coefficient has a low correlation
on both the average phrasebook length (0.178)
and the average line length (0.278) (which does
not make it a too “shallow” profiling method).
On the other hand, correlation is high between
the coefficients in Japanese and English (0.781),
which is only to be expected intuitively.

4 Experiments

4.1 Method

This work wishes to reassess the assumption
that, for a similar amount of training data,

6The BTEC phrasebooks have an average size of 824
lines with a standard deviation in size of 594 lines.

an example-based NLP system performs better
when its data tends to be homogeneous. Here
we use the representation of homogeneity de-
fined by the similarity coefficient scale to select
data that tends to be homogeneous to an ex-
pected task. Experiments are performed both
on randomly selected data, and on data selected
according to their similarity coefficient. The
closer the coefficient of the training data is to
the coefficient of the expected task, the more
appropriate.

We assume that the task is sufficiently rep-
resented by a set of data from the same do-
main as the large bicorpus used, the BTEC.
Experiments are performed on a test set of 510
Japanese sentences which are randomly taken
from the resource (and excluded from the train-
ing set). These sentences are first used for lan-
guage model perplexity estimation, then as in-
put sentences for the EBMT system. The task
is found to have a coefficient of I0 = 0.331. The
average coefficient for a BTEC phrasebook be-
ing 0.330, the random selection of the test set
making sure that the task is particularly in the
domain of the overall resource. We examine the
influence of training data size first on language
model perplexity, then on the quality of trans-
lation from Japanese to English by an example-
based MT system.

4.1.1 Language model perplexity

Even if perplexity does not always have a high
correlation with NLP system performance, it is
still a valuable indicator of language model com-
plexity as it gives an estimate of the average
branching factor in a language model. The mea-
sure is popular in the NLP community because
admittedly, when perplexity decreases, the per-
formance of systems based on stochastic models
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Figure 1: Distributions of similarity coefficients at the sentence level (thin line) and at the phrase-
book level (thick line), respectively for Japanese and English.
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Figure 2: BLEU, NIST and mWER scores for EBMT systems built on increasing amounts of
randomly chosen and homogeneous BTEC data.

tends to increase.

We compute perplexities of character lan-
guage models built on variable amounts of train-
ing data first randomly taken from the Japanese
part of the BTEC, and then selected around
the expected task coefficient I0 (thresholds are
determined by the amount of training data to
be kept). Cross-entropies are estimated on the
510 sentence test set, and all estimations are
performed five times for the random data selec-
tions and averaged. Figure 3 shows the char-
acter perplexity values for increasing amounts
of data from 0.5% to 100% of the BTEC and
interpolated. As was to be expected, perplex-
ity decreases as the amount of training data
increases and tends to have an asymptotic be-

haviour when more data is being used as train-
ing.

While homogeneous data yield lower perplex-
ity scores for small amounts of training data (up
to 15% of the resource - roughly 1.5 Megabytes
of data), beyond this value perplexity is slightly
higher than for a model trained on randomly
selected data. Except for the smaller amounts
of data, there indeed seems to be no benefit in
using homogeneous rather than random hetero-
geneous training data for model perplexity. On
the contrary, excessively restricting the domain
seems to yield higher model perplexities.
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Figure 3: Perplexity of character language mod-
els built on increasing amounts of randomly cho-
sen BTEC and homogeneous Japanese data.

4.1.2 Automatic evaluation of the
translation quality

In this section we experiment on a Japanese
to English grammar-based EBMT system,
HPATR (described in (Imamura 2001)), which
parses a bicorpus with grammars for both
source and target language. Translation is
done by automatically generating transfer pat-
terns from bilingual trees constructed on the
parsed data. Not being an MT system based
on stochastic methods, it is conveniently used
here as a task evaluation criterion complemen-
tary to language model perplexity.

Systems are likewise constructed on variable
amounts of training data, and evaluated on the
same previous task of 510 Japanese sentences,
to be translated from Japanese to English.

Because it is not feasible here to have hu-
mans judge the quality of many sets of trans-
lated data, we rely on an array of well known au-
tomatic evaluation measures to estimate trans-
lation quality :

� BLEU (Papineni et al. 2002) is the geo-
metric mean of the N-gram precisions in
the output with respect to a set of refer-
ence translations. It is bounded between 0
and 1, higher scores indicate better trans-
lations, and it tends to be highly correlated
with the fluency of outputs ;

� NIST (Doddington 2002) is a variant of

BLEU based on the arithmetic mean of
weighted N-gram precisions in the output
with respect to a set of reference transla-
tions. It has a lower bound of 0, no upper
bound, higher scores indicate better trans-
lations, and it tends to be highly correlated
with the adequacy of outputs ;

� mWER (Och 2003) or Multiple Word Error
Rate is the edit distance in words between
the system output and the closest reference
translation in a set. It is bounded between
0 and 1, and lower scores indicate better
translations.

Figure 2 shows BLEU, NIST and mWER
scores for increasing amounts of data from 0.5%
to 100% of the BTEC and interpolated. As was
expected, MT quality increases as training data
increases and tends to have an asymptotic be-
haviour when more data is being used in train-
ing.

Here again except for the smaller amounts of
data (up to 3% of the BTEC in BLEU, up to
18% in NIST and up to 2% in mWER), us-
ing the three evaluation methods, translation
quality when using random heterogenous data
is found to be equal or higher than when using
homogeneous data. If we perform a mean com-
parison of the 510 paired score values assigned
to sentences, for instance at 50% of training
data, this difference is found to be statistically
significant between BLEU, NIST, and mWER
scores with confidence levels of 88.49%, 99.9%,
and 73.24% respectively.

5 Discussion and future work

The contribution of this work is twofold :
We describe a method of representing similar-

ity to reference sublanguages through a cross-
entropic measure, that can be used to profile
the homogeneity of language resources. Com-
paring our approach to other existing similarity
measures shows similar performance, while ex-
tending widely their range of application to elec-
tronic data written in languages with no clear
word segmentation. A corpus may be repre-
sented by the distribution of the similarity co-
efficients of the smaller subsets it contains, and
atypical therefore heterogeneous data may be
characterized by the lower occurrences of their
values.

We further observe that marginalizing such
atypical data in order to restrict the domain on
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which a corpus-based NLP system operates does
not yield better performance, either in terms of
perplexity when the system is based on stochas-
tic language models, or in terms of objective
translation quality with an EBMT system.

Having observed that heterogeneous data in a
resource may indeed contribute to better NLP
system performance, one of our objectives for
future work is to study corpus adaptation with
Out-of-Domain data. While (Cavaglià 2002)
also acknowledged that for minimal sizes of
training data, the best NLP system perfor-
mance is reached with homogeneous resources,
we would like to know more precisely why and
to what extent mixing In-Domain and Out-of-
Domain data could yield better accuracy.

As far as the representation of homogeneity
is concerned, other experiments are needed to
tackle the multidimensionality of sublanguage
varieties less implicitly. We would like to con-
sider multiple sublanguage references to untan-
gle the dimensions of register variation in spo-
ken and written language.
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