//www.ia.ac.cn



### Phrase-Based Statistical MT for MANOS System

Prof. Bo Xu

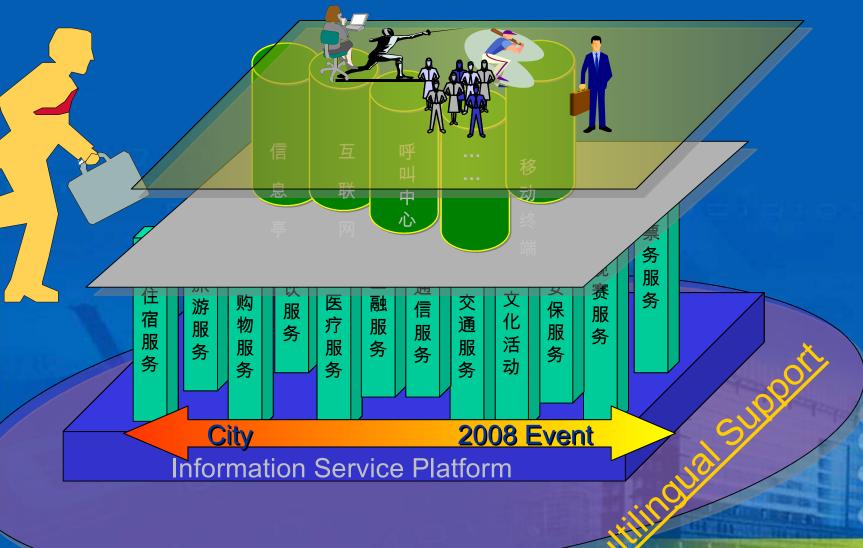
Institute of Automation Chinese Academy of Sciences (CASIA) xubo@nlpr.ia.ac.cn

Phuket Thailand, Sept 15, 2005





MANOS/MT/S2S
1<sup>st</sup> SMT workshop in China
Phrase-Based Statistical MT
Conclusion and Future directions






# 1, MANOS/MT/S2S









/www.ia.ac.cn

## Role of MT(1/2)

- MANOS is a service platform that try to integrate commercial available or will be available services in market for events
- Multilingual is one of key features across applications
  - in business model, we could view as valueadd services



//www.ia.ac.cn

## Role of MT (2/2)

- Multilingual Support Tools and multilingual Interface: fast and accurate (maybe manually assistance) translation for multilingual information distribution and display
- Multilingual Interaction: Multilingual also could be independent application such as a Speech TRANSLATOR device etc. <u>Mainly</u> <u>domain specific.</u>
- Not only MT also S2S, especially in PDA or Mobile phone.

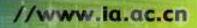


Www.la.ac.cn

#### MT and S2S

- MT Traditionally refer as General domain and Text-to-text translation
  - Relatively long R&D history
  - Huajian, Xiamen, Haerbing Polytech, ICT, Beijing University, CCID....
- S2S– Traditionally refer as Specific domain of course Speech-to-Speech translation
  - From 1986 ATR and mainly from ASR community
  - CASIA ...




//www.ia.ac.cn

## Merging of MT/S2S

- Penetrating mutually
  - More application or domain-specific MT are preferred
  - Besides domain specific, S2S extend to connect LVCSR and unlimited domain MT(TC-STAR)
- Convergence of Research Community
  - MT Summit X
  - IWSLT
- <u>Convergence point SMT</u>
  - Especially the rapid progress in SMT



## 2、1<sup>st</sup> SMT workshop in China



## **Purpose and Main participants**

中国科学院自动化研究所

#### • Purposes:

- To enhance the SMT research in China
- Specifically as in beginning stage, algorithm and methods implementation and understanding
- Planned from Oct. 2004
- Participants:
  - Institute of Automation, CAS(CASIA)
  - Institute of Computing Technology, CAS (ICT)
  - Computer Department, Xiamen University



#### **CASIA S2S(MT) Research**

- Focus on some limited domain, all are corpus-based approach
  - IF(Interlingual exchange Format)(1998-2002)
  - Word-based SMT(1998-2002)
  - EBMT(2002-2004)

. . . . . .

- Phrase-based SMT(2005-)



中国科学院自动化研究所 Characteristic of Spoken Translation(1/3)

www.ia.ac.cn

- Spontaneous speech
  - Ellipsis and fragments, High function/low content term,Vagueness, Anaphora, Juncture, repair, ....



## 中国科学院自动化研究所 Characteristic of Spoken Translation(2/3)

- Technology related
  - Spoken style, variable speed, non-speech utterance, break, anaphora, repair
  - Ungrammatical, recognition error, noboundary between sentences
  - personalized voice, accent and intonation

/www.ia.ac.cn



## 中国科学院自动化研究所 Characteristic of Spoken Translation(3/3)

- Advantage under SMT framework
  - Simple structure
  - Short Sentences (in Chinese average around 9 characters, 7 words)
  - Though variable but still limited expression
  - For real application balance between expressive and simplicity

 We realize the importance of solving limited domain problem using unlimited domain technology is absolute necessary



## 中国科学院自动化研究所 Institute of Computing Technology(ICT)

//www.ia.ac.cn

- Lead by Prof. Qun LIU
- Is expertise in NLP, including different Tools, analysis, corpus construction and MT(Some are available in open source)
- They setup three systems called PBT, AT and SBTG under SMT framework and same phrase dictionary



www.ia.ac.cn

## **Xiamen University**

- Lead by Prof. Xiaodong Shi
- One of most famous MT system in China
- Rule-based translation R&D for more than 20 years
- Expertise in algorithm
- Began SMT research from Summer of
   2004

## **Corpus Preparing-- training**

- CASIA50K: 50K bilingual corpus in travel domain by CASIA
- ICT150K:150K bilingual corpus of movie caption
- XMU200K: 200K bilingual corpus of movie caption
- All sentences are not very long, not very large because the purpose of the workshop and some copyright problem



## **Corpus Preparing-- testing**

- CASIA1500: 1500 test corpus with every sentence 5 translations by CASIA
- 863-03 and 863-04 standard dialogue test in previous 2 years
  - 863-03: 350 ( 4 translation)
  - 863-04: 400 ( 4 translation)





#### **About Workshop**

- Held from July 13-14
- Email discussion and result exchange before workshop
- Two-days workshop
  - On site evaluation
  - System technical report for every group
  - Discussing

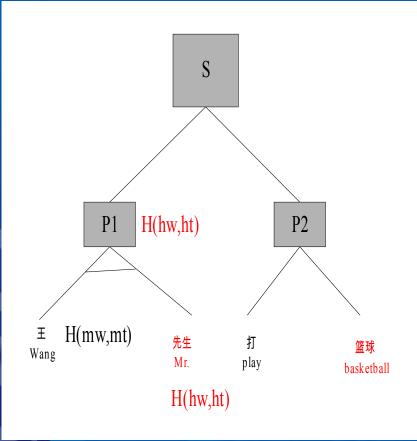


WW.IQ.QC.CT

#### **Final 5 systems**

- All are phrase-based
  PBT1-3: Phrase-based decoding, no other additional syntax and semantic knowledge added
  AT- Alignment template
- SBTG--Stochastic BTG

//www.ia.ac.cn




## **Alignment Templates**

- Try to increase the generalization ability of system, quite preliminary implementation for participating system
- Monolingual clustering through MKCLS or Bilingual Clustering
- Decoding: Phrase template applied when no phrase corresponding are available
- Class : 2 3 14 15 20 pro: 0.33
  - (发表 声明 issued a statement)
- Template is : 2 3 -> 14 15 20 0.33



## 中国科学院自动化研究所 SBTG Framework



•PCFG Syntax parsing to source language (Collins)

•Using extracted phrase information in process of search

• Make decision in every node mono/invert

- **P(e|e') \* p\_m or**
- P(e'|e) \* (1-p\_m)
- P(e|e') is language model,
  P\_m are trainned from
  PenTree Bank

//www.ia.ac.cn



#### T1: Training: casia50k, Test:casia1500

| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 6.673  | 0.268  | 0.623  | 0.597  | 0.486  |
| PBT2    |        | 0.3143 |        |        |        |
| AT      | 6.6871 | 0.3146 | 0.6627 | 0.5054 | 0.4149 |
| SBTG    | 7.0086 | 0.3283 | 0.6765 | 0.5157 | 0.4177 |
| PBT3    | 7.0647 | 0.3511 | 0.6897 | 0.4769 | 0.3969 |



#### T2: Training: casia50k test:863\_03

| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 6.078  | 0.222  | 0.638  | 0.676  | 0.517  |
| PBT2    |        | 0.2679 |        |        |        |
| AT3     | 6.6844 | 0.2696 | 0.6637 | 0.6060 | 0.4612 |
| SBTG4   | 6.2962 | 0.2425 | 0.6500 | 0.6367 | 0.4857 |
| PBT3    | 6.4168 | 0.2833 | 0.6338 | 0.5885 | 0.4840 |



#### T3: Training casia50K, Test: 863\_04

| Results | Nist   | bleu   | GTM     | mWER   | mPER   |
|---------|--------|--------|---------|--------|--------|
| PBT1    | 4.79   | 0.179  | 0.573   | 0.677  | 0.569  |
| PBT2    | ý      | 0.1225 | Con Con |        |        |
| AT      | 4.5544 | 0.1287 | 0.5575  | 0.6811 | 0.5521 |
| SBTG    | 4.5842 | 0.1191 | 0.5385  | 0.7650 | 0.5997 |
| PBT3    | 3.8910 | 0.1105 | 0.5207  | 0.6944 | 0.5899 |

//www.ia.ac.cn



//www.ia.ac.cn

## Remarks(1)

- The best result of PBT is superior than other two systems (AT and SBTG)
- PBT3 performance better in casia1500 and 863-03,however, PBT1 is much better than 863-04. The reason is that 863-04 have more questioning sentence and also long sentences,
- PBT1 decoding is with ability of re-ordering during search; PBT2 and PBT3 adopt relatively simply decoding(PBT1 take 8m, PBT2 and PBT3 only take 4s for casia1500 testing)



#### T4:training : ict150k Test: casia1500

| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 4.15   | 0.10   | 0.46   | 0.82   | 0.69   |
| PBT2    |        | 0.0816 |        |        |        |
| AT      | 3.6340 | 0.0771 | 0.4150 | 0.8190 | 0.7088 |
| SBTG    | 4.6469 | 0.1265 | 0.4649 | 0.8062 | 0.6896 |
| PBT3    | 3.5894 | 0.0948 | 0.4258 | 0.7965 | 0.7027 |

//www.ia.ac.cn

#### T5 : training: xmu200k, test casia1500

| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 4.63   | 0.117  | 0.487  | 0.808  | 0.675  |
| PBT2    |        | 0.1266 |        |        |        |
| AT      | 3.9264 | 0.1213 | 0.4480 | 0.7778 | 0.6766 |
| SBTG    | 4.0516 | 0.0927 | 0.4258 | 0.8440 | 0.7259 |
| PBT3    | 4.0930 | 0.1416 | 0.4680 | 0.7507 | 0.6594 |

//www.ia.ac.cn

T6: training( ict150k+xmu200k), test: casia1500

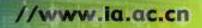
| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 4.597  | 0.116  | 0.486  | 0.813  | 0.677  |
| PBT2    |        | 0.1274 |        |        |        |
| AT      | 3.9923 | 0.1292 | 0.4566 | 0.7647 | 0.6658 |
| SBTG    | 4.5816 | 0.1275 | 0.4584 | 0.8114 | 0.6966 |
| PBT3    | 4.1439 | 0.1445 | 0.4705 | 0.7466 | 0.6586 |



#### : training( ict150k+xmu200k+casia50k), Test: casia1500

| Results | Nist   | bleu   | GTM    | mWER   | mPER   |
|---------|--------|--------|--------|--------|--------|
| PBT1    | 4.66   | 0.117  | 0.483  | 0.818  | 0.685  |
| PBT2    |        | 0.1279 |        |        |        |
| AT      | 4.0219 | 0.1298 | 0.4598 | 0.7648 | 0.6652 |
| SBTG    | 4.5463 | 0.1276 | 0.4555 | 0.8134 | 0.6953 |
| PBT3    | 4.1298 | 0.1459 | 0.4806 | 0.7386 | 0.6493 |




/www.ia.ac.cn

## Remarks(2)

- SBTG has certainly more generalization ability in some cases, but not robust enough to benefits from different corpus
- AT are not in stable condition
- PBT1-3 have steadily performance when changing the training corpus
- Through exchange of results before workshop, there is so "surprising" result among three groups --- reach to general normal state



## 3、 Phrase-based Statistical Translation





## 中国科学院自动化研究所 Phrase-Based Translation Model



- Source input is segmented into all possible phrases
  - Any sequence of words, not necessarily linguistically motivated

/www.ia.ac.cn

Each phrase is translated into English

Phrases are reordered

#### **Extraction of phrase translation**

中国科学院自动化研究所

/www.ia.ac.cn

Integrated segmentation and phrase alignment (ISA, Zhang, 2003) **Extracting phrase pairs from HMM word** alignment model (HMM, Vogel et al., 1996) **Phrase-extraction using Inversion Transduction** Grammar (BTG, Wu, 1997) **Phrases from bi-direction Word-Based Alignment** (WBA, Och et al, 1999).



www.ig.ac.cn

#### **Probability of Phrase Pairs**

#### We need a probability distribution over collected phrase pairs

- → Possible Choices:
- using lexical translation probabilities
- relative frequency of collected phrases

$$\phi(f/e) = \frac{count(f,e)}{\sum_{f} count(f,e)}$$

or, conversely





//www.ia.ac.cn

#### **Phrase Translation**

#### ▲ Phrase translation for "我要买"

| English Phrase      | $\phi(f/e)$ |
|---------------------|-------------|
| I want to buy       | 0.386       |
| I would like to buy | 0.234       |
| I will buy          | 0.119       |
| I wanna buy         | 0.108       |
| I wan to get        | 0.101       |
| •••••               |             |



### **Beam-Search Decoding**

#### Look up possible phrase translations

 many different ways to segment words into phrases

 many different ways to translate each phrase

| 中国    | 与    | 北朝鲜         | 有     | 外交         | 关系        |       |
|-------|------|-------------|-------|------------|-----------|-------|
| China | with | North Korea | a has | diplomatic | relations | ships |

diplomatic relationships

www.ia.ac.cn

has diplomatic relationships


China has the diplomatic relationships with North Korea





has the diplomatic relationships

#### China has the diplomatic relationships with North Korea





# **IWSLT2005 evaluation(1/2)**

- Training Corpus
  - 1,000K domain-specific corpus(C-
    - Star, CASIA .... etc)
  - 500K general domain news corpus(863,973, HIT)





//www.ia.ac.cn

#### **IWSTL2005 Evaluation(2/2)**

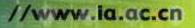
| Track (C-E)                 | Data<br>condition | Bleu4  | NIST    | Meteo<br>r | WER    | PER        |
|-----------------------------|-------------------|--------|---------|------------|--------|------------|
| Manual<br>transcriptio<br>n | unrestrict<br>ed  | 0.5279 | 10.2499 | 0.7214     | 0.4160 | 0.336<br>6 |
| ASR<br>Output               | unrestrict<br>ed  | 0.3845 | 8.0406  | 0.5802     | 0.5788 | 0.477<br>0 |



//www.ia.ac.cn

## PBT vs. Other methodology(1/2) 863-03 Test

|                                  | NIST | BLEU             |
|----------------------------------|------|------------------|
| Training and Test corpus         |      | 사가를 수 당 <u>내</u> |
| nlpr50K, 863-03Test              | 6.0  | 0.22             |
| cstar130K training, 863-03 Test  | 6.82 | 0.28             |
| IWSLT2005,863-03 test            | 7.28 | 0.32             |
| Best performance in 03           | 7.77 | 0.36             |
| evaluation(rule-based or hybrid) |      |                  |


#### 中国科学院自动化研究所 **PBT vs. Other methodology(2/2)** 863-04 Test NIST **BLEU** Training and Test corpus **IWSLT2005** 5.91 0.22 6.12 Best performance in 863-04 0.2 evaluation





### Remarks(3)

- Our Phrase-based translation is still a bit lower but comparable than best rulebased
  - We only less than one year real experiences in SMT
  - World-class commercial Rule-based systems





### 中国科学院自动化研究所 Phrase-template

www.ia.ac.cn

#### Weakness of Phrase-based Model

- lack of generalization
- difficult to estimate the quality and quantity of phrases extracted


#### ->Phrase-Template

- can contain phrase variables
- enables dedicated modeling

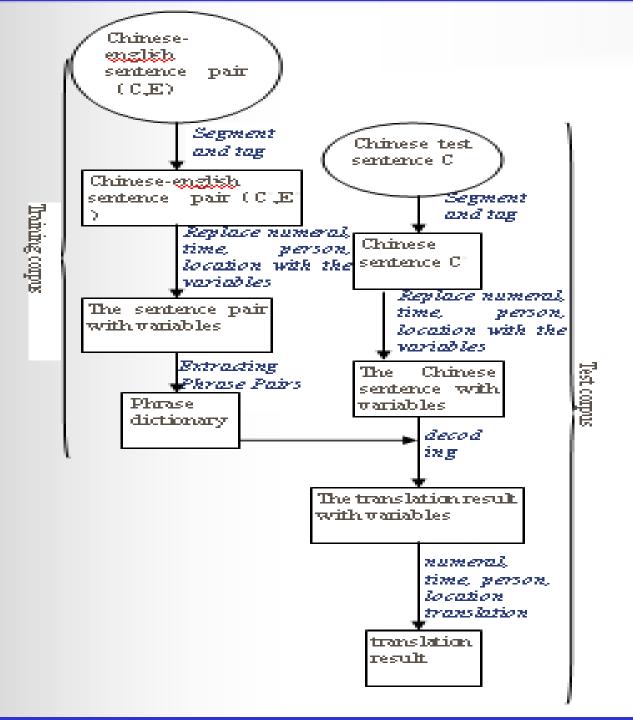
# Phrase variables(1/2)

中国科学院自动化研究所

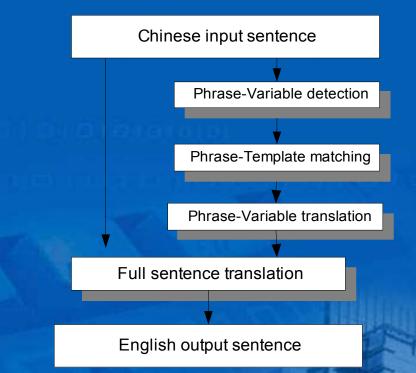
- Variable Selection:
  - Alignment template: word clustering: very difficult to balance the robustness and accuracy
  - Numeral, time, person, location(Name entity)
  - Phrase with (Numeral, time, person and location ) are phrase-template with variables
- 上海到北京 》 from shanghai to beijing
  LOC 到 LOC -> from LOC to LOC 0.51






### Phrase variables(2/2)

- Variable are translated independently
  - When we have the translation result with variables, we can use dictionary of person and location to translate person and location variables, and use numeral model translate numeral and time.


• 我要去上海 - 〉我 要 去 \_loc ->I want to go to \_loc->I want to go to shanghai.



Shallow Parsing( maybe latter deep paring) is necessary to extract that variables.



#### 中国科学院自动化研究所 Phrase template detection and translation



//www.ia.ac.cn

About 5% extracted phrases which contain variable (phrase-variables focus on Name entity: Time, Number, Location and Person)



### 中国科学院自动化研究所 Phrase-template result for 863-04

/www.ia.ac.cn

- IWSLT2005 :
  - NIST 5.9143 BLEU 0.2241 GTM 0.6369 mWER0.6353 mPER05106
- Phrase-Template:
  - NIST score = 5.9882 BLEU score = 0.2320
     GTM score = 0.6408 mWER score = 0.6366
     mPER score = 0.5098



#### VD)dibidid (bididiana)

## 4 Conclusion and direction



#### Conclusion

- MT and S2S are converging
- Statistical MT has been initially investigated in China that preliminary result is comparable with the state-of-art rule-based or hybrid system
- Phrase-based has shown to be superior to other system by now in view of implementation and accuracy
- Phrase with variables or phrase template has been initially tried to have some improvement in accuracy





www.ia.ac.cn

### **Future direction**

- Way of merging EBMT and SMT
  - phrase template
  - What kind of words or parameter could be variables
    - Besides time\number,name entity like \name\location .....
  - Need to integrate more advanced preprocessing (shallowing paring to medium-depth parsig)
- But Systematical integration of structure knowledge-morphological, syntax and so on ....



#### Thanks !

