
The Induction and Evaluation of Word Order Rules using Corpora based on
the Two Concepts of Topological Models

Bernd Bohnet
Innovative Language Technology, TTI GmbH

and
University of Stuttgart

Visualization and Interactive Systems Group
Universitätstr. 58, 70569 Stuttgart, Germany

bohnet@informatik.uni-stuttgart.de

Abstract

Using dependency trees in natural language
generation and machine translation raise the
need to derive the word order from de-
pendency trees. This task is difficult for
languages with (partly) free word order
and comparatively easier for languages with
fixed word order. This paper describe (a) the
two basic elements of topological models,
(b) rule patterns for the mapping of depen-
dency trees to topological trees, (c) the auto-
matic acquisition of word order rules from
corpora, annotated with dependency struc-
tures and (d) an approach for the automatic
evaluation of the results.

1 Introduction

Dependency structures are frequently used in Natu-
ral Language Generation (NLG) and in some cases
in Machine Translation (MT). In NLG, dependency
structures are used in the surface realization step.
The input to the surface realizer is defined by the
standard architecture RAGS for NLG systems as
“syntactic representations” which is “based on some
notion of abstract syntactic structure which does not
encode surface constituency or word order”, cf. page
17 (Mellish et al., 2006). These input structures are
usually dependency structures.

In MT, statistical n-gram approaches are rather
successful and therefore mostly used. Nevertheless,
some systems use dependency trees in order to im-
prove the results for instance Lavoie et al. (2000),
Čmejrek et al. (2003), Ding and Palmer (2005) and

some approaches describe more the theoretical fun-
dament for improving the translation results like
Mel’čuk and Wanner (2006).

We will give a brief overview over the history of
topological models, since topological models are
the basis for this paper. The first model that was
developed was the German topological model, cf.
Drach (1937), Bech (1955), and Höhle (1986). The
complexity of the German word order is obviously
the reason behind the development of the German
topological model. The syntax and the information
structure determines the positions of the constituents
in the model. The most salient parts are the so called
sentence brackets, namely theleft bracket(LK) and
the right bracket (RK). The left bracket usually
contains the finite verb or a conjunction. The right
bracket can be empty or it can contain the infinite
verb(s).

John wird LK nach Berlin reisenRK .
’John will to Berlin. travel’lit.

weil LK es ihm gefällt RK .
’because it he likes. ’lit.

The syntax determines the constituents of the
brackets. In relation to the brackets, three positions
are possible: before the left bracket (pre-field), in
the middle, i.e., between the left and the right brack-
ets (middle field), and after the right bracket (post-
field).

Nach BerlinV F ist LK er um 5 MF abgereistRK .

’to Berlin is John at 5am departed’lit.

This kind of approach has been developed only
with regard to German and a few other languages,
such as ancient French by Skarup (1975) and

38

Warlpiri by Donohue and Sag (1999). For some
languages, such as English, the word order is easy
to derive and therefore, only a simple topological
model is needed. For instance, phrase structures ful-
fil already the requirements for a topological model
with regard to English as well as with regard to quite
a few other languages. Phrase structures describe
the syntax by inclusion of constituent in other con-
stituents and the position within the constituents. In
the following example on the left,the and kitchen
are constituents within the constituentc. This can
occur recursively, as shown in the example below.

thea kitchenb c ina the kitchenb c

Figure 1 shows a dependency tree. The words of
the dependency tree are not ordered. Therefore, the
word order has to be derived. Xia and Palmer (2001)
describe a method for converting dependency struc-
tures to phrase structures. The conversion grammar
is trained on corpora annotated with dependency
structures and phrase structures. In order to learn
word order rules, this method can be simplified, so
that only dependency structures and the word order
is needed.

has

John

SBJ

read

book about

Berlina

VC

OBJ ADV

PMODNMOD

has

John

SBJ

read

book about

Berlina

VC

OBJ ADV

PMODNMOD

Figure 1: Dependency Tree.

Bohnet and Seniv (2004) introduced a method
to map dependency structures to unordered phrase
structures for languages with free word order. Since
the constituents are not ordered, additional rules are
needed to derive the order. For German, phrase
structures do not allow to determine all possible or-
ders, since for instance the phrases can be discon-
tinuous. The classical German topological model
describes the word order appropriately. Ideally, the
dependency trees would be mapped directly to the
topological model. Unfortunately, no large cor-
pora annotated with topological fields are available.
Therefore, we were forced to use phrase structures
in order to learn German word order rules.

Fortunately, in the last years, corpora annotated
with dependency structures for several languages
have become available. This was encouraged by
two “shared tasks” for dependency parsing. Thus,
in the year 2006, 13 corpora became available, and
in the year 2007 10 corpora partly identical became
available. Out of these, we used to learn lineariza-
tion grammars the Catalan corpus, the English Penn
Treebank, the German Tiger corpus, and the Italian
corpus .

2 The two Elements of Topological Models

The two elements of topological models can be dis-
covered by analyzing various topological models,
that have been developed mainly for text generation.

Bröker (1997) describes word order by domains
and explicit precedence relations. The domains do
not allow the words from outside of a domain to go
between words contained in a domain. A topology
is derived with rules based on modal logic from a
dependency tree.

Duchier and Debusmann (2001) use a tree to de-
scribe the linear precedence (LP). The tree is pro-
jective and partially ordered. The edges are labelled
with the names of topological fields. The LP tree
is derived from a dependency tree called immediate
dominance tree (ID). The LP tree is computed from
the ID tree by a constrained based approach using
lexical constraints and conditions for the claiming
of nodes.

The topological model of Gerdes (2002) consist
of topological fields and boxes. Boxes contain fields
which contain recursively boxes and boxes again
contain fields. The boxes and fields are supplied in
form of a list. Both behave like domains. A topol-
ogy is derived by traversing the dependency tree top
down. Each time a word is placed in a box or field,
depending on its subcatframe, new boxes or fields
are created within the box or field.

Word order domains have been used also for the
linearization of phrase structures, cf. (Reape, 1993),
(Rambow, 1994), (Kathol and Pollard, 1995). Reape
describes word order in terms of the containers
which are associated with phrases. A container can
include recursively other containers and words. For
the mapping from phrase structures to such a con-
tainer structure, the continuous phrases are associ-

39

ated with a container and the word of discontinuous
phrases are included in the parent container. The or-
der between the words is kept during the mapping.

The topological models above define word order
either in terms of lists or sets. The sets need ad-
ditional precedence relations for ordering the ele-
ments. A model using sets and precedence rela-
tions would allow to define models which use lists.
The models using sets cannot be formulated directly
in terms of lists, since models based on sets have
the possibility of underspecification. Underspecified
models contain partially ordered sets and represent
several possible orders.

Domains and precedence relations are the most
general concepts. Each of the previous sketched
models can be decomposed using these concepts. In
the following, we define formally, the two concepts
of topological models.

Def. 1 [Precedence Relation]
An precedence relation defines an order between
words or sets. Formally, an order relation is de-
fined as a subset of the Cartesian product of a setW :
<⊆ W × W , where(wi, wj) ∈<if wi is beforewj

Def. 2 [Domain1]
A domain is a set of words and domains, where the
elements of a domain, that contains another domain,
are not present between the words of this other do-
main or recursively contained domains:
if ∃Dm ∈ Pt : ∀ x ∈ Pt ∧ x 6= Dm →
(∀y ∈∗ Dm : x < y) ∨(∀y ∈∗ Dm : x > y). 2

3 Rule Patterns and Mapping Procedure

For the definition of rule patterns and examples,
graph transducers are used. Knight and Graehl
(2005) give a good overview of different (tree) trans-
ducer types. We use transducer with two tapes, cf.
(Bohnet, 2006). These transducers have many ad-
vantages over single tape transducer: Context is pos-

1We have chosen the name domain, since in the mathematic
domain theory (Gierz et al., 2003) and order theory, the partly
ordered sets are called domains, we use therefore, the same
name for this basic element of topological word order models.
Additionally, this name is already frequently used for thiscon-
cept, cf. (Reape, 1993), (Kathol and Pollard, 1995), (Bröker,
1997).

2The definition means that if a domainDm is in a domainPt

(its parent domain) then the other words or domains of the do-
mainPt are either before the words (and recursivley contained
words) or after the words of the domainDm.

sible on both tapes, they are bidirectional, no order-
ing of rules is needed and a static relationship be-
tween symbols of the tapes is introduced. The most
important feature is that the rules can be applied in
parallel to all parts of the tree in contrast to normal
tree transducers which traverse a tree top-down or
bottom-up. Nevertheless, it is still possible to have
an execution order between rules, then the order is
determined by the rule context and not by manual
ordering. The main advantage of applying rules in
parallel is that this allows to define a grammar in cor-
respondence to the independence of syntactic con-
stituents as they exist in natural language. For in-
stance, the complements and adjuncts of a verb can
be ordered in parallel and independently from the
adjuncts of a noun such as modifiers and determin-
ers.

The topological models of the sentences are repre-
sented as hierarchical graphs. We use the hierarchi-
cal graph definition of Busatto (2002). He defines
a hierarchical graph as an underlying flat graph and
on top of this a directed acyclic graph(DAG)which
represent the hierarchy.

has

John

read

book

about

Berlina

Figure 2: Precedence Graph.
The order relations and domains can be mapped

directly to hierarchical graphs. The underlying flat
graph represents the order relation and it is named
GO. The nodes of the graphGO are the words
which have to be ordered and the order relation as
defined in Def. 1 is equal to the edge definition:
Ew ⊆ W × W . The domain and the recursive in-
clusion of domains builds the hierarchy and is repre-
sented by DAGGD with the nodesD and the edges
ED ⊆ D × D. The two graphs are coupled by a bi-
partite graph. A bipartite graph consists of two dif-
ferent node types. In this case, it links nodes from
the wordsW and the domainsD. The edges are de-
fined asEc ⊆ D × W . The nodes, the edges and
the domains can be labelled. Since we do not need

40

the formal definition for the labels, we leave it out.
Finally, the hierarchical graph is formed by the three
graphs as defined above H =〈GO, GD, GC〉. An ex-
ample of hierarchical graph that describes the word
order of a sentence is shown in Figure 2. We call
this type of a graphprecedence graph.

Deriving the word order from a precedence
graph. The word order of a precedence graph is
derived in two steps. (1) If the graph has cycles then
an edge from each of the cycles is removed. (2) A
topological sort is applied to the precedence graph
in order to derive the word order. A topological sort
is a permutation p of the nodes of a directed graph
such that an edgei, j implies thati appears before
j in p. The topological sort is applied recursively
to the domains. The domains are ordered by edges
crossing domain borders.

Creating the precedence graph. The precedence
graph is build by rules. Parts of the dependency
tree build the left-hand side of rules and parts of
the precedence graph build the right-hand side. The
right-hand side of the rules are created without re-
placing the parts in the source graph. The created
parts build a new graph as result. In this sense, the
rules read from one tape and write to another one.
After the creation of the parts defined on the right-
hand sides, the resulting graph parts are not yet con-
nected. In order to connect these parts, the corre-
spondence links, like in the case of FST3, can be
introduced. Using this technique, they can either (1)
grasp a part of the target graph and attach to this
part a new part or (2) they can indicate which parts
should be glued together. The first approach is use-
ful when the rules are applied in a sequence. In this
way already created parts can be accessed.

The advantage of this is that with (1) rules can be
executed in a sequence and with (2) the rules can
be applied independently in paralle. In this way, an

3FST rule consists of three parts; the correspondence, the
rule operator and the environment or context, e.g. e:t=> C:@ .
The correspondence specifies a lexical symbol that corresponds
to a surface symbol. The corresponds is indicated by a colon.
We have taken up this idea and connect, in case of tree trans-
ducer, the left-hand side with the right-hand side by dashedlines
instead of the colon. The operator of FST specifies the relation-
ship between the correspondence and the context. The context
specifies the environment in which the correspondence is found.
While the lexical and surface symbols of FST are on the same
side, the symbols of tree and graph transducers are usually sep-
arated on the left-hand side and right-hand side.

execution sequence of rules is not forced by the pro-
cessing technique and on the other hand, it is still
possible as in the case of FST and in the case of tree
transducer to have a sequence, but then justified by
linguistic demands.

A linearization grammar has two tasks: building
the domain hierarchy and ordering the nodes con-
tained in the domains. Therefore, the rules fall into
two types: domain rules and precedence rules. Do-
main rules consist of domain creation rules and do-
main adjunct rules. In the next paragraphs, we de-
scribe the rule patterns and a sample grammar.

Domain creation rules are used to define ele-
mentary domains. Figure 3 shows on the left a rule
pattern which represents this rule type. The domain
creation rules have on the left-hand side two nodes
connected by an edge and on the right-hand side
a domain containing two nodes. The nodes of the
left-hand side and right-hand side are connected by
correspondence links which are used to unify target
nodes having a link to the same node in the source
graph. These rules can build also domains contain-
ing more than two nodes. Overlapping domains are
unified by the rule interpreter, if the labels are equal.
The rule on the right shows an example. The exam-
ple rule can be applied to the dependency tree shown
in Figure 1. The left-hand side matches to the nodes
labelled withbookanda and creates a domain with
these two nodes as shown in Figure 2. In order to
build the topological model for this sentence, two
additional rules of the same type are needed with
the edge labelledSBJ andPMOD.4 The rules might
have additional conditions which take for instance
into account the part of speech tag.

?G

?D

 ?rel
?G’

?D’

LS: RS:

?Xs

?Ys

 NMOD
?Xd

?Yd

LS: RS: NP

Figure 3: Domain creation rule pattern and example

Domain adjunct rules place domains into other
domains. This rule type matches to an edge and
grasps in the target graph a domain and places it in a

4A complete grammar also has rules with the edge labels
OBJ andADV. For the example these rules are not necessary.

41

newly created domain. This new domain might also
be unified with domains created by domain creation
rules. Figure 4 shows a rule pattern of this rule type.
The dashed lines on the right-hand side indicate con-
text in the target graph. The rules are applied in the
second step because of the context. For the creation
of English topological models, only two steps are
needed. In the first step, all domain creation rules
and precedence rules are applied in parallel. In the
second step the adjunct rules are applied. In order
to map the German dependency tree to phrase struc-
tures more complex rules are used. The context on
the right hand side is frequently deeply embedded.

?G

?D

 ?rel
?G’

?D’

LS: RS: ?XP

?Xs

?Ys

 OBJ
?Xd

?Yd

LS: RS: VP

 ?YP

Figure 4: Domain adjunct rule pattern and example

Word order rules fall into two rule types: vertical
rules and horizontal rules.

Vertical rules order a parent node in relation to a
child node. The left-hand side of a rule consists of a
path from the nodep to the nodec. In the most cases
the path consists of only one edge. Figure 5 shows
a rule pattern and example rule. The order of the
nodes of the right-hand side is adapted depending
on the order of the two nodes in the sentence of the
training sentences. The left-hand side of the exam-
ple rule matches the edges labelled asNMOD and the
right-hand side orders the child node before the par-
ent node. This rule is applicable to the nodesbook
anda and orders thea beforebook. The rule pattern
shows several variants. In order to build topological
models for German sentences, some of these rules
have to access the right-hand side, for instance in or-
der to determine whether a verb goes into the left or
right bracket.

?G

?D

 ?rel ?G’?D’

LS: RS:

b

?G

?D

 NMOD ?G’?D’

LS: RS:

b

Figure 5: Pattern for vertical rules and an example.

Horizontal rules order two child nodes or grant

children. The left-hand side of a rule consists of two
paths starting at a nodep and ending at the nodesv
andw. Figure 6 shows a typical pattern of a horizon-
tal rule. The example rule matches the nodesread,
bookandabout.

?G

?D1

LS: RS:

?D2

?D2’?D1’ b?rel2?rel1 ?G

?D1

LS: RS:

?D2

?D2’?D1’ bADV OBJ

Figure 6: Rule pattern of horizontal rules and an ex-
ample.

4 Induction of Linearization Grammars

In order to learn linearization grammars, we use the
defined rule patterns to derive rules from pairs of de-
pendency trees and topological models. The rules
are build by completing the rule patterns. The left-
hand side is completed with edge names and condi-
tions which are taken from the dependency tree and
the right-hand side is completed by labels as well as
the direction of the nodes which have to be ordered.

For some of the rule patterns variations have to
be build. For the domain adjunct rules, rule patterns
with different embedding depth of the domain are
examined until a possible solution is found.

The size of the left-hand side is increased in or-
der to order all nodes of a domain. The advantage of
this method is that it adapts automatically to differ-
ent topoloical models which might have domains of
different size.

Fundamentally for this method and the termina-
tion of the learning process is a termination condi-
tion which defines when the extension of rules is
stopped. For the definition of the termination con-
dition, we need to know which nodes have to be or-
der by the rules. These are not only the nodes of a
domain. They include also the children in the de-
pendency tree of nodes contained in a domain. The
children are required to order the domain in relation
to other domains. We call this set the order set. Fig-
ure 7 shows on the left a dependency tree overlapped
by the order set and on the right a dependency tree
overlapped by domains.

42

has

John

SBJ

read

book about

Berlina

VC

OBJ ADV

PMODNMOD

has

John

SBJ

read

book about

Berlina

VC

OBJ ADV

PMODNMOD

has

John

SBJ

read

book about

Berlina

VC

OBJ ADV

PMODNMOD

Figure 7: Dependency trees overlaped with oder sets
(left) and domains (right)

Def. 3 [order set]
Op is a set of nodes consisting of all nodes of a do-
maindi and the target nodes of all dependency edges
where the corresponding source node is contained in
the domain:
Given thatGT = 〈NT , ET 〉 is a dependency tree
andHp = 〈GP , GD, Gc〉 a precedence graph where
the DAGGD = 〈ND, ED〉 represents the domain
hierarchy,GC = 〈Wc,Dc, Ec〉 the coupling graph
between the graphGP and the domain hierarchy
GD, the functionf : NT → NP maps the words of
the dependency tree to the words of the precedence
graph Hp, the setDp = {s|(s, d) ∈ Ec} contains
the nodes included in a domain p, then the order
set for the domainp is defined by the set of nodes:
Op = { n |(n = s ∨ n = t) ∧ (s, t) ∈ ET ∧ f(s) ∈
Dp ∨ p ∈ Dcx}

With this definition, it is possible to define theter-
mination conditionfor the rule creation in the learn-
ing algorithm: Either the order setOp it totally or-
deredor no further rules can be built ordering fur-
ther elements.The learning algorithm is shown be-
low:

for all paris of the input structurePi = (Gi, HI) do
for allOi

p of Pi do

s←1
repeat

build all rules for the rule patterns of size s

if the rules were already builtthen
increase the rule counter

else store the rule

s← s + 1

until Op is totally orderedor
no more rules can be built
(cf. termination condition)

A grammar can cause cycles in a precedence
graph. In order to solve this problem, we keep all
rules and we assign a normalized count of the oc-
currences as weight to the edges. The cycles are
dissolved in the precedence graph by removing one
edge from each cycle with the lowest weight. The
derived order is one with a high probability. This is
sufficient in text generation and machine translation
since we always look for the order, which fits best.

5 Evaluation of the Linearization
Grammars

Due to the lack of an automatic evaluation method
for the results of linearization components, we sug-
gest and apply a method which computes the simi-
larity between different word orders of a sentence.
With this method, it is possible to measure the dif-
ference between the original word order and the de-
rived word order. For languages with fixed word
order, the value is correlated as shown below with
the error rate of a sentence and in the case of lan-
guages with free word order, the evaluation method
would probably work when the information struc-
ture would be annotated.

A measured difference does not always indicate
an error since for instance prepositional constituents
can be placed at different positions also within lan-
guages having fixed word order. In order to resolve
this, it would be possible to define the exceptions
manually. We think that this is acceptable since it is
not possible to have an automatic evaluation method
for all cases.

The similarity measure is defined between two
word orders of a sentence based on the domains.
The position of each elements of all domains from
two orders are compared and the elements having
the equal position are counted. The similarity is
dfinied by the fraction of this count to the total num-
ber of the elements. In the following exapmle, the
order of the two elements in domain 2 is switched.
Therefore, the count of the elements taking the same
positions in this domains is zero.

[John has [read [a book]1]2]3

[John has [[a book]1 read]2]3

The count of domain 1 is 2 and the count of
domain 3 is 3. The number of correct placed

43

elements is 5 and the total number of elements
is 7. The similarity is therefore 5/7 (0.714). The
following equation defines the similarity relation:∑d

i=1
elements with equal position in D

s1
i

and D
s2
i

number of words + number of domains − 1

In order to evaluate the learning procedure for lin-
earization grammars, we trained grammars on se-
lected corpora as used in the shared task for de-
pendency parsing for Catalan, English, German, and
Italian. For the languages with fixed word order, we
used the automatic evaluation method. For German,
we had still to evaluate manually the results as in
most of the cases, we did not get the original word
order. One important reason for this is the missing
information structure within the dependency trees.

As input for the training of the Catalan, Chinese,
and English grammar, we used pairs of dependency
trees and topological models that can be derive from
the dependency trees. Each node was placed top
down in a domain and only the leafs of the depen-
dency tree together with their parent in one domain,
cf. Figure 7 right.

The punctuation marks and coordinations are ex-
cluded from the training and evaluation since the an-
notation did not allow to derive the word order for
these parts. The constituents of a coordination are
all placed at the conjunction. Other annotation for
dependency tree define a structure which would al-
low to derive the order, cf. (Mel’čuk and Pertsov,
1987).

Table 1 shows the results of the evaluation. The
first column shows the language of the used cor-
pus; the second column shows the number of sen-
tences used for training; the third column shows the
number of test sentences; the fourth column shows
the average test sentence length; the fifth column
shows the automatically computed similarity value
between the original sentences and the sentences
with the derived word order; the sixth column shows
the average of the manual evaluation where results
of test set has been rated with good, acceptable,
and wrong. The value gives the accuracy for sen-
tences rated with good or acceptable. The last value
shows the average of the correlation between each
of then ratings and each of the similarity values.
In order to compute the correlation, the ratings has
been mapped to numerical values. Since the sen-

tence length is an important factor for the accuracy,
we computed the correlation between the similarity
values and length of the English sentences which is
0.22. The test sentences of the Catalan corpus are
unusually long and for English a bit longer as the
average of 24 words. The longer Catalan sentences
are probably the reason for the slightly worser result
compared to English.

Corpus Training Test Length Similarity Eval. Corr.
(lang.) (# sent.) (# sent.) (# words) %

Catalan 14796 50 35.3 0.904 84% 0.53
English 18526 50 27.2 0.922 86% 0.51
Italian 3049 50 19.3 0.879 70% 0.42

Table 1: Summary of the results.

As input for German, we used the dependency
tree and phrase structure annotation of the Tiger cor-
pus. For German the usage of phrase structures as
topological models, is not the best choice, since then
not all possible word orders can be derived. But
there are no large corpora for written text annotated
with the German topological model. Additionally,
we used about 10 hand written rules in order to as-
sign additional features to the nodes that indicate
the position of the verbs in the German topological
model. The rule pattern had then also to consider
this additional features during the learning phase.

Since German has a free word order, we evaluated
100 sentences manually, 21 of the sentences have
been wrong, that is an accuracy of 79%. In 8 cases
the pre-field have been empty that is caused by using
phrase structures as topological models. In 5 cases
rules have been missing and in 4 cases adverbs have
been placed wrong. Each of the following cases oc-
curred ones: wrong order of adjectives in a noun
phrase, wrong order of a date format, wrong position
of a verb due to the hand written rules, and finally an
unspecified position of a negation particle. For Ger-
man, we conducted another experiment and evalu-
ated 20 randomly selected sentences with a length
up to 12 words as sentences used in text generation
are currently shorter and not so complex. We got
only one error, which relates to an accuracy of 96%.

The tool for the induction of linearization gram-
mars is embedded in a linguistic environment. We
provide the environment including the tool for learn-
ing the linearization grammars and a description
how to proceed.5

5Request are welcome and should be directed via email to
the author of the paper.

44

6 Conclusion

We identified the two basic concepts to build topo-
logical models which underlay probably any topo-
logical model. The basic concepts allow to describe
complex word order models, such as the classic Ger-
man topological model or simpler models for lan-
guages with fixed word order. Based on this con-
cpets rule patterns have been formulated using a
tree/graph transducers formalism. The graph trans-
ducer use two tapes. Therefore, they have a lot of
advantages. The most important one is that they al-
low to describe word order rules due to the syntactic
necessities and to apply rules independently in par-
allel. The human brain is also massively parallel and
is certainly also able to handle word order in parallel
and not top-down as many algorithms do.

We introduce a method for the induction of word
order rules, which takes as input sentences annotated
with a dependency tree and topological model. The
algorithm uses rule patterns to learn grammars. The
results have been evaluated automatic for languages
having fix word order. The learning and evaluation
methods can be easily adapted to other languages.

References

G. Bech. 1955.Studiumüber das deutsche Verbum in-
finitum. Max Niemeyer Verlag, Tübingen.

B. Bohnet and H. Seniv. 2004. Mapping Dependency
Structures to Phrase Structures and the Automatic Ac-
quisition of Mapping Rules. InLREC, Portugal, Lis-
boa.

B. Bohnet. 2006. Textgenerierung durch Transduk-
tion linguistischer Strukturen.Ph.D. thesis, University
Stuttgart.

N. Bröker. 1997. Eine Depedenzgrammatik zur
Kopplung heterogeer Wissensysteme auf modallois-
cher Basis. Ph.D. thesis, Albert-Ludwigs-Universitt,
Freiburg.

G. Busatto. 2002. An Abstract Model of Hierarchi-
cal Graphs and Hierarchical Graph Transformation-
busatto. Ph.D. thesis, Universität Paderborn.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InACL ’05.

C. Donohue and I. Sag. 1999. Domains in Warlpiri. In
HPSG99, Edinburgh.

E. Drach. 1937. Grundgedanken der deutschen Sat-
zlehre. Diesterweg, Frankfurt.

D. Duchier and R. Debusmann. 2001. Topological de-
pendency trees: A constraint-based account of linear
precedence. InProceedings of the ACL.

K. Gerdes. 2002.Topologie et grammaires formelles de
lallemand. Ph.D. thesis, Universit Paris 7.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson,
M. Mislove, and D. S. Scott. 2003.Continuous Lat-
tices and Domains.

T. Höhle. 1986. Der Begriff Mittelfeld. Anmerkun-
gen über die Theorie der topologischen Felder. Akten
des 7. Internationalen Germanistenkongresses, Band
3, pages 329–340. Tübingen.

A. Kathol and C. Pollard. 1995. Extraposition via com-
plex domain formation. InMeeting of the Association
for Computational Linguistics, pages 174–180.

K. Knight and J. Graehl. 2005. An overview of proba-
bilistic tree transducers for natural language process-
ing. In Sixth International Conference on Intelligent
Text Processing and Computational Linguistics. Lec-
ture Notes in Computer Science.

B. Lavoie, R. Kittredge, T. Korelsky, and O. Rambow.
2000. A Framework for MT and Multilingual NLG
Systems Based on Uniform Lexico-Structural Process-
ing. In ANLP/NAACL Conference.

C. Mellish, D. Scott, L. Cahill, D. Paiva, R. Evans, and
M. Reape. 2006. A reference architecture for natural
language generation systems.Nat. Lang. Eng., 12(1).

I. A. Mel’čuk and N. Pertsov. 1987.Surface-syntax of
English, a formal model in the Meaning-Text Theory.
Benjamins, Amsterdam/Philadelphia.

I. Mel’čuk and L. Wanner. 2006. Syntactic mismatches
in machine translation.Machine Translation, 20(2).

O. Rambow. 1994.Formal and Computational Aspects
of Natural Language Syntax. Ph.D. thesis, University
of Pennsylvania.

M. Reape. 1993.A Formal Theory of Word Order. A
Case Study in West Germanic.Ph.D. thesis, University
of Edinburg.

P. Skarup. 1975. Les premierès zones de la proposition
en ancien francais. InAkademisk Forlag, Copenhaen.

M. Čmejrek, J. Cuřı́n, and J. Havelka. 2003. Czech-
english dependency-based machine translation. In
EACL ’03.

F. Xia and M. Palmer. 2001. Converting Dependency
Structures to Phrase Structures. InThe Proc. of the
Human Language Technology Conference, San Diego.

45

