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Abstract

We describe an approach to automatic source-language syntactic preprocessing in the context of Arabic-English phrase-based
machine translation. Source-language labeled dependencies, that are word aligned with target language words in a parallel corpus,
are used to automatically extract syntactic reordering rules in the same spirit of Xia and McCord (2004) and Zhang et al. (2007).
The extracted rules are used to reorder the source-language side of the training and test data. Our results show that when using
monotonic decoding and translations for unigram source-language phrases only, source-language reordering gives very significant
gains over no reordering (25% relative increase in BLEU score). With decoder distortion turned on and with access to all phrase
translations, the differences in BLEU scores are diminished. However, an analysis of sentence-level BLEU scores shows reordering
outperforms no-reordering in over 40% of the sentences. These results suggest that the approach holds big promise but much more
work on Arabic parsing may be needed.

1 Introduction
Much research has been done on utilizing syntactic re-
sources within statistical MT (SMT). The work pre-
sented here fits within one class of approaches that fo-
cus on source-language1 reordering in the effort to min-
imize the syntactic differences between source and tar-
get languages, and thus learning better translation mod-
els (Xia and McCord, 2004; Collins et al., 2005; Zhang
et al., 2007; Crego and Mariño, 2007). In our ap-
proach, source-language labeled dependencies that are
word aligned with target language words in a parallel
corpus are used to automatically extract reordering rules.
The rules are used to preprocess all of the source sen-
tences in training and decoding in the same spirit of what
Xia and McCord (2004) do, although with some impor-
tant differences that we discuss in the next section.

The language pair we work with is Arabic-English.
Arabic is morpho-syntactically quite different from En-
glish and its syntactic parsers are not as developed. Our
results show that under time/space limitations, where
we would use monotonic decoding (i.e., no reordering
is allowed by the decoder) and translations for unigram
source-language phrases only (about 5% the size of a
typical phrase table), source-language reordering gives
very significant gains (of around 25% relative increase in
BLEU score (Papineni et al., 2002)). With decoder dis-
tortion turned on and with access to all phrases, the dif-
ferences in BLEU scores are diminished between source-
language syntactic reordering and no reordering. How-
ever, an analysis of sentence-level BLEU scores shows
reordering outperforms no-reordering in over 40% of the

1We use the terms source and target to mean input language to
translate from and output language to translate to, respectively (and
unlike their usage in descriptions of noisy-channel-model systems).

sentences. These results suggest that the approach holds
big promise but much more work on Arabic parsing and
rule design may be needed.

In the next section, we discuss and contrast related
work. Section 3 presents issues of Arabic syntax in the
context of MT and describes the parser we used. Sec-
tion 4 describes our approach to rule extraction and ap-
plication. Section 5 presents and discusses the experi-
mental results.

2 Related Research

Much research has been done on utilizing syntactic in-
formation within SMT. The approaches used vary in the
place of applying syntactic knowledge: for preprocess-
ing, decoding or n-best rescoring and on the source lan-
guage, target language or both (see (Collins et al., 2005)
and (Xia and McCord, 2004) for a general review of
different approaches). The approach presented here fits
within the class of source-language preprocessing for
SMT. It uses full syntactic dependency representations
to learn syntactic preprocessing (reordering) rules au-
tomatically. The underlying model we use is that of
phrase-based SMT (Koehn, 2004). Phrase-based SMT
does not utilize any explicit syntactic information. How-
ever, it models syntax implicitly in two important ways:
(a.) the phrases, which can be as large as 7 or more
words, capture syntactic reordering between the source
phrase and target phrase; and (b.) the distortion fea-
ture in the decoder allows some reordering to be con-
sidered by language model ranking. Distortion is typi-
cally controlled by a parameter specifying the maximum
distance allowed between any two phrases moved to be
direct neighbors. Distortion comes at a cost of decreas-
ing the efficiency of the decoder. This is an advantage to



source preprocessing since monotonic decoding is poly-
nomial (Tillmann et al., 1997). We describe in this pa-
per some results comparing the value of adding reorder-
ing with and without distortion and with different phrase
sizes.

Collins et al. (2005) describe a technique for prepro-
cessing German to look more like English syntactically.
They used six transformations that are applied on Ger-
man parsed text to reorder it before passing it on to the
standard phrase based system. They show a moderate
statistically significant improvement. Our work differs
from theirs crucially in that our preprocessing rules are
learned automatically.

Xia and McCord (2004) describe an approach for
translation from French to English, where reordering
rules are acquired automatically using source and tar-
get parses and word alignment. The reordering rules
they use are in a context-free constituency representa-
tion with marked heads. The rules are mostly lexicalized.
Xia and McCord (2004) use source and target parses to
constraint which word alignments are used for rule ex-
traction. Their results show that there is a positive ef-
fect to reordering when the decoder is run monotonically
(i.e. without additional distortion-based reordering). The
value of reordering is diminished if the decoder is run in
a non-monotonic way.

Most recently, Zhang et al. (2007) described a sim-
ilar approach to Xia and McCord (2004)’s. They use
chunking (shallow parsing) to learn reordering rules for
Chinese-English SMT. They use unlexicalized context-
free chunk tags (XPs) and POS tags on the source side
only. They use the intersection of forward and backward
Giza++ alignments but without motivating their choice
empirically. Most interestingly, they allow all possible
learned reordering to be used to create a lattice that is in-
put to the decoder. They do not apply the reordering rules
to their training data (unlike Xia and McCord (2004)).2

The approach presented here is very similar to both
(Xia and McCord, 2004) and (Zhang et al., 2007) except
for the following important differences: first, we work
with Arabic on the source side, a language that is much
more different from English than French and is much
more morpho-syntactically complex than Chinese. Sec-
ondly, we use full parse trees (not just shallow chunks)
on the source side only. Thirdly, our rule representation
is a context-free dependency, which is much richer than
Zhang et al. (2007)’s but effectively the same as that of
(Xia and McCord, 2004) except in three specific ways:
our rules are all unlexicalized, the relations between chil-
dren and verbal parents are labeled and childless nodes
are marked to add a bit more information of the big-
ger rule context. Fourthly, like (Xia and McCord, 2004)
but unlike (Zhang et al., 2007), we reorder the training
data and do not use lattice expansions for the source sen-
tence. Finally, although our results generally agree with

2In this volume, Crego and Mariño (2007) describe a similar ap-
proach that combines reordering and decoding.

the findings from both, they disagree with (Xia and Mc-
Cord, 2004) on the issue of using distortion in the de-
coder. Our results show an additional improvement over
basic reordering when distortion is turned on. This is per-
haps due to quality of the Arabic parser we used which,
although state-of-the-art, has a large room for improve-
ment.

3 Arabic Syntactic Parsing

3.1 Arabic Syntactic Issues
Arabic is a morpho-syntactically complex language with
many differences from English. We describe here three
prominent syntactic features of Arabic that are relevant to
Arabic-English translation and that have motivated some
of our decisions in this paper.

First, Arabic words are morphologically complex con-
taining clitics whose translations are represented sepa-
rately in English and sometimes in a different order. For
instance, possessive pronominal enclitics are attached
to the noun they modify in Arabic but their transla-
tion precedes the English translation of the noun: ����� ��� �	�

kitAbu+hu3 ‘book+his→ his book’. Other clitics include
the definite article ���� Al+ ‘the’, the conjunction ��� w+

‘and’ and the preposition ��� l+ ‘of/for’, among others.
Separating some of these clitics have been shown to help
SMT (Habash and Sadat, 2006). In this paper we do
not investigate which clitics to separate, but instead we
use the Penn Arabic Treebank (PATB) (Maamouri et al.,
2004) tokenization scheme which splits three classes of
clitics only. This scheme is most compatible out-of-the-
box with statistical parsers trained on the PATB (How-
ever, it does not cliticize the definite article as can be
seen in Figure 1). We plan to investigate different tok-
enization schemes for syntactic preprocessing in future
work.

Secondly, Arabic verb subjects may be: (a.) pro-
dropped (verb conjugated), (b.) pre-verbal, or (c.) post-
verbal. The PATB labels the (a.) and (c.) cases as sub-
jects (SBJ) but labels the (b.) case as a topic (TPC) with
an empty category inside the verb phrase (VP).4 From
the point of reordering, the case of V-S order is quite
interesting in the context of translation to English. See
the example in Figure 1 for an illustration of that order.
For small noun phrases (NP), phrase-based SMT might
be able to handle the reordering in the phrase table if the
verb and subject were seen in training. But this becomes
much less likely with very long noun phrases that exceed
the size of the phrases in a phrase table. The example
in Figure 2 illustrates this point. Bolding and italics are
used to mark the verb and subordinating conjunction that
surround the subject NP (12 words) in Arabic and what

3All Arabic transliterations in this paper are provided in the Buck-
walter transliteration scheme (Buckwalter, 2004).

4The PATB, as well as traditional Arabic grammar consider the
Verb-Subject-Object to be the base order; as such, Arabic VPs always
have an embedded subject position.



VB����� ���
SBJ OBJ MOD
NN NN PUNC0��
	���������� ��� ���� ���� � � ��� .

MOD MOD MOD
JJ0 JJ0 IN���� � �� � "! � ���� �$# �%'&( ! � )+*

MOD
NN0�, � � �-�	 �� � "! �

tHml AlmErwDAt Alfnyp AlmyzAt Al$xSyp l+ AlfnAnyn .

the artistic pieces carry the personal characteristics of the artists .

Figure 1: An Arabic dependency tree with the associated alignment to its English translation.

[
� � �/.0 � SUB] [ �21�� � .354�6 � 387 9$: � 	 9<; .= > � .0 � � ? �	 @ �BA ; = � C � ��D .EGF 9 � � 4 � 9 4�= > � ��IHKJ @ �BL �NM�O<P QSR TVU � ? @ � �W J .XYR T � NP-SBJ] [

.E ;[Z � V]

[V AEln] [NP-SBJ Almnsq AlEAm lm$rwE Alskp AlHdyd byn dwl mjls AltEAwn Alxlyjy HAmd xAjh]
[SUB An ...]
[NP-SBJ The general coordinator of the railroad project among the countries of the Gulf Cooperation Council,
Hamid Khaja,] [V announced] [SUB that ...]

Figure 2: An example of long distance reordering of Arabic VSO order to English SVO order

they map to in English, respectively. Additionally, since
Arabic is also a pro-drop language, we cannot just move
the NP following the verb by default since it can be the
object of the verb. We address this issue by using a parser
and a labeler to identify the different arguments of a verb.

Finally, Arabic adjectival modifiers typically follow
their nouns (with a small exception of some superlative
adjectives). However, English adjectival modifiers can
follow or precede their nouns depending on the weight of
the adjectival phrase: single word adjectives precede but
multi-word adjectives phrases follow (or precede while
hyphenated). For example, \ � 9�]_^ \ 3 �S` [NP rajul [AdjP

Tawiyl]] translates as ‘a tall man’ but �� 6 � �a @ � \ � 9�]_^ \ 3 ��`
[NP rajul [AdjP Tawiyl AlqAmp]] translates as ‘a man
tall of stature’. To address this issue, we introduce
POS tag weights which distinguish childless words from
words with children. See the third, fifth, seventh and last
words in the Arabic example in Figure 1. They are all
marked as having 0 children.

3.2 Arabic Parsing
A limited amount of research has been done on Arabic
parsing compared to English (Bikel, 2002; Kulick et al.,
2006). And Arabic parsing performance can still be im-
proved. Parsing research is decidedly outside the scope
of this paper; however, as consumers of parsing technol-

ogy, some of our design decisions were shaped by its
current limitations. In this section we describe the dif-
ferent steps and decisions made for producing the parses
we use.

3.2.1 Tokenization and POS Tagging

For tokenization, we use the PATB tokenization scheme:
4-way normalized segments into conjunction, particle,
word and pronominal clitic. For POS tagging, we use
the collapsed tagset for PATB (24 tags), which is what
the Bikel parser uses for Arabic. Tokenization and POS
tagging are done using the publicly available Morpholog-
ical Analysis and Disambiguation (MADA) tool (Habash
and Rambow, 2005) together with TOKAN, a general to-
kenizer for Arabic (Habash and Sadat, 2006). MADA
tags Arabic words using fourteen sub-tags (a very large
tagset – in practice over 2,200 tags). This tagset is first
reduced for the parser as described above. Moreover, for
rule-extraction and application, we use a further-reduced
tagset of 14 tags, that abstracts away all inflectional fea-
tures (such as verbal tense or nominal number). What
optimal tokenization and tagset to use for Arabic-English
syntactic reordering is an empirical question that we do
not attempt to answer here. We leave it to future work.



3.2.2 Constituency Parsing
For parsing, we use the Bikel parser (Bikel, 2002) trained
on the PATB (Part 1).5 Arabic sentence length, which
averages over 35 words with PATB tokenization (in the
news genre), slows down the parser and increases its
chances of producing null parses.6 Due to time and re-
source limitations, we followed the parsing solution pro-
posed in (Habash et al., 2006), where the source POS
tagged text is heuristically chunked and the parser is
applied only to unique chunks. This solution cuts the
parsed text length by over three-fourths (to an average
of 8 words) and the processing time by 90%. We di-
verge from Habash et al. (2006) in using a second set
of heuristics to put the chunks back together instead of
treating them as sisters in a forest. The heuristics used in
dechunking include attaching open and close parentheses
to intermediate chunks or linking sentence-final punctu-
ation to the first head in the tree.7 The default linking
is right-branching (the head of chunk n is a child of the
head of chunk n − 1). In PATB-1, right-branching is 6.4
times as common as left branching.

3.2.3 Labeled Weighted Dependencies
The default output of the parser is an unlabeled con-
stituency representation. We convert the constituency
representation into a dependency tree by identifying
heads using simple head-percolation rules. Dependency
parsing accuracy starting with untagged text is 76.2%
Chunking and dechunking potentially reduce the accu-
racy by about 19.2% relative (computed on gold trees).
An important advantage of dependencies (as opposed to
constituencies) is that they abstract away from phrase-
structure possible multiple projections and focus on the
headedness relation between words in a sentence. Of
course, since we use ordered dependency, there is ar-
guably little difference beyond syntactic sugar between
our basic representation and that of (Xia and McCord,
2004). We diverge from (Xia and McCord, 2004) by
using relational labels for verb children and by mark-
ing childless nodes (we call this weighing). Also, un-
like Habash et al. (2006), whose dependencies are in
a deeper representation that abstracts off syntactic phe-
nomena such as passivization and introduces empty cat-
egories, our dependency representation is closer to the
surface. We also diverge from Habash et al. (2006) in
learning how to assign dependency relation labels auto-
matically rather than using heuristics.

Both weighing and labeling are inspired by the exam-
ples we noted earlier on Arabic syntax. Weighing is done

5We did not use a combination of all three parts of the PATB be-
cause of known incompatibilities. We used PATB-1 because some of
the resources we had were designed for it. These resources needed ad-
ditional work to handle PATB-2 and PATB-3. We plan to address this
issue in future work.

6We computed based on a sample that it would take 30 days on a
2GHz Opteron Processor to parse all of our training data.

7This code is available to interested parties for research purposes.
Please contact the author.

deterministically by concatenating a ‘0’ to the end of the
POS tag of a word that has no children. As for labeling,
we only marked the relations among verbs and their chil-
dren. For each child of a verb in a dependency tree, we
classify its relationship to its parent as one of the follow-
ing: SBJ, TPC, OBJ and MOD. This label set is a sim-
plified version of the PATB’s dashtag set (which includes
more information such as LOC and TMP). We automati-
cally learn how to label using the PATB as training data.
We use Yamcha (Kudo and Matsumoto, 2003), an imple-
mentation of support vector machines which includes dy-
namic features.8 For machine learning features, we used
the word, its POS tag, its parent, and relative distance
from the parent (computed as word location subtracted
from parent location). We also use the same features of
all the words in a window of +/- 3 words around the fo-
cus word. We used the previous three predicted classi-
fications as dynamic features. The automatic verb-child
labeler has 94.6% accuracy.

In the rest of this paper, we refer to four kinds of de-
pendencies that are in slight variation: DEP is our ba-
sic POS tagged structural dependency without labels or
weights; LDEP is a labeled version of DEP; WDEP is
a weighted version of DEP; and WLDEP is a weighted
labeled dependency. We use WLDEP in all the reported
results in this paper, but we contrast the behavior of that
representation with its more impoverished variants.

Although we took several consideration of Arabic syn-
tax in the context of English translation when making
decisions on what the dependency and its labels should
look like, we believe we only scratched the surface of
the most common cases. Much more future work will
be dedicated to selecting the optimal set of dependency
structures and labels.9

4 Syntactic Reordering Rules

In this section we describe the process for extracting and
applying syntactic reordering rules.

4.1 Extraction of Reordering Rules

Given an aligned sentence pair S and T , and a parse of
S (PS), we compute for each node N in PS a link range
L, which is basically the union of the T word positions
to which N and all of its children are aligned. We then
traverse the parse tree PS and extract, at each node with
children, a pairing of condition (C) and reordering (R):
C is simply the ordered dependency and R is the tar-
get order of its nodes. In the case that a dependency
node is not linked (typically, a failure in the alignment
step), we ignore that child completely. In the case when
multiple ordering are possible due to overlapping align-
ments, we produce all possible reorderings and give them

8We use Yamcha’s default settings: standard SVM with 2nd degree
polynomial kernel and 1 slack variable.

9Habash et al. (2007) attempt to do this for the task of automatic
case prediction in Arabic.



Table 1: Examples of extracted rules

Condition (C) Reordering (R) P (R|C)

[VB]1,SBJ/NN2,OBJ/NN3,MOD/PUNC4 ⇒ 2,1,3,4 0.55
⇒ 1,2,3,4 0.25
⇒ 2,3,1,4 0.10

[NN]1,MOD/JJ02 ⇒ 2,1 0.92
⇒ 1,2 0.08

[NN]1,MOD/JJ02,MOD/IN3 ⇒ 2,1,3 0.82
⇒ 1,2,3 0.07
⇒ 3,2,1 0.07

[IN]1,MOD/NN2 ⇒ 1,2 0.97
⇒ 2,1 0.03

equal probability. The intuition here is that different spe-
cific occurrences of C will have different kinds of align-
ment errors associated with them, but that good reorder-
ings will have high co-occurrence rate and rise to the top
claiming more of the probability.

For example, the first node in the parse in Figure 1
is a verb with three children: a subject, an object and
a punctuation modifier. The verb word \�� = � � tHml is
aligned to the fourth word on the English side ‘carry’.
The subject noun phrase, headed by the noun �� � .� �NM�? R T �
AlmErwDAt, is aligned to the first three words. The ob-
ject noun phrase, headed by the noun �� � .M F 9 R T � AlmyzAt,
is aligned to words five to ten on the English side. The
Arabic final punctuation is aligned to the English final
punctuation. The alignment information tells us that to
obtain the English order from the Arabic order, we need
to place the verb after the subject. This rule instance
learned is presented in the first row in Table 1. The first
column specifies the condition. The comma-separated
nodes are represented in order using their POS and la-
bel. The head is unlabeled and is marked with square
brackets. The nodes in the condition are unlexicalized
(although this approach can be easily extended to han-
dle lexicalized rules). The subscript numerals are unique
identifiers that allow us to link the nodes in the condition
to the reordering position. These identifiers are basically
the ordered position of the node in the condition. The
second column is the associated reordering presented us-
ing the unique node identifiers. The last column presents
the conditional probability mass of the reordering given
the condition (due to space limitations, we only show the
top three values). These probabilities are computed over
the whole corpus.

4.2 Properties of Reordering Rules

The approach described above for extracting reordering
rules is independent of the kind of alignment and the kind
of parse representation. We extracted rule sets using the
four types of parses we described earlier (DEP, LDEP,
WDEP and WLDEP) and using five alignment strate-
gies: Giza’s forward (DIR) and backward (INV) align-
ments, their intersection (INTERX) and union (UNION),

Table 2: Rule Properties (with INTERX Alignment)

Parse Rule Unique Rule Top-1
Type Count Cond’s Ambig Mass Cover

DEP 53K 31K 1.7 81.6% 95.3%
LDEP 58K 36K 1.6 82.1% 94.7%
WDEP 66K 42K 1.6 82.4% 93.6%
WLDEP 71K 47K 1.5 82.9% 93.0%

and the grow-diag-final (GDF) heuristic used by default
in Pharaoh (Koehn, 2004) for phrase extraction. Due to
space limitations, we only present two sets of compar-
isons in which we vary either the dependency type (Ta-
ble 2) or the alignment (Table 3). In both tables, we list,
starting with the second column, the number of extracted
rules, the number of unique conditions, the average am-
biguity of rules (number of reorderings per condition),
the frequency-weighted probability mass present in the
set of top-1 reorderings for all conditions, and the cov-
erage rate of the rule set. Coverage is computed by ap-
plying the rules to the test data and counting the number
of no matches. As mentioned earlier, not all sub-trees
are used fully for rule extraction since the lack of align-
ment is dealt with by dropping the unaligned word. The
back-off strategy we describe in the next section resolves
the problem of coverage almost completely. So, cover-
age is not a major consideration for us (plus the variation
among the different rule sets is rather small).

From the data presented in both tables, we motivate
using the rule set derived using the intersection align-
ment (similar to (Zhang et al., 2007)) and the weighted
labeled dependency. WLDEP combines the lowest rule
ambiguity with the best distribution of probability mass
focused on the top-1 orderings. The intersection align-
ment minimizes rule ambiguity because of its high align-
ment precision, which is more desirable than a high
alignment recall (which could lead to many ambiguous
reorderings).



Table 3: Rule Properties (with WLDEP Parses)

Align Rule Unique Rule Top-1
Type Count Cond’s Ambig Mass Cover

INTERX 71K 47K 1.5 82.9% 93.0%
DIR 179K 96K 1.9 70.9% 95.1%
INV 220K 68K 3.2 67.1% 94.1%
GDF 321K 97K 3.3 61.0% 95.2%
UNION 529K 97K 5.5 52.8% 95.2%

4.3 Application of Reordering Rules
When applying the rules, we select the ordering with the
highest conditional probability. It is possible to extend
this approach to create a weighted lattice of multiple or-
ders that can be passed on to the decoder in a manner
similar to Zhang et al. (2007) and Crego and Mariño
(2007). We leave this solution to future work.

Starting from the top of the parse tree and descending
recursively, the new order of every node and its children
is determined by matching features of the node and chil-
dren to the condition of an existing reordering rule. Since
this process is deterministic given the rules, does not al-
low partial matching, and respects the projectivity of the
parse tree, there is no issue of rule order of application.

As far as the issue of coverage discussed earlier, we
utilize a stepped back-off mechanism in which, when a
condition is not matched, we attempt to match it with
a different known condition: we first ignore the POS
weight distinction and try to match. If no matching hap-
pens, we drop the POS tag altogether. The last thing we
ignore is the syntactic label. In the case of complete mis-
match, we use Arabic word order. The successful appli-
cation of back-off brings the coverage to almost 100%
to all rule sets examined. This back-off approach could
perhaps be improved by allowing partial matches.

5 Results
5.1 Experimental Data and Metrics
All of the training data used here is available from the
Linguistic Data Consortium (LDC). We use an Arabic-
English parallel corpus10 consisting of 131K sentence
pairs, with approximately 4.1M Arabic tokens and 4.4M
English tokens. Word alignment is done with GIZA++
(Och and Ney, 2003). All evaluated systems use the
same surface trigram language model, trained on approx-
imately 340 million words of English newswire text from
the English Gigaword corpus.11 English LM preprocess-
ing simply included down-casing, separating punctua-
tion from words and splitting off “’s”. Trigram language

10The parallel text includes Arabic News (LDC2004T17),
eTIRR (LDC2004E72), English translation of Arabic Treebank
(LDC2005E46), and Ummah (LDC2004T18).

11Distributed by the Linguistic Data Consortium:
http://www.ldc.upenn.edu

models are implemented using the SRILM toolkit (Stol-
cke, 2002).

We use the standard NIST MTEval datasets for the
years 2003, 2004 and 2005 (henceforth MT03, MT04
and MT05, respectively).12 Both BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) metric scores are
reported. All scores are computed against four refer-
ences with n-grams of maximum length four. The first
200 sentences in the 2002 MTEval test set were used for
Minimum Error Training (MERT) (Och, 2003).

We contrast three conditions yielding eight different
systems: (a.) applying syntactic reordering to both train-
ing and testing data (REORDER) or no reordering (BA-
SIC); (b.) using only phrases that have single words on
the source side (UNI) or all phrases up to length 7 (ALL);
(c.) using monotone decoding (MONO) or allowing dis-
tortion in the decoder (with distortion limit = 4) (DIST).
The size of the phrase tables in the UNI mode is around
5% the size of the ALL table. MONO decoding is known
to be much more efficient that DIST decoding (Tillmann
et al., 1997). The same set of rules (INTERX-WLDEP)
is used for all REORDER systems. We use Pharaoh in all
our experiments (Koehn, 2004). MERT tuning is done
separately for each combination. The results are pre-
sented in Table 4.

5.2 Discussion

The three varied parameters all address syntax in differ-
ent ways. The phrase-table parameter (UNI vs. ALL)
captures syntactic information implicit in the phrase-
table: UNI has little or no syntactic information as op-
posed to ALL which has plenty lexicalized syntactic in-
formation. The decoding parameter (MONO vs. DIST)
also presents a model of syntax: MONO does not allow
any reordering, whereas DIST allows different choices
to be presented to the target language model. Finally,
our source-language reordering is a linguistically based
automatically learned model for reordering which is con-
trasted against its own absence in BASIC.

Under the UNI+MONO conditions, REORDER out-
performs BASIC by a staggering 25% relative improve-
ment in BLEU score. As either DIST or ALL are in-
cluded, the difference diminishes completely, with the
ALL phrase-table in MONO mode outperforming UNI
in DIST mode for either BASIC or REORDER condi-
tions. Finally, comparing BASIC and REORDER with
ALL phrases and DIST decoding shows little difference
in performance. Except for the UNI+MONO case, all
differences in pairings of BASIC and REORDER are not
statistically significant. The differences between pairs
varying in UNI/ALL or MONO/DIST are all statistically
significant. This result suggests that under time/space
limitations, where we would use monotonic decoding
(i.e., no reordering is allowed by the decoder) and only
phrases for unigram source-language phrases (about 5%
the size of a typical phrase table), source language re-

12http://www.nist.gov/speech/tests/mt/



Table 4: Results

TEST SET
MT03 MT04 MT05

SYSTEM BLEU NIST BLEU NIST BLEU NIST

UNI+MONO+BASIC 26.18 8.02 26.34 8.26 26.12 8.01
UNI+MONO+REORDER 32.68 8.73 32.64 9.06 33.02 8.85

UNI+DIST+BASIC 37.49 9.12 35.12 9.27 37.10 9.22
UNI+DIST+REORDER 37.26 9.17 35.83 9.34 37.29 9.26

ALL+MONO+BASIC 42.80 10.00 39.62 9.92 41.35 10.00
ALL+MONO+REORDER 42.27 9.92 39.79 10.06 41.00 10.01

ALL+DIST+BASIC 46.25 10.42 41.53 10.03 44.66 10.35
ALL+DIST+REORDER 44.36 10.12 41.10 10.06 43.61 10.25

Oracle Combination: ALL+DIST+* 49.12 10.64 44.94 10.46 47.64 10.69
BASIC > REORDER 52.19% 45.68% 49.24%
BASIC < REORDER 40.42% 48.34% 45.74%
BASIC = REORDER 7.39% 5.99% 5.02%

ordering gives very significant gains. However, under
other conditions, the differences are not big given cur-
rent parsing and alignment technology.

In the last row in Table 4, we present the results of
an oracle combination that selects the output from either
ALL+DIST+BASIC or ALL+DIST+REORDER based
on the sentence level BLEU score. The BLEU score
of the oracle combination is between 6% and 8% higher
than the best of the combined systems. The percentage
of sentences in the combination from the BASIC or RE-
ORDER variants is quite similar. This indicates that the
differences in performance between the two variants are
complementary. This also confirms that syntactic pre-
processing (even with current parsing performance) im-
proves over basic SMT in over than 40% of the sentences
in the test sets.

6 Conclusion and Future Work
We presented an approach to source-language syntactic
preprocessing in the context of Arabic-English phrase-
based machine translation. Our results suggest that the
approach holds big promise but much more work on
parsing and rule design may be needed. The results also
suggest that this approach can provide a good alternative
under speed/space limitations given the presence of a fast
efficient parser — a clear trade-off.

In the future, we plan to use better parsers and in-
vestigate the optimal parse representation for rule learn-
ing in terms of tokenization, dependency structure, POS
tags and dependency labels. We also plan to use better
alignment techniques that may be useful for rule learn-
ing although they have not shown promise in standard
phrase-based MT, e.g., (Elming and Habash, 2007). We
also plan to investigate different back-off techniques in-
cluding allowing partial matching. Finally, the results
from the oracle combination analysis suggest a direction

of using parsing quality information to help with actual
combination of systems with and without syntactic pre-
processing.
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