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Abstract 

Translation sub-model is one of the most im-
portant components in statistical machine trans-
lation, but the conventional approach suffers 
from two major problems. Firstly, translation 
sub-model is not optimized with respect to any 
of automatic evaluation metrics of SMT (such 
as BLEU). The second problem is over-fitting 
to training data. This paper presents a new uni-
fied framework, by adding a scalable transla-
tion sub-model into the conventional 
framework. The sub-model is optimized with 
the same criterion as the translation output is 
evaluated (BLEU), and trained using margin in-
fused relaxed algorithm (MIRA) to handle 
over-fitting. Under our new framework, MIRA 
and minimum error rate training (MERT) are 
unified into an interactive training process. Our 
approach has not only shown to improve per-
formance over a state-of-the-art baseline, but 
also generalize well in-domain training data to 
out-of-domain test data. 

1 Introduction 

The conventional approach to statistical machine 
translation (SMT) adopts a log-linear framework to 
incorporate various features. While there have 
been a few works in improving the standard mini-
mum error rate training (MERT) for optimizing the 
weights of the features, most SMT researchers fo-
cus on some specific feature used in the log-linear 
framework. Note that a feature can be a complicat-
ed model in itself, such as translation sub-model, 
distortion sub-model, and language sub-model. 
The conventional approach trains each sub-model 
separately, and then integrates them in the log-
linear framework. The entire framework is opti-

mized with respect to an evaluation metric, e.g. 
BLEU, only in the step of feature weight tuning. 
The training of each model, be it generative or dis-
criminative, has nothing to do with the evaluation 
metric. 

Among the features, translation sub-model plays 
a key role as it measures the faithfulness of a trans-
lation candidate to the source input sentence. 
Translation sub-model is usually represented as a 
huge table of their pairs, each of which is a phrase 
pair, hierarchical phrase pair, or even more com-
plicated structure of synchronous grammar. The 
translation pairs are usually acquired from word 
alignment matrices using heuristics. The probabili-
ties of the translation pairs are usually assigned by 
maximum likelihood estimation (MLE). That is, 
conventional translation modeling never takes 
translation evaluation metric into consideration. 
Moreover, this method of translation modeling suf-
fers from over-fitting  which is critical especially 
when test data is not similar to training data. 

In this paper, we propose a new unified frame-
work to add a discriminative translation sub-model 
into the conventional linear framework, and the 
sub-model is optimized with the same criterion as 
the translation output is evaluated (BLEU in our 
case). Similar to Blunsom et al. (2009), each trans-
lation pair is a feature in itself, and the training 
method can affect the pairs directly so as to handle 
over-fitting. Unlike any previous approach(Liang 
et al., 2006; Arun and Koehn, 2007; Chiang et al., 
2008), in which the weights of translation pair fea-
tures and those features of sub-models are tuned in 
the same process, we propose a new scalable sub-
model which integrates all the translation pairs, 
and then combine the new sub-model with other 
sub-models into the conventional framework. The 
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over-fitting problem of the new scalable sub-model 
is well tackled by MIRA. The scalable training 
(MIRA) of the new sub-model and the standard 
training (MERT) of conventional framework are 
unified into an interactive training process.  

In the following, the previous approaches to 
translation modeling are reviewed in Section 2. 
Then we will elaborate the unified translation 
modeling, the unified training framework and the 
details of the scalable training methods in Sections 
3, 4, and 5 respectively. Experiment result and 
analysis are given in Section 6. 

2 Translation Modeling 

The task of translation modeling can be defined as, 
given a bilingual training corpus, the search of the 
optimal set of translation pairs with two goals: 

1) Explanatory capacity: i.e. the training data 
can be fully represented by the translation 
pairs. 

2) Generalization capacity: i.e. the translation 
pairs can also predict the correct translation 
given unseen source input. In other words, 
the translation pairs can avoid over-fitting. 

The conventional approach to translation model-
ing comprises three steps (Och, 2003): Firstly, the 
sentence pairs in training corpus are aligned at 
word level. Secondly, translation pairs are extract-
ed using a heuristic method. Lastly, MLE is used 
to compute translation probabilities. There are a 
few shortcomings of this method: 1) Inconsistent 
format of translation knowledge: word alignment 
in training vs. translation pairs (phrase pairs) in 
decoding. 2) The training process is not oriented 
towards translation evaluation metric: BLEU is not 
considered in the scoring of translation pairs. 3) 
This method may cause over-fitting: it is not con-
sidered whether the phrases are extracted from a 
highly probable phrase alignment or from an un-
likely one.  

To unify the format of translation knowledge, 
Marcu and Wong (2002) proposed a phrase-based, 
joint probability model with EM training to do di-
rect phrase alignment of training data. Since this 
method suffers from over-fitting, subsequent re-
searchers introduced prior into the generative pro-
cess: Blunsom et al. (2008) and DeNero et al. 
(2008) proposed to use dirichlet processing to do 
structure alignment with sampling training. How-
ever, it is still very difficult to integrate various 

kinds of features, and the model cannot be opti-
mized for SMT performance directly. 

To integrate various kinds of features and opti-
mize translation sub-model regarding BLEU di-
rectly, Deng et al. (2008) proposed a 
discriminative phrase extraction method with data-
driven features to capture the quality and confi-
dence of phrases and phrase pairs. The feature 
weights are optimized jointly with the translation 
engine to maximize the end-to-end system perfor-
mance. Huang and Xiang (2010) further proposed 
the use of annotated alignment results to extract 
annotated translation pairs which are used as train-
ing samples for discriminative model training. 
DeNero and Klein (2010) also used annotated 
alignment results in a similar way using MIRA 
training with precision and recall of the translation 
pairs as training objective (not BLEU-oriented). 
Such models may still suffer from over-fitting, as 
the features used may not be powerful enough to 
separate highly probable translation pairs from un-
likely ones. 

yu bei han 
you bangjiao

have diplomatic relation 
with North Korea 0.05

yu X1 you X2 have X2 with X1 0.5

bei han North Korea 0.4

bangjiao diplomatic relation 0.1

0.02

(a)

(b)

(c)

yu bei han you bangjiao

have diplomatic relation with North Korea

 
Figure 1. An example for over-fitting 

Unlike explanatory capacity, generalization ca-
pacity is not well studied for discriminative models 
(Dirichlet processing is a good choice to handle 
over-fitting for generative translation modeling). In 
Figure 1, the sentence pair: "yu bei han you 
bangjiao"/"have diplomatic relation with North 
Korea" has two alternative explanations: 1) this 
sentence pair is generated by only one translation 
pair, as shown in (b). 2) this sentence pair is gener-
ated by the combination of three translation pairs, 
as shown in (c). An over-fitted model prefers long 
translation pairs, and thus overestimates their 
probabilities while underestimating those of short 
ones. Such model will fail to generalize on unseen 
data, such as "yu riben you jingmao guanxi"/"have 
trading with Japan". 
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The only solution to over-fitting for nearly all 
discriminative translation modeling approaches is 
the length constraint to the source and/or target 
side of translation pairs. That is, the long transla-
tion pairs, which have weak generalization capaci-
ty, are simply filtered away. This solution, 
however, also discards long but useful phrases like 
"I would like to have".  

Blunsom et al. (2008) used a discriminative la-
tent variable model with each translation pair as a 
feature and a  regularization to deal with over-
fitting, and in order to incorporate language model, 
sampling method is adopted for training. Wuebker 
et al. (2010) used leaving-one-out (L1O) to deal 
with over-fitting and forced alignment to deal with 
the errors introduced by incorrect word alignment. 
The basic idea is to use the trained SMT decoder to 
re-decode the training data, and then use the de-
coded result to re-calculate translation pair proba-
bilities. Since the correct target sentence (i.e. the 
target side of training data) is not guaranteed to be 
generated by SMT decoder, forced alignment is 
used to generate the correct target sentence by dis-
carding all phrase translation candidates which do 
not match any sequence in the correct target sen-
tence. Since only the correct target sentence can be 
generated, language model is useless during decod-
ing, so the weight for language model is set to be 
zero. Leaving-one-out (L1O) estimation is com-
puted in the following way: For a sentence pair 

, firstly, is removed from the training 
data, and a translation sub-model  is 
trained on the remaining data. Then the partial 
count1  for translation pair  extracted from 

 is defined as the translation probability giv-
en by . The final translation sub-model 
is calculated using MLE based on this partial count. 

3 Unified Translation Modeling 

Purely discriminative model (PDM) is widely used 
to integrate various kinds of features into a linear 
framework, including sub-model features (such as 
language sub-model and conditional translation 
probabilities) and fine-grained features (such as 
translation pairs) (Liang et al., 2006; Arun and 
Koehn, 2007; Chiang et al., 2008). The weights of 
the sub-model features cannot be reliably tuned, 
                                                      
1 In conventional pipeline, partial count means the exact num-
ber of translation pairs extracted from a sentence pair. 

since the very few sub-model features are over-
whelmed by the huge number of fine-grained fea-
tures. Moreover, each sub-model feature 
corresponds to a particular kind of knowledge, 
while the fine-grained features are simply indicator 
features of the same kind of knowledge (viz. trans-
lation sub-model). Therefore it is inappropriate to 
handle them in a single training process. We intro-
duce a new sub-model which integrate all the indi-
cator features, and then combine the new sub-
model with other sub-model features into the con-
ventional framework, so that the explanatory ca-
pacity of the indicator features can be maintained 
and the weights of the sub-models can be balanced. 

Based on the linear framework and the conven-
tional sub-models: 

 

we introduce a new purely discriminative transla-
tion sub-model : 

 (1)
 
 

where  is the source sentence and and  are 
the translation candidates.  is the original sub-
model vector.  is the weight vector for  and . 
The whole model (equation (1)) is called unified 
translation model (UTM). is trained with 
BLEU, and is defined as: 

                  (2) 

where  is the feature vector, and here we use all 
the pairs in the translation table.  is the feature 
weight vector for .  

There are two reasons to take all translation 
pairs as features  Translation pairs are the primary 
objects in SMT decoding. It is much better to make 
the training process directly alter the value of each 
translation pair rather than through mediation of 
data-driven features (such as features used in Deng 
et al. (2008)). Using translation pairs as features 
also allows training method to affect the pairs di-
rectly so as to handle over-fitting, and punish the 
incorrect translation pairs generated by word 
alignment errors.  

Note that in equation (1), there are only a small 
number of sub-models, and the sub-model weights 
in this linear framework can still be tuned by 
MERT over a small development dataset. In equa-
tion (2), however, there are a huge number of fea-
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tures, and their feature weights can only be trained 
by scalable method over the entire training data 
(Chiang, 2008). The complete training dataset is 
used to train . In our unified framework, we 
can combine the MERT and scalable training with 
a huge number of features, and also use both train-
ing data and development data to improve SMT 
performance. 

4 The Unified Training Framework  

We train  by MERT and  by three scalable 
training methods, which are further discussed in 
section 5. MERT and scalable training are unified 
into an interactive training process, as shown in 
Figure 2. 

Algorithm Interactive Training 
INPUT: Training data ; Develop data  

OUTPUT:  and  
1: while(BLEU on  is improved) 
2:  fix , and train  using scalable method on  
3:  fix , and train  using MERT on  
4: Return  and  

Figure 2. Training method for UTM 

Given initial  and , we first fix  and train  
using scalable method on training data , then 
we fix the new  and update  using MERT on 
development data . MERT and scalable 
training continue interactively until translation per-
formance is not improved on development data 

. We use 0 as initial  and the trained sub-
model weights (using MERT) as initial . Our 
scalable training methods are based on the n-best 
translation candidates of . Since the n-best lists 
nearly never use all the features (translation pairs), 
multiple iterations of scalable training are needed 
for a stable stagnation point of feature weights. 

5 Scalable Training for  

Scalable training methods (Perceptron, MIRA and 
OWL-QN) are used to train the purely discrimina-
tive translation model  with large number of 
features. In order to optimize SMT performance, 
the scalable training tunes the weights  to push 
the best translation candidate upward to be the first 
one in n-best list according to equation (1).  

In order to perform scalable training, the n-best 
candidates should be ranked according to the simi-
larity with the correct target sentence. BLEU is the 
most natural choice to be the similarity measure as 

it is also the ultimate evaluation criterion. However, 
BLEU is a document-level metric rather than sen-
tence-level. Accordingly, this paper adopts the sen-
tence-level approximated BLEU proposed in 
Chiang et al. (2008) 2. The re-ranked best-1 list is 
called  for the training data  in 
the following. This ranking process of the n-best 
candidates is referred as oracle ranking. 

5.1 Perceptron 

Perceptron (Rosenblatt, 1962) is an incremental 
training procedure (i.e. stochastic approximation) 
which optimizes a minimum square error (MSE) 
loss function. Here, we use the average perceptron 
(Collins, 2002) for our scalable training, which is 
shown to be more effective than the standard one. 
The update rule on an example  is: 

           (3) 

where  refers to the ith source sentence in training 
data,  refers to the oracle candidate and  re-
fers to the best translation candidate for  (in 
equation (1)).  is the feature vector of the trans-
lation candidate (in equation (2)).  is the feature 
weight for training in purely discriminative transla-
tion sub-model  (in equation (2)). 

Algorithm Perceptron  

INPUT: Training data: ; Initial sub-model 
weights: ; Initial weights:  

OUTPUT: Trained weights:  
1: while(BLEU is improved) 

2:  decode  to acquire the n-best results  with 
 and , compute BLEU 

3:  get oracle set  from  using oracle 
ranking method. 

4:  while(BLEU is improved) 
5:   
6:   for each ( ) in (F, , ) 
7:    if( != )    
8:     
9:    else do nothing 
10    
11: re-rank  with w, and compute BLEU 
12: Return  

Figure 3. Perceptron for  

The average perceptron algorithm for our scala-
ble training is listed in Figure 3. The training starts 
with the n-best candidates from an initial  and  
                                                      
2 We also try the method in Watanabe et al. (2007), and it was 
found that the method made scalable training unstable in our 
frame work. 
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(line 2). Then, with the oracle results from oracle 
ranking (line 3), average perceptron is applied to 
update  until BLEU reaches stagnation point be-
fore re-decoding the training data (line 5-11). Fi-
nally, we perform re-decoding of the training data 
with the updated , and run perceptron again until 
it reaches stagnation point. Note that the trained 
weight vector  should be used as the initial 
weight vector  for the next perceptron training 
(line 6), otherwise, the weights for the features 
which are not used in the new n-best list will be 
trained to be 0, even though they are harnessed in 
the n-best lists in previous loops  and the trained 
model will be unstable. 

5.2 MIRA 

MIRA is widely used for various NLP tasks, espe-
cially for parsing (McDonald et al., 2005) and 
SMT (Watanabe et al., 2007; Chiang et al., 2008). 
This paper also uses MIRA to train our pure dis-
criminative translation sub-model . The gist of 
MIRA is to keep the norm of the updates to the 
weight vector as small as possible, while maintain-
ing a margin larger than the loss (BLEU is used to 
compute loss in equation (5)) of the incorrect clas-
sification. The updated rule is to update  to the 
value of  which minimizes: 

 (4) 

where  is a positive parameter which controls the 
influence of the slack term on the objective func-
tion and it is set to be 0.01 here.  is the (sentence) 
BLEU loss of the best candidate 3  compared 
with the oracle result  for the ith source sentence 

: 

  (5) 

and  is computed by: 

 

By solving equation (4) using the Lagrange dual 
form, we can get the update rule on sample : 

        (6) 

                                                      
3 We find prediction-based (PB) and max-loss (ML) (Cram-
mer et al., 2006) can achieve similar performance in our 
framework and we use PB for efficiency. 

where  

The final training process is also a perceptron 
like training by replacing the update equation (3) 
with the new update equation (6). 

5.3 OWL-QN  

We try to add regularizer to enhance the gener-
alization of . To optimize  with  is not 
very easy since its gradient is discontinuous when 
some weights are equal to zero. Andrew and Gao 
(2007) described an estimation method with a 
modified L-BFGS called OWL-QN (orthant-wise 
limited-memory quasi-newton), and this method 
can effectively handle the discontinuous gradient.  

OWL-QN forbids any two consecutive points 
forming a line passing through zero, and it uses L-
BFGS to approximate the Hessian matrix with . 

Algorithm OWL-QN  
INPUT: Training data: ; Model weights: ; Initial 

weights:  
OUTPUT: Trained weights:  

1: ={}; 
2: while(BLEU is improved) 

3:  decode  to acquire the n-best results with 
 and , compute BLEU 

4:   

5:  build the positive/negative samples with  
using oracle ranking method 

6:  train  with OWL-QN 
7: Return w 

Figure 4. OWL-QN for  

Optimization is challenging when expending 
BLEU with  as loss function, and here, we use 
logistic loss instead. The training process using 
OWL-QN with logistic loss is shown in Figure 4. 
When we get the n-best candidates for  (line 3), 
we add them to the candidate pool  (line 
4).  Each iteration adds extra samples to , 
so that more feature weights could be updated. We 
adopt the oracle ranking method to rank , 
and the top half candidates in are used as 
the positive samples and the left as the negative 
samples (line 5). At last, we use OWL-QN to op-
timize  using the positive and negative samples 
(line 6). 
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6 Experiment 

The experiments evaluate the performance of our 
model and training methods in a Chinese-English 
setting. Translation performance is evaluated by 
case-insensitive BLEU4. 

Our decoder is a state-of-the-art implementation 
of hierarchical phrase-based model (HPM) (Chiang, 
2007) with standard features, including language 
sub-model, translation sub-model, etc. Our 5-gram 
language model is trained from the Xinhua section 
of the Gigaword corpus. FBIS newswire corpus is 
our training data, which is used to extract transla-
tion pairs and train the scalable feature weights  
in equation (2). The translation pairs are extracted 
as in Chiang (2007) from word alignment matrixes, 
which are generated by running GIZA++ (Och and 
Ney, 2003) in two directions, and then symme-
trized using the grow-diag-final method (Koehn et 
al., 2003). The idea of unification of MERT and 
MIRA in UTM is evaluated against PDM, which 
uses the same features as in UTM. The generaliza-
tion capacity of UTM using MIRA (UTMMIRA) is 
evaluated against three baselines, viz. leaving-one-
out (L1O), UTM using Perceptron (UTMPERC) and 
UTM using OWL-QN (UTMOWL).  

The NIST’05 test set is used as our development 
dataset to tune the sub-model weights  in equation 
(1) and the NIST’06 and NIST’08 test sets are used 
as our test sets.  

6.1 Explanatory Capacity 

As mentioned in section 2, one of the goals of 
translation modeling is to well represent the train-
ing data. Here we use BLEU for training data as 
the measure of explanatory capacity. In the first 
experiment, we measure the explanatory capacity 
of  trained by three scalable training methods. 
The baseline results are HPM, PDM and L1O, 
shown in Table 1. PDM can get a much better 
BLEU score on training data compared with other 
two baselines. The reason may be that BLEU on 
the training data is the objective function during 
the PDM training. 

System HPM PDM L1O 
BLEU on Training 22.94 24.72 24.19 

Table 1. Explanatory capacity of baselines 

All three scalable training methods are not guar-
anteed to improve BLEU in any iteration of train-

ing phase on the training data. In fact, we found 
that after 10 iterations, the performance (in BLEU) 
becomes unstable, so in our experiments we only 
run the scalable training for 10 iterations on the 
whole training corpus. Table 2 shows BLEU of the 
10 iterations of the three training methods. The n-
best size for scalable training is 50. All three scala-
ble training methods can significantly improve the 
SMT performance on training data. UTMPERC and 
UTMMIRA get almost the same performance on 
training data (as they share the same framework), 
while UTMOWL is slightly worse.  

Iteration UTMPERC UTMMIRA UTMOWL 
0 22.94 22.94 22.94 
1 24.93 24.95 22.33 
2 24.62 24.61 23.59 
3 25.33 25.45 23.61 
4 25.1 25.56 24.16 
5 25.45 25.58 24.07 
6 25.57 25.59 24.33 
7 25.71 25.63 24.45 
8 25.67 25.68 24.53 
9 25.67 25.70 24.51 

Table 2. BLEU for the 10 iterations on training 
dataset 

The reason why UTMOWL cannot improve 
BLEU as significantly as the other two methods 
could be the loss function we used, which is lo-
gistic loss (not BLEU). UTMOWL treats translation 
as binary classification and uses half of the candi-
dates with higher BLEU as positive samples, while 
the other half as negative. Binary classification is 
simply inconsistent with the scaling nature of 
BLEU. 

There are 1,165,405 features (translation pairs) 
in the end-to-end translation sub-model, and 
243,840 features used by the best output (the best 
candidate for each source sentence in training data) 
of the baseline system. We distinguish the features 
used for training (#Feature of Used, the features 
those have an opportunity to be trained) from the 
features whose weights are not trained to be zero 
(#Feature of Trained) in Table 3. Note that, there 
are a large number of the pairs which are never 
used in the n-best lists, so the weights for them will 
always be zero. It is not surprising that UTMOWL 
leads to much more features, because UTMOWL can 
use all the candidates in the n-best lists to update 
the weights, while Perceptron and MIRA can only 
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use two candidates (the best one and the oracle) of 
the n-best list for each source sentence in training 
data.  

#Feature  UTMPERC UTMMIRA UTMOWL 
Used 507,403 513,327 578,625 

Trained 483,220 474,054 557,701 

Table 3. Numbers of features after training 

6.2 Translation Performance 

We compare the scalable training methods on test 
datasets against the baselines of HPM, PDM and 
L1O. The results are shown in Table 4.  

 Nist’06 Nist’08 
HPM 30.54 22.51 
PDM 30.97 23.34 
L1O 30.63(+0.09) 23.23(+0.72) 

UTMPERC 31.06(+0.52) 22.95(+0.44) 
UTMOWL 31.10(+0.56) 23.52(+1.01) 
UTMMIRA 31.49(+0.95) 23.91(+1.40) 

Table 4. Final results on test datasets 

L1O improves the performance on Nist’08 but 
not significantly on Nist’06. Since both UTMPERC 
and UTMMIRA get almost the same performance on 
training data, and UTMMIRA outperforms UTMPERC 
on the two test datasets a lot, it is confirmed that 
UTMMIRA is better in generalization capacity4 (to 
be deeply analyzed in the next section). UTMOWL 
with logistic loss is not very good on Nist’06, 
while it significantly improves the performance on 
Nist’08. UTMMIRA gets larger improvement than 
other methods. Note that the BLEU differences 
between UTMMIRA and the three baselines are sta-
tistically significant (Koehn, 2004). Compared 
with PDM, UTMMIRA achieves a better improve-
ment, and also the training time of our method (34 
hours, for UTMMIRA, UTMPERC and UTMPERC)5 is 
much shorter than that of PDM (119 hours) 6 .

                                                      
4 This observation is contrary to that in Arun and  Koehn 
(2007), which shows perceptron and MIRA get comparable 
results on a small in-domain training (one-eighth of our train-
ing dataset) and test datasets. 
5 The most time-cost step is the decoding of the training data, 
and the time of scalable training is almost the same for 
UTMMIRA, UTMPERC and UTMOWL 
6 Our experiments were run on a machine with 16 CPU cores 
(each 2520MHz) and 32G RAM. No distributed computing 
was involved; instead the system is speeded up by multi-
threading (16 threads). 

Similar with MERT, the MIRA training for PDM 
needs to decode the training data iteratively, and it 
took 20 cycles before convergence. In contrast, 
UTM requires took only 5 cycles.  

6.3 Generalization Capacity 

The Nist’08 evaluation set is a mixture of news-
wire text and web text. 691 sentence pairs in 
Nist’08 are in the same domain with the training 
data (newswire), while the rest sentence pairs (web 
data) are not. We evaluate these two portions sepa-
rately to confirm the better generalization capacity 
of our method. The results are shown in Table 5. 

 Nist’08(News) Nist’08(Web) 
HPM 27.70 15.49 
L1O 28.48(+0.78) 15.91(+0.42) 

UTMPERC 28.11(+0.41) 15.87(+0.38) 
UTMOWL 28.47(+0.77) 16.72(+1.23) 
UTMMIRA 28.84(+1.14) 17.14(+1.65) 

Table 5. Evaluation for News/Web portion 

It is obvious that L1O performs not very well on 
out-of-domain data. UTMOWL performs better on 
web portion (1.23) than on news portion (0.77). 
For L1O, the improvement regarding out-domain 
data (0.42) is not significant, which means L1O 
performs not very well in generalization capacity. 
For UTMPERC, performance is not improved signif-
icantly on both parts. The improvement of 
UTMMIRA on web text (1.65) is much larger than 
that of UTMPERC (0.38). The better performance on 
out-of-domain data confirms the better generaliza-
tion capacity of UTMMIRA. UTMMIRA also improves 
significantly on news data (1.14). 

7 Conclusion 

In order to handle the inconsistence between trans-
lation modeling and decoding, we propose a new 
discriminative translation sub-model, which is op-
timized with the same criterion as the translation 
output is evaluated (BLEU). The new translation 
sub-model uses all translation pairs in the transla-
tion table as features, and avoids over-fitting by 
MIRA training. MIRA for the new sub-model and 
MERT for the conventional framework are unified 
into an interactive training process. The unification 
of MIRA and MERT under our new framework 
can help the training process to achieve a better 
stagnation point. Our framework achieves better 
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performance than the state-of-the-art baseline and 
purely discriminative model. Within our frame-
work, we also confirm the better generalization 
capacity using MIRA than perceptron as the scala-
ble training method. 

In the future, we will try to compare the effect of 
different kinds of regularizers (  and ) for the 
over-fitting problem of translation modeling, and 
we will also try to add new scalable distortion sub-
model and language sub-model in the same way as 
the new added translation sub-model. 
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