

Unpacking and Transforming Feature Functions: New Ways to
Smooth Phrase Tables

Boxing Chen, Roland Kuhn, George Foster, and Howard Johnson
National Research Council of Canada, Gatineau, Québec, Canada

First.Last@nrc.gc.ca

Abstract

State of the art phrase-based statistical
machine translation systems typically
contain two features which estimate
the “forward” and “backward”
conditional translation probabilities for
a given pair of source and target
phrase. These two “relative
frequency” (RF) features are derived
from three counts: the joint count of
the source and target phrase and their
marginal counts. We propose to “un-
pack” these three statistics, making
them independent “3-count” features
instead of two RF features. In our ex-
periments, the 3-count features per-
form better than the RF ones in three
of four systems we tested. By trans-
forming and generalizing these 3-count
features slightly, further improvements
are obtained. Furthermore, under sev-
eral different experimental conditions,
we compare 3-count and generalized
3-count features to new features de-
rived from Kneser-Ney smoothing, to
a new low-frequency penalty feature,
and to several known smooth-
ing/discounting schemes. Generalized
3-count performs similarly to or better
than all of the smoothing methods ex-
cept modified Kneser-Ney. In our ex-
periments, the best phrase table (not
language model) smoothing yields
+0.6-1.4 BLEU.

1 Introduction

The translation model component of state of the
art phrase-based statistical machine translation

(SMT) systems (the “phrase table”) consists of
conditional probabilities for phrase pairs ob-
served in the training data. However, estimation
of these probabilities is hindered by data sparse-
ness; thus, phrase table smoothing techniques are
often applied (Foster et al., 2006). The choice of
smoothing technique for phrase tables often has a
larger impact on performance than other aspects
of a statistical machine translation system.

This paper is originally motivated by the ob-
servation that there is something strange about
the way in which the translation model (TM)
component of phrase-based SMT systems is of-
ten computed. The two translation probabilty
features are estimated with “relative frequency”
(RF) formulas that employ three counts: the joint
count of the source and target phrase, and the
marginal counts for the source phrase and the
target phrase. Why wouldn’t we use the three
statistics that yield relative frequency estimates
as independent features instead of using them to
derive two RF features? We will call the re-
placement of an SMT feature function with fea-
tures consisting of the statistics from which it is
derived the “unpacking” of the feature function.

The second motivation for this paper is the
comparison of phrase table smoothing tech-
niques. Apart from (Foster et al., 2006), little has
been published on discounting and smoothing
applied to phrase tables. System descriptions for
evaluations like WMT, NIST, or IWSLT often
mention one smoothing technique that was used
in a system, but not why it was chosen instead of
others. In addition to the new techniques de-
scribed in this paper, the invention of the low-
frequency indicator features (Mauser et al., 2007)
postdated the (Foster et al., 2006) paper; it is of
interest to compare these new techniques to the
ones in that paper. Furthermore, today’s state of
the art phrase-based systems, including the one
that serves as the baseline in the experiments

269

described here, perform considerably better than
the one in (Foster et al., 2006); the conclusions
in that paper might be almost irrelevant to cur-
rent systems. Thus, we think it is time to carry
out a new experimental comparison of a variety
of smoothing techniques.

The remainder of this paper is organized as
following. Section 2 will introduce some existing
smoothing techniques. In section 3, we will un-
pack and transform the two RF feature functions
and Kneser-Ney phrase table smoothing. Section
4 is the experiments and discussion. Section 5
ends the paper with conclusion and future work.

2 Existing Smoothing Techniques

The phrase table consists of conditional probabil-
ities of co-occurrence for source-language phras-
es s and target-language phrases t. “Relative
frequency” (RF) estimates for these probabilities
are obtained from a phrase pair extraction proce-
dure applied to a bilingual training corpus
(Koehn et al., 2003). Let c(s) be the count of a
source phrase s, c(t) the count of a target phrase
t, and c(s,t) the number of times s and t are
aligned to form a phrase pair.

Relative frequency (RF) estimates of “for-
ward” probability PRF(t|s) and “backward” prob-
ability PRF(s|t) are

)(

),(
)|(

sc

tsc
stPRF = (1)

)(

),(
)|(

tc

tsc
tsPRF = (2)

These RF estimates are often combined with
“lexical weighting” (LW) estimates of the same
probabilities PLW(t|s) and PLW(s|t), based on co-
occurrence counts of the individual words mak-
ing up s and t. Thus, the TM score is typically of
this form (Och and Ney, 2002):

STM = 1×log[PRF(t|s)]+ 2×log[PRF(s|t)]+
 (3)
 3×log[PLW(t|s)]+ 4×log[PLW(s|t)].

The λ’s are often estimated by the minimum er-
ror rate training (MERT) algorithm (Och, 2003).
 For the following two, the implementation
details are as in (Foster et al., 2006).

Good-Turing: observed counts c are modified
according to the formula (Church and Gale,
1991):

ccg nncc /)1(1+
+= (4)

where cg is a modified count replacing c in sub-
sequent RF estimates, and nc is the number of
events having count c.

Kneser-Ney (modified): an absolute discount-
ing variant with

)()(
)(

),(
)|(sPt

tc

Dtsc
tsP bKN ×+

−
= α (5)

where
)(/)(*,)(1 tctnDt

+
×=α , and

++
=

sb snsnsP ,*)(/,*)()(11 .

Here, n1+(*,t) is the number of unique source-
language phrases t is aligned with; n1+(s,*) has
an analogous definition. PKN(t|s) is defined sym-
metrically. Kneser-Ney gives a bonus to phrase
pairs (s,t) such that s and t have been aligned to
many different phrases. Modified Kneser-Ney
defines different discounts D depending on the
value of c(s,t). We used “KN3”, where D1 is
used when c(s,t) = 1, D2 when c(s,t) = 2, and D3
when c(s,t) 3. Di values can be tuned or set by
formula (we tried both without seeing a differ-
ence).

Low-Frequency Indicator (LF): (Mauser et
al., 2007) introduced these low-frequency fea-
tures. Let

≤
=≤

.0

;),(1
]),([

otherwise

tscif
tscN

τ
τ (6)

This feature “punishes” low-frequency phrase
pairs. In the paper (Mauser et al., 2007), three
different low-frequency features were used, with
the three values of τ lying in the interval between
0.9 and 3.0 (the system in the paper allows frac-
tional values of c(s,t)).

3 Unpacking and Transforming Fea-
ture Functions

Taking just the two RF features from Equation
(3), we have:

SRF = 1×log[PRF(t|s)]+ 2×log[PRF(s|t)]

 = 1×(log[c(s,t)]–log[c(s)])+ 2×(log[c(s,t)]–log[c(t)])

 = (1+ 2)× log[c(s,t)]– 1×log[c(s)]– 2×log[c(t)].

This is a combination of three terms, with an ad-
ditive constraint. Wouldn’t it be simpler to fit the
following expression:

SRF = 1×log[c(s,t)]+ 2×log[c(s)]+ 3×log[c(t)]? (7)

270

MERT can still choose λ’s that are equivalent to
using the two RF estimates. In principle, nothing
is lost and a degree of freedom, achieved by
dropping the additive constraint, is gained (but
this extra degree of freedom may lead to search
errors).

The obvious objection is that this “3-count”
replacement for the two RF features doesn’t
model probabilities. However, the inclusion of
PRF(t|s) among features can’t be justified proba-
bilistically either. Originally, the objective func-
tion for SMT was derived via Bayes’s Theorem
as P(s|t)×P(t) (Brown et al., 1993). The inclusion
of P(t|s) happened later – it’s a heuristic that de-
fies Bayes’s Theorem (Och and Ney, 2002).

Once the forward and backward estimates
have been unpacked into their three constituent
counts, these counts can be transformed and ge-
neralized slightly by adding or subtracting con-
stants (while ensuring the logarithm is defined).
Therefore, we have two different log-linear fea-
ture sets obtained from the three basic statistics:

3-count:
 {log[c(s,t)], log[c(s)], log[c(t)]}

Generalized 3-count:
 {log[c(s,t)+k1], log[c(s)+k2], log[c(t)+k3]};
 where k1, k2, k3> -11.

“Generalized 3-count” is related to two different
forms of simple discounting, absolute discount-
ing (AD) and denominator discounting (DD).
Discounting is based on removing probability
mass from observed events to account for events
that might have been observed, but weren’t. The
simplest form of AD involves subtracting a fixed
amount from co-occurrence counts in the RF
formula: e.g., PAD(s|t) = [c(s,t) – D]/c(t), where
0<D<1. AD has many variants and a long history
of being discussed in the literature (Foster et al.,
2006; Chen and Goodman, 1998).

DD is another simple form of discounting.
Here, one shrinks the RF fraction by adding a
constant to the denominator: e.g., PDD(s|t)=
c(s,t)/[c(t)+E], where E>0. Strangely, we have
not found any discussion of DD in the literature,
though it is related to other known techniques.
E.g., suppose we have a prior f(s|t). To combine
this with observations c(s,t) and c(t) using the

1 The minimal phrase pair joint or phrase marginal count is
1 in our system. Therefore, we set k’s > -1 to ensure the
logarithm is defined.

maximum a posteriori (MAP) formula (Lee and
Gauvain, 1993), we have

PMAP(s|t)= [c(s,t)+τ×f(s|t)]/[c(t)+τ].

A reasonable prior estimate for f(s|t) might be
1/|s|, 1 over the number of possible source-
language phrases. This is very, very small – near-
ly zero. Thus, we have

PMAP(s|t) c(s,t)/[c(t) + τ] (8)

 – the DD estimate.
AD and DD have different effects on esti-

mated probability distributions. Though both
reduce estimated probabilities for “seen” events,
AD has a “sharpening” effect, increasing the es-
timated ratio of the probability of the most likely
seen events to the probability of the least likely
ones. DD does not change the ratios between
estimated probabilities for seen events.

To get pure AD with generalized 3-count, one
sets k1 < 0 and k2= k3= 0; to get pure DD, set k1=
0 and k2, k3> 0. Thus, generalized 3-count is a
generalization of both forms of discounting. In
our experiments, to find k1, k2, and k3, we first
used MERT on the dev set to find the log-linear
weights for all features, with k1, k2, and k3 set to
zero. Then we used downhill simplex (as in Zens
and Ney, 2004) to estimate k1, k2, and k3 with the
log-linear weights fixed. Finally, we ran MERT
again to obtain new log-linear weights.2

Moreover, we explore other transformations of
phrase statistics: we developed an “unpacked and
transformed” version of Kneser-Ney phrase table
smoothing.

As will be seen in the experimental section,
modified Kneser-Ney is an extremely effective
technique. After we had done some initial expe-
riments with it, we were thus highly motivated to
“unpack” Kneser-Ney. However, the Kneser-Ney
formula involves a sum of two terms; there is no
easy way to unpack a log of a sum. We thus de-
cided to try using the statistics that are unique to
Kneser-Ney (i.e., those statistics that aren’t con-
tained in 3-count) as separate features. We also
tried generalizing them by adding constants, as
we did for 3-count. We call n1+(*,t) the number
of “events” for t, and n1+(s,*) the number of
“events” for s. Thus we have:

2 We can’t prove that it will converge after the second round
of MERT. We did try to run one more round of downhill
simplex and MERT in our experiments, but didn’t get fur-
ther improvements.

271

2-event (2EN):
 {log[n1+(*,t)], log[n1+(s,*)]}

Generalized 2-event (Gen 2EN):
 {log[n1+(*,t)+k1], log[n1+(s,*)+k2]};
 where k1, k2 > -1.

Downhill simplex and MERT are used to learn
the k’s as was described above for generalized 3-
count. However, note that though in theory sys-
tems with 3-count or generalized 3-count fea-
tures can learn PRF(t|s) and PRF(s|t), even systems
with both the 3-count features and the 2-event
features cannot learn the exact Kneser-Ney for-
mula, because of the “log of sum” problem.

Finally, we devised a new feature that punish-
es low-frequency phrase pairs (as the Mauser et
al. LF features described above do), but with a
continuously decreasing penalty; it is a transfor-
mation of c(s,t).

Enhanced Low-Frequency (ELF):

)(

1
log)(

)(

1

t,s
t,s

t,s

c
eh

c

ELF

−
==

−

. (9)

 At the log-linear level, ELF is equivalent to a
penalty proportional to 1/c(s,t) being subtracted
from the score. Phrase pairs with low joint
counts are punished more than those phrase pairs
with high joint counts. (We also tried on a dev
set ELF-like features based on 1/c(s) and 1/c(t),
but they did not yield consistently good results).

4 Experiments

4.1 System and lattice MERT details

We evaluated several new and several known
techniques with our in-house phrase-based SMT
system, whose decoder resembles Moses (Koehn
et al., 2007). In addition to phrase count features,
all systems had forward and backward lexical
probabilities, of the type described in (Zens and
Ney, 2004), and lexicalized and distance-based
distortion models. The LW estimates employed
in our experiments are based on (Zens and Ney,
2004); Foster et al. (2006) found this to be the
most effective lexical smoothing technique.

Weights on the feature functions are found by
lattice MERT (LMERT) (Macherey et al., 2008).
These authors pruned the lattices output by their
decoder; they also aggregated lattices over itera-
tions (clarified via personal communication with
W. Macherey). By contrast, an earlier version of
LMERT employed by our group (Larkin et al.
2010) did not involve pruning or aggregation.

Initially, we followed the Larkin et al. algorithm:
this provides rapid convergence to reasonable
optima. However, we decided that some aggre-
gation should be tried to discourage random walk
behaviour. In experiments for this paper, we
found that without lattice aggregation, adding
features led to worse optima on dev sets (despite
the possibility of giving the new features zero or
negligible weights).

Aggregation of lattices requires pruning be-
cause without it, successive iterations cause the
memory requirements for the lattice to grow li-
nearly. The search time will increase at a rate
worse than quadratic, because the whole lattice
must be scanned for each linemax operation. We
implemented pruning ourselves: we kept only
lattice arcs that were represented in a convex hull
resulting from some linemax operation in a pre-
vious MERT iteration. The same answer as be-
fore would be produced if the MERT iteration
were run with the pruned lattice - except that
MERT would be much faster. Not all the convex
hull is reproducible, but the part of it that was
actually seen is reproducible. In practice, this
form of pruning seems to address the addition-
of-feature problem discussed above.

Thus, our revised LMERT searches the com-
plete lattices from the latest decoder run com-
bined with the pruned lattices representing the
seen portions of the convex hull from all past
iterations. Though the old convex hull may no
longer be part of the current convex hull because
of changes to the feature weights, it is a reminder
of a part of the search space already seen. This
solves the memory and speed problems and pro-
vides better performance.

4.2 Data

 Results were obtained for Chinese-to-English
(CE), and French-to-English (FE). There were
two CE data conditions. The first is the small
data condition where only the FBIS 3 corpus
(10.5M target words) is used to train the transla-
tion model. For this condition, we built the
phrase table using two phrase extractors: the in-
house one extracts phrase pairs from merged
counts of symmetrized IBM model 2 (Brown et
al., 1993) and HMM (Vogel et al., 1996) word
alignments, while the other one extracts phrase
pairs from GIZA++ (Och and Ney 2003) IBM
model 4 word alignments (in all other experi-
ments, we only used the in-house extractor). The
second is the large data condition where the pa-

3 LDC2003E14

272

rallel training data are from the NIST4 2009 CE
evaluation (112.6M target words). We used the
same two language models (LMs) for both CE
conditions: a 5-gram LM trained on the target
side of the large data corpus, and a 6-gram LM
trained on the English Gigaword v4 corpus.

We used the same development and test sets
for the two CE data conditions. The development
set comprises mainly data from the NIST 2005
test set, and also some balanced-genre web-text
from the NIST training material. Evaluation was
performed on the NIST 2006 and 2008 test sets.

For FE, we used WMT 20105 FE data sets.
Parallel Europarl data are used for training (47M
English words); WMT Newstest 2008 is used as
the dev set and WMT Newstest 2010 is the eval-
uation set. Two 5-gram LMs are used for FE: one
is the English side of the parallel data, and the
other the English side of GigaFrEn.

Our in-house system is a descendant of the
(Foster et al., 2006) system, but outperforms it
by roughly 5 BLEU over a range of MT tasks.
The main reasons for this are that the current
version of the system carries out word alignment
using both IBM 2 and HMM models instead of
just IBM 2 ones, that it uses both lexicalized and
distance-based distortion instead of just the lat-
ter, that it uses 5- and 6-grams instead of tri-
grams, and that lattice MERT is used for tuning
weights instead of N-best MERT.

4.3 Results

Tables 1-3 show experimental results, arranged
by the overall effectiveness of techniques. The
baseline has the standard forward and backward
relative frequencies (RF). We tried a combina-
tion of the two RF features with three low-
frequency indicator features (RF+LF3), the two
RF features with the ELF feature described earli-
er (RF+ELF), Good-Turing (GT), and the 3-
count feature set described earlier (3CT) and its
generalized form (Gen 3-CT); we also tried mod-
ified Kneser-Ney with three different discounts
(KN3), and the same version of Kneser-Ney with
ELF (KN3+ELF). For the small CE condition
with the in-house extractor, we also tried 2-event
(2EN) and generalized 2-event (Gen 2EN) (we
unfortunately ran out of time to test these EN
features in all conditions). In the tables, after the
abbreviation for each system, we give in brackets

4 http://www.nist.gov/speech/tests/mt
(http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_Const
rainedResources.pdf provides the list of resources from
which large data was drawn).
5 http://www.statmt.org/wmt10/

the number of log-linear plus other weights that
must be tuned for the non-lexical phrase count
component of each: e.g., KN3 has two probabili-
ty estimates, with associated log-linear weights
λ1 and λ2 tuned by MERT, and three discounts
D1, D2, and D3 (shared by forward and backward
probabilities), giving (2+3) weights. Following
(Koehn, 2004), we use the bootstrap-resampling
test to do significance testing. In Table 1-3,
Symbols ** or * indicates that the result is sig-
nificant better than the baseline at level p<0.01
or p<0.05 respectively.

In-house extractor

system (#wts)
NIST test

Mean

ΔΔΔΔ 2006 2008
RF (2+0) 29.85 23.57 26.71 N/A

3CT (3+0) 29.48 23.24 26.36 -0.35
RF+LF3 (5+0) 29.87 23.60 26.74 +0.03

GT (2+0) 29.91 23.61 26.76 +0.05
RF+ELF (3+0) 30.46** 24.16** 27.31 +0.60
Gen3CT (3+3) 30.21 23.62 26.92 +0.21

 Gen3CT+2EN
 (5+3)

30.47** 23.90* 27.19 +0.48

Gen3CT+Gen2EN
(5+5)

30.52** 24.13** 27.33 +0.62

KN3 (2+3) 30.76** 24.36** 27.56 +0.85
KN3+ELF (3+3) 30.91** 24.53** 27.72 +1.01

GIZA++ extractor

system (#wts)
NIST test

Mean

ΔΔΔΔ 2006 2008
RF (2+0) 30.05 23.48 26.77 N/A

3CT (3+0) 30.68* 23.63 27.16 +0.39
RF+LF3 (5+0) 30.42 23.69 27.06 +0.29

GT (2+0) 30.99** 23.86* 27.43 +0.66
RF+ELF (3+0) 31.14** 23.92* 27.53 +0.76
Gen 3CT (3+3) 31.28** 24.05** 27.67 +0.90

KN3 (2+3) 31.67** 24.46** 28.07 +1.30
KN3+ELF (3+3) 31.77** 24.59** 28.18 +1.41

Table 1: CE small data (BLEU% scores). In brackets
the number of log-linear plus other weights that must
be tuned for the non-lexical phrase count component
of each system. Symbols ** or * indicates that the
result is significantly better than the baseline at level
p<0.01 or p<0.05 respectively. In brackets are the
number of log-linear plus the number of other weights
that must be tuned for the non-lexical phrase count
component of each system.

In-house extractor

system (#wts)
NIST test

Mean

ΔΔΔΔ 2006 2008
RF (2+0) 33.18 26.76 29.97 N/A

3CT (3+0) 33.31 26.98 30.15 +0.18
RF+LF3 (5+0) 33.56* 27.09* 30.33 +0.36

GT (2+0) 34.00** 27.29* 30.65 +0.68
RF+ELF (3+0) 33.87* 27.38* 30.63 +0.66
Gen 3CT (3+3) 34.04** 27.38* 30.71 +0.74

273

KN3 (2+3) 34.38** 27.80** 31.09 +1.12
KN3+ELF (3+3) 34.49** 27.99** 31.24 +1.27

Table 2: CE large data (BLEU scores)

3CT performs no worse than RF, and perhaps

better (it has a higher score for three of the four
systems). 3CT usually doesn’t do quite as well as
RF+LF3; GT does better than both. Generalized
3CT and RF+ELF are more or less tied, and both
are clearly superior to RF, RF+LF3, 3CT, and
GT. Best of all are the two Kneser-Ney variants,
with KN3+ELF doing better than KN3. In the
small CE condition with the in-house extractor,
Gen 3-CT combined with two EN variants that
both “unpack” Kneser-Ney, outperforms every-
thing except the variants with exact Kneser-Ney;
in this case, “unpacking” an estimator (Kneser-
Ney) seems to be a bad idea. Techniques with
more tuning weights tend to perform better (the
best-performing one has 6 weights, while the RF
baseline has 2), though there are exceptions.

In-house extractor

system (#wts)

WMT 2010 test

ΔΔΔΔ
RF (2+0) 26.32 N/A

3CT (3+0) 26.60* +0.28
RF+LF3 (5+0) 26.66* +0.34

GT (2+0) 26.69* +0.37
RF+ELF (3+0) 26.87** +0.55
Gen 3CT (3+3) 26.78* +0.46

KN3 (2+3) 26.88** +0.56
KN3+ELF (3+3) 26.95** +0.63

Table 3: FE WMT (BLEU scores)

4.4 Discussion

The results given here give some support to the
idea of unpacking and transforming the statistics
that make up probability estimators in phrase-
based SMT systems. In the experiments de-
scribed above, “generalized 3-count”, derived
from statistics hidden in forward and backward
conditional probabilities, performs quite well.
Presumably, this estimator performs better than
the two conventional RF features because of the
extra degrees of freedom. ELF – a transformation
of c(s,t) – also performs very well. Presumably,
ELF does better than the low-frequency (LF)
features of Mauser et al. (2007) because it is con-
tinuous rather than discrete.

On the other hand, modified Kneser-Ney is
still the most effective standalone technique, as it
was in (Foster et al., 2006). If one looks at the
number of tunable weights in brackets after the

name of each technique in Tables 1-3, one sees
that the success of modified Kneser-Ney can’t be
attributed to its having more degrees of freedom
than competing techniques: e.g., although it only
has 5 weights, it consistently beats generalized 3-
count, which has 6 weights (and in the topmost
set of results, it beats a technique that has 8
weights and another that has 10 weights).

Disappointingly, unpacking modified Kneser-
Ney did not yield improved performance. This
may have been because the way in which we un-
packed it was not a true generalization (the sys-
tem cannot reverse the unpacking by learning a
certain combination of weights, as it can for “3-
count” and “generalized 3-count”). The best
combination in all conditions was Kneser-Ney
with ELF (KN3+ELF).

Surprisingly, the impact of the techniques we
tried does not decrease with the amount of train-
ing data. Over the two CE conditions (with in-
house phrase extractor), the gain for all tech-
niques over the RF baseline is bigger in the large
data condition: e.g., KN3+ELF yields a remarka-
ble 1.27 BLEU improvement over the baseline
for large data CE. Gains on FE, which has an
intermediate amount of training data, are only
moderate. We speculate that these techniques
become more important as data quality gets
worse (even if the amount of data increases): a
high proportion of CE small and of WMT data,
but a low proportion of CE large data, is of good
quality.

5 Conclusion and Future Work

In this paper, we have shown that the 3-count
features, an “unpacked” version of the RF fea-
tures, obtained results comparable to or perhaps
better than those of the RF ones. Moreover, the
generalized 3-count features achieved further
improvement. We have also shown that a simple
feature we call ELF – a transformation of c(s,t) –
performs well. However, the unpacked and trans-
formed version of Kneser-Ney (KN) smoothing
did not perform as well as the original KN
smoothing.

The comparison of phrase table smoothing
techniques given here should be of general inter-
est. At a minimum, all SMT practitioners should
be aware that by implementing a simple tech-
nique like modified Kneser-Ney smoothing of
phrase tables, they may obtain BLEU gains in
the range +0.6-1.3.

In future work, we plan to try “unpacking”
Good-Turing counts of counts, lexical weights,

274

and lexicalized distortion. The results above
show that this kind of experimentation can have
a good payoff, and it is now practical to train
SMT systems with very many features (Chiang
et al., 2009). We will also study the interaction
between families of techniques: those for dis-
counting/smoothing as in this paper, those for
growing more focused phrase tables (Wuebker et
al., 2010) and those for pruning phrase tables
(Johnson et al., 2007). Though these three ap-
proaches partially overlap (all “punish” low-
frequency phrase pairs), a combination may be
more powerful than any of them alone.

References

P. Brown, S. Della Pietra, V. Della J. Pietra, and R.
Mercer. “The mathematics of Machine Translation:
Parameter estimation”. Computational Linguistics,
19(2):263-312, June 1993.

S. Chen and J. Goodman. “An empirical study of
smoothing techniques for language modeling”.
Technical Report TR-10-98, Computer Science
Group, Harvard University, 1998.

D. Chiang, K. Knight, and W. Wang. “11,001 New
Features for Statistical Machine Translation”.
Proc. ACL, pp 218–226, Boulder, Colorado, 2009.

K. Church and W. Gale. “A comparison of the en-
hanced Good-Turing and deleted estimation me-
thods for estimating probabilities of English
bigrams”. Computer speech and language,
5(1):19–54, 1991.

G. Foster, R. Kuhn, and H. Johnson. “Phrasetable
smoothing for statistical machine translation”.
Proc. EMNLP, pp. 53-61, Sydney, Australia, July
2006.

H. Johnson, J. Martin, G. Foster, and R. Kuhn. “Im-
proving Translation Quality by Discarding Most of
the Phrasetable”. Proc. EMNLP, Prague, Czech
Republic, June 28-30, 2007.

P. Koehn, F. J. Och, D. Marcu. “Statistical Phrase-
Based Translation”. Proc. HLT-NAACL, 2003.

P. Koehn. “Statistical significance tests for machine
translation evaluation.” Proc. of EMNLP, pp. 388–
395. Barcelona, Spain. July, 2004.

P. Koehn, H. Hoang, et al. “Moses: Open Source
Toolkit for Statistical Machine Translation”. Proc.
ACL, pp. 177-180, Prague, Czech Republic, June
2007.

S. Larkin, B. Chen, et al. “Lessons from NRC’s Por-
tage System at WMT 2010”. ACL Workshop on
SMT and Metrics MATR, pp. 133-138, Uppsala,
Sweden, July 2010.

C.-H. Lee and J.-L. Gauvain. “Speaker adaptation
based on MAP estimation of HMM parameters”.
International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), V. 2, pp. 558-
561, 1993.

W. Macherey, F. Och, I. Thayer, and J. Uszkoreit.
“Lattice-based Minimum Error Rate Training for
Statistical Machine Translation”. Proc. EMNLP,
pp. 725-734, Honolulu, Hawaii, October 2008.

A. Mauser, D. Vilar, G. Leusch, Y. Zhang and H. Ney.
“The RWTH Machine Translation System for
IWSLT 2007”. Int. Workshop on Spoken Language
Translation (IWSLT), pp. 161-168, Trento, Italy,
October 2007.

F. Och. “Minimum error rate training for statistical
machine translation”. Proc. ACL, Sapporo, Japan,
July 2003.

F. Och and H. Ney. “Discriminative training and max-
imum entropy models for statistical machine trans-
lation”. Proc. ACL, Philadelphia, July 2002.

F. J. Och and H. Ney. “A systematic comparison of
various statistical alignment models”. Computa-
tional Linguistics, 29(1):19–51, 2003.

S. Vogel, H. Ney, and C. Tillmann. “HMM based
word alignment in statistical translation”. Proc.
COLING, 1996.

J. Wuebker, A. Mauser, and H. Ney. “Training Phrase
Translation Models with Leaving-One-Out”. Proc.
ACL, pp. 475-484, Uppsala, Sweden, July 2010.

R. Zens and H. Ney. “Improvements in phrase-based
statistical machine translation”. Proc.
NAACL/HLT, pp. 257-264, Boston, USA, May
2004.

275

