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Abstract

We describe and report initial results on us-
ing virtual machines as a vehicle to deploy
machine translation technology to the market-
place. Virtual machines can bridge the gap be-
tween the computing infrastructure typically
used in research environments and commod-
ity PCs typical of office environments. A key
component is the compact representation of
the underlying databases and models intightly
packed tries, which allows us to run state-of-
the art translation technology on regular office
PCs.

1 Introduction

The transfer of information technologies from the
research lab to the end user has traditionally been
an expensive and tedious process. In addition to the
need to ensure robustness and reliability of the un-
derlying technology, and the effort necessary to in-
tegrate it into the end user’s work flow, it often also
involves porting software implementations from one
platform to another. Research prototypes are fre-
quently implemented on Unix or Linux platforms,
whereas corporate IT infrastructures often rely pri-
marily on Windows.

The considerable cost of either porting software
from one platform to another, or purchasing and
maintaining the hard- and software required to run
new technology in its ‘native’ format constitutes a
considerable obstacle to fast deployment of cutting-
edge research results to the marketplace. It also
makes it expensive for potential customers to assess
the value that such new technology could add to their
business processes.

In this paper, we argue and demonstrate thatvirtu-
alization is a viable and cost-effective way of trans-
ferring machine translation technology from the re-
search lab to the real world. In the next section, we
first briefly describe thePortagemachine translation
system developed at the National Research Council
Canada. Section 3 introduces the concept of virtu-
alization. In Section 4 we discuss the design and
use ofPortageLive, an instantiation ofPortageas a
virtual machine. We testedPortageLivein a num-
ber of scenarios, from small, compact machines that
could run on a laptop to parallelizations on computer
networks composed of workstations that are typical
of office environments. The results of these experi-
ments are reported in Section 5. Section 6 concludes
the paper.

2 Portage

Portage(Sadatet al., 2005) is a state-of-the-art sys-
tem for phrase-based statistical machine translation
(Koehnet al., 2003). The advantage of statistical ap-
proaches to machine translation is that they require
much less human labor than language-specific sys-
tems carefully designed and constructed by human
experts in particular languages or language pairs. In-
stead of human expertise, the system relies on exist-
ing collections of translations to learn how to trans-
late. Under active development since 2004,Portage
has been employed to translate between a wide va-
riety of language pairs, involving such languages as
Arabic, Chinese, English, Finnish, French, German,
and Spanish. Special research attention has been
given to translation from English into French and
vice versa, and from Chinese to English.

In the training phase,Portage learns from large



source sentence: Johann hat das Buch gelesen . 

target hypotheses: John has read the book .

Johnny possesses the novel read . 

….

P(John|Johann) = 0.8, P(Johnny|Johann) = 0.2

P(has|hat) = 0.6, P(possesses|hat) = 0.4

P(the book|das Buch) = 0.7, P(the novel|das Buch) = 0.3

P(read|gelesen) = 0.4, ….

….

Phrase translation model 

P(John has read) = …

P(has read the) = …

…

Language model 

Decoder

Figure 1: Phrase-based statistical machine translation
with Portage

collections of bilingual text how short contiguous
sequences of words (“phrases”) in one language
(source) are most often translated into phrases in
the other language (target). Pairs of phrases and
their translations as observed in the training data are
stored in a probabilistic dictionary of phrase-level
translations, thephrase table. During actual transla-
tion (“decoding”), the input is segmented into con-
tiguous groups of words for which translations are
listed in the phrase table. The corresponding trans-
lation fragments are then concatenated to form the
translation of the entire input sentence. Since most
phrases have more than one likely translation, the
decoder uses probabilistic models of phrase trans-
lation, phrase reordering and target language flu-
ency to rank partial translation candidates during de-
coding. Unpromising candidates are dropped; the
other ones are explored further. At the end, the de-
coder outputs the best-scoring “full” hypothesis, i.e.,
a translation covering the entire input sentence. Op-
tionally, the system can produce “n-best lists” of the
n best translations found during the docoding pro-
cess. Figure 1 illustrates the process.

3 Virtualization

In the context of computing,virtualization (Popek
and Goldberg, 1974) is the abstraction of computer
resources. In the realm of personal computers, the
concept is most prominent in the form of virtual
memory: the operating system (OS) pretends to have
more main memory than it actually has. Thevir-
tual memory managermaintains an index of virtual

memory pages1 and stores on hard disk those pages
that contain data but are currently not in active use.
When such memory pages are eventually accessed,
they are swapped into memory against others that
are written to disk or simply replaced, if nothing has
changed since the last time they were read. Like a
good valet parking service, a virtual memory man-
ager manages a precious resource (fast but expensive
main memory) in a way that ideally gives a large
number of customers the convenience of having (al-
most) immediate access to this resource.

Figure 2: Virtual machines (guests) running as applica-
tions on a physicalhostmachine.

Virtual machine monitors(VMMs) go one step
farther. Running as an application on ahost OS,
they emulate an entire computer running an instance
of an embeddedguestOS, translating hardware re-
quests from the guest OS into system calls to the
host OS. They can also translate outside requests
into calls to the embedded host system, thus creat-
ing a virtual node on a computer network. Since ev-
ery virtual machine is simply an application instance
from the host OS’s point of view, multiple nodes can
be emulated on a single physical computer, as shown
in Figure 2.

Virtualization has received increased attention in
recent years as a way of reducing the hardware cost
and the ecological impact of large computing facili-
ties. Since not every host is 100% busy at all times,
it is more efficient to have multiple hosts share phys-
ical hardware resources.

Apart from technologically advanced virtualiza-
tion solutions aimed at optimizing resource use of
IT infrastructures from large multi-user business
servers to enterprise computing centers, there are
also lightweight versions for single desktop comput-
ers. There are two typical uses for virtual machines

1A memory page is a contiguous block of memory, often
about 4KB in size.



total count 20
a 13

aa 10
ab 3
b 7

(a) Count table 20

13 7

10 3

(b) Trie representation

a b

a b

0 13 offset of root node

1 10 node value of‘aa’
2 0 size of index to child nodes of‘aa’ in bytes
3 3 node value of‘ab’
4 0 size of index to child nodes of‘ab’ in bytes
5 13 node value of‘a’
6 4 size of index to child nodes of ‘a’ in bytes
7 a index key for‘aa’ coming from‘a’
8 4 relative offset of node‘aa’ (5 − 4 = 1)
9 b index key for‘ab’ coming from‘a’

10 2 relative offset of node‘ab’ (5 − 2 = 3)
11 7 node value of‘b’
12 0 size of index to child nodes of‘b’ in bytes
13 20 root node value
14 4 size of index to child nodes of root in bytes
15 a index key for‘a’ coming from root
16 8 relative offset of node‘a’ (13 − 8 = 5)
17 b index key for‘b’ coming from root
18 2 relative offset of node‘b’ ( 13 − 2 = 11)

(c) Trie representation in a contiguous byte array.
In practice, each field may vary in length.

Figure 3: A count table (a) stored in a trie structure (b) and the trie’s sequential representation in a file (c). As the
size of the count table increases, the trie-based storage becomes more efficient, provided that the keys have common
prefixes ( from Germannet al. (2009)).

on desktop computers: first, to provide a sandbox,
a safe testbed for software development that allows
a machine to crash without crashing the actual com-
puter or interfering with the outside world. And sec-
ond, to run two operating systems concurrently on a
single computer. Since the physical host computer
and the guest running as a virtual machine can com-
municate via networking protocols, it is possible, for
example, to emulate a Linux server on a PC running
Windows. Virtualization technology thus allows de-
ployment of software developed on one OS on an-
other without the need to port software across oper-
ating systems.

The benefits of virtualization of course come at a
price: the additional layer of abstraction also adds
a layer of indirection, which can result in a loss of
performance compared to a native system.

4 Virtualizing Portage

4.1 Compact, fast-loading models

Statistical machine translation is resource-intensive
in many respects. The decoder needs fast access to
language models and phrase tables, and large search
graphs have to be stored in memory to keep track

of partial translation hypotheses. To ensure fast ac-
cess to the underlying databases (i.e., language mod-
els and translation tables), it is highly desirable to
keep them in main memory; disk access and even
network access to models distributed over a network
of computers are several orders of magnitude slower
than accessing a computer’s main memory. Espe-
cially language models, which are queried millions
of time during the translation of a single sentence,
should be kept in memory wherever possible. While
virtual memory allows us to go beyond the limita-
tions of physical memory occasionally, the cost of
memory swapping is so high that it is worth spend-
ing some effort on reducing the memory footprint of
model storage.

Both language models and phrase tables associate
information with token sequences that have a con-
siderable amount of overlap (i.e., common subse-
quences). Atrie (Fredkin, 1960), orprefix treeis
a well-known data structure for storing such collec-
tions of sequences with common prefixes. Each se-
quence is represented by a single node in a tree with
labeled arcs; each path from the root node to a node
in the tree spells out the respective token sequence,
as shown in Figures 3a and 3b. Thus, prefixes com-



mon to multiple sequences in the collection need to
be stored only once. Retrieval of information is lin-
ear in the length of the key.

Tries can be represented in linear byte sequences
(e.g, a file) as shown in Figure 3c. Relative offsets
within the byte string are used to indicate links be-
tween parent and child nodes.

In our implementation of tries (Germannet al.,
2009), we save space by using symbol-level com-
pression. Token labels are represented by a unique
integer IDs, which are assigned in decreasing order
of token frequency: the more frequent a token is, the
lower its ID. Token IDs and file offsets are stored
in a variable-width encoding scheme that represents
each number in base-128 notation. The full range of
base-128 digits (0–127) can be represented in 7 bits;
the eighth bit in each byte is used to indicate whether
or not more digits need to be read.

We call this techniquetight packing. The space
savings are considerable. Language models encoded
as tightly packed tries consume less space than lan-
guage models in ARPA text format that have been
compressed with thegziputility, yet still provide di-
rect access in time linear in the length of the key.
More importantly, they have been shown to require
only about a quarter of the physical memory needed,
for example, by the SRI language modeling tookit
(Stolcke, 2002) for representing identical language
models. Unlike in-memory implementations like the
SRI toolkit, a tightly packed language model does
not even need to be fully loaded into memory. In
practice, actual memory use can be as little as 10-
15% of the physical memory needed by the SRI
toolkit (Germannet al., 2009).

We achieve this by using thememory mapping
mechanism provided by most modern operating sys-
tems. A file on disk permanently storing the trie
structure is mapped directly into a region of vir-
tual memory. When an application accesses that re-
gion of virtual memory, the virtual memory man-
ager transparently takes care of loading the respec-
tive data pages from disk if necessary. This approach
has several advantages. First, by using a representa-
tion that can be mapped directly into memory, we do
not need to spend any time rebuilding the structure
at load time or copying data from the OS-level file
cache (which buffers the data read from and written
to disk in order to provide faster access). Second,

since we are using a read-only structure, the vir-
tual memory manager can simply drop pages from
physical memory if memory swapping is inevitable.
Otherwise, all changes to the data structures stored
in memory would have to be written to disk when
memory swapping takes place (although that might
happen in the background, only putting additional
load on the disk without an immediate effect on av-
erage run-time). Third, only those data pages that
are in fact being accessed during translation are ac-
tually read from disk. And fourth, the initialization
delay due to model loading between starting the de-
coder and being ready for translation is almost en-
tirely eliminated. With in-memory implementations
of the underlying models, thePortagedecoder has
an initialization lag of about one to two minutes.
With tightly packed tries, the decoder is ready to
translate after about two seconds. As relevant pages
are loaded into memory, translation is slower at first,
but almost achieves the same throughput once the
relevant pages are available in physical memory.

4.2 Protecting the host against excessive
resource demands of the translation engine

Since translation is such a resource-intensive task,
implementing translation engines as VMs does not
only help bridge the gap between different operat-
ing systems but also allows us to shield the host sys-
tem from excessive resource demands of the trans-
lation engine running on a guest VM. This is par-
ticularly relevant in a scenario where computing re-
sources need to be shared between time-critical ap-
plications (e.g., interactive use of office software)
and a translation process that is possibly running in
the background. Without virtualization, the oper-
ating system has two choices in responding to re-
source demands from an application: granting them
(which may lead to heavy memory swapping if there
is not enough physical memory to accommodate all
the virtual memory requested), or denying them,
which typically means that the requesting applica-
tion crashes or aborts. Virtualization allows us to put
a wall around an application: we can limit the max-
imum amount of physical memory available to the
application (or more precisely: the amount of ‘phys-
ical’ memory in the virtual machine on which that
application runs) without forcing the application to
abort if it needs more memory than it has been alot-



Table 1: Corpus statistics for the training corpus used in
the experiments

Fr En
data source Canadian Hansard
running words 113,539,694 101,274,018
vocabulary size 211,053 205,221
sentence pairs 5,239,985 same
phrase table

# of phrase pairs 57,155,768 same file
file size

tightly packed 975 MB same file
.gz 1.6 GB same file

Language model:
unigrams 211,055 —
bigrams 4,045,364 —
trigrams 5,871,066 —
4-grams 8,689,908 —
5-grams 9,712,388 —
file size

tightly packed 274 MB —
ARPA.gz 290 MB —

ted. In this case, the guest VM running the appli-
cation will start swapping memory internally, with
only marginal effects (increased disk load) on appli-
cations running outside the virtual machine.

4.3 Accessing the translation engine

Virtual machines can be accessed via an IP address
like other machines on a local network. This al-
lows us to use standard communication protocols
such as TCP/IP, SSH, HTTP or the SOAP frame-
work to communicate with the translation engine. In
the experiments reported in the next section, we used
an SSH connection to send the test input through a
translation pipe.

5 Experiments

We testedPortageLivein a variety of scenarios to
determine the trade-offs between resource allocation
and translation speed. The top part of Table 2 shows
translation speeds for English-to-French translation
on VM machines with 512, 1024 and 2048 MB
of memory running on a 32-bit host under Win-
dows XP Professional, usingVMware Server.2 The

2http://www.vmware.com/products/server/

Table 2: Translation times on a single VM and with 5-
way parallelization on 5 VMs running on 5 distinct hosts.

1st run best run

VM/#a RAM sec.b w/sc sec.b w/sc

1 / 1 512 MB 2,917 7.3 2,917 7.2
1 / 1 1 GB 457 46.7 112 189.6
1 / 1 2 GB 390 54.6 105 202.3

5 / 1 512 MB 1,066 20.0 886 24.0

5 / 1 1 GB 285 74.7 55 388.0
5 / 2 1 GB 224 95.2 59 360.4

5 / 1 2 GB 141 151.0 32 667.7
5 / 2 2 GB 92 231.7 22 959.8
5 / 4 2 GB 172 123.8 24 905.2

a # of VMs (on different hosts) / decoder instances per VM
b End-to-end time for translation of 21,290 words (En to Fr)
c Words per second
Host machines: Dell Optiplex 755 w/ 3.25 GB of RAM; Intel
Core 2 DUO E8500 processor 3.16GHz; OS: Windows XP
Professional SP3. Virtualization software: VMware Server
version 2 emulating a machine with 1 or 2 CPUs. Guest OS:
CentOS 5.2.

statistics for the corpus underlying the system are
shown in Table 1. Due the hard limit of 4 GB on
the size of virtual memory on 32-bit machines, we
were not able to run very large systems in these
experiments, such as our Chinese-English system,
which requires more than 4 GB just for the data ta-
bles, not to mention the memory required to explore
the translation hypothesis space. Nevertheless, our
English-to-French system is by no means small —
the training corpus is about five times as large as the
French-English subset of the popular Europarl cor-
pus (Koehn, 2005).

In our experiments, we translated a test corpus
of 21,290 words of running English text repeatedly
to gauge the difference in performance between a
freshly started system and a system that has been
running for a long time, so that all data can be as-
sumed to be cached in the OS’s file cache, mem-
ory permitting. If sufficient memory is available to
keep all models in memory (2GB for this particu-
lar translation engine), the translation engine speeds
up over time. At first it is sluggish, because model
data needs to be transferred from disk into memory.
Later on, translation is much faster, because most



of the (virtual) memory pages needed for translation
are already in physical memory.

In this particular configuration of an English-to-
French translation system, translation speed suffers
dramatically when less than 1 GB is available to the
translation engine. Notice that there are practically
no caching effects on repeated runs: virtual memory
pages are constantly being swapped in and out of
memory. At 1 GB, there is a noticeable performance
loss compared to a VM with 2 GB, but most of the
time is still spent translating, not swapping memory.

What do these numbers mean in practice? The
most important result, we think, is that this exper-
iment suggests that it is feasible to run an SMT
engine on a single state-of-the-art desktop or lap-
top computer concurrently with other applications,
including interactive use (email, word processing,
etc). Since the virtual host can be accessed like an-
other machine on a local network through a number
of networking protocols (cf. Section 4.3), it is pos-
sible to integrate translation capabilities easily into
applications. Instead of sending a request on another
host on the Internet or Intranet, the request is sent to
the virtual machine hosted on the same computer.
This is an attractive option for providing machine
translation in situations where no network connec-
tions are available.

Another possible application is to use computers
in an existing office network for distributed trans-
lation processing. When the burden of translation
is distributed over many shoulders, even inefficient
“small” VMs can collectively achieve satisfactory
overall translation speeds. We can think of two sce-
narios. One is to have many small translation servers
running permanently as virtual machines on a num-
ber of physical computers (including desktop com-
puters used for regular office work) on a Local Area
Network. A central translation management server
pushes small translation tasks to the servers and
gathers the results. The other one is a scenario where
VMs are started when a particular physical machine
is idle, e.g. in lieu of a screen saver. The VM then
pulls a translation request from a central server, pro-
cesses it and returns it to the central server, which
collects the results.3 The first scenario offers better

3This strategy is well-known from public-benefit grid
computing projects such asBOINC (http://boinc.
berkeley.edu/).

predictability of the translation volume that can be
handled; the second scenario can be used to better
utilize existing machines during idle periods with-
out interfering with ongoing tasks when they are in
use.

We simulated the first scenario by running 5 vir-
tual machines on identical desktop computers that
also serve as our office desktops computers. The re-
sults are shown in the bottom part of Table 2. The
first thing to observe is that even though translations
were run simultaneously on 5 machines, we gener-
ally do not achieve 5 times the translation speed.
This is again due to the overhead of having to load
data gradually from disk into memory. Noteworthy
is the good performance of running two decoders in
parallel on an emulated 2-CPU machine with 2 GB
or RAM. What is happening here? Due to memory
mapping, the two processes share the memory space
that contains the models, so that one decoder bene-
fits from earlier page lookups of the other, and vice
versa. Interestingly, if we run four decoders in paral-
lel on a single 2-CPU VM, the performance suffers.
We assume that this is due to race conditions, espe-
cially with respect to disk access.

6 Conclusion

The goal of our experiments was to evaluate the fea-
sibility of using virtualization to aid the technology
transfer from the research lab to users of machine
translation. Our experiments have shown that this is
a viable option. A key component is the use of com-
pact representations of the underlying data bases, as
described in Section 4.1, which allow us to fit all
our models in the 4 GB memory limit of 32-bit ma-
chines.

Virtualization allows fast transfer of new tech-
nology to existing and potential customers and end
users without significant investments in porting soft-
ware between operating systems, or in hard- and
software to run the technology in its ‘native’ envi-
ronment. This is a particularly attractive option dur-
ing exploratory stages of technology assessment in a
business environment. Moreover, it allows easy de-
ployment of complex software installations. From
the user’s perspective, a virtual machine comes as a
single file that is ‘played’ by the virtualization soft-
ware.
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