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Abstract

In this work, we investigate methods to au-
tomatically adapt our simultaneous lecture
translation systems to the diverse topics that
occur in educational lectures. Utilizing ma-
terials that are available before the lecture
begins, such as lecture slides, our proposed
framework iteratively searches for related doc-
uments on the World Wide Web and gen-
erates lecture-specific models and vocabular-
ies based on the resulting documents. In
this paper, we propose a novel method for
vocabulary selection, a critical aspect of si-
multaneous translation systems where the oc-
currence of out-of-vocabulary words signifi-
cantly degrades intelligibility. We propose a
novel approach based on feature-based rank-
ing and evaluate the effectiveness of 21 dif-
ferent features and their combinations for this
task. On the interACT German-English si-
multaneous lecture translation system our pro-
posed approach significantly improved vocab-
ulary coverage, reducing out-of-vocabulary
rate, on average by 60% and up to 84%, com-
pared to a lecture-independent baseline. Fur-
thermore, a 40k vocabulary selected using
our method obtained better coverage than a
lecture-independent 300k vocabulary, improv-
ing intelligibility and reducing the latency of
the end-to-end system.

1 Introduction

Education is becoming an increasingly global ac-
tivity. Lectures and research presentations can be
broadcasted live across educational institutes around
the world enabling students access to exceptional

educational content no matter their physical loca-
tion. However, although physical barriers are re-
duced using these technologies, language barriers
remain. Lectures may be given in a language dif-
ferent from the student’s native tongue and often the
students that could benefit the most from this content
may not have sufficient language skills to understand
the lecture unaided. Interpreters are not a practical
solution in many cases as the costs involved are pro-
hibitively high. Recent works (Fügen, 2009; Kolss
et al., 2008) have thus investigated the use of speech-
translation technologies to translate lectures in real-
time. The biggest downfall of these systems how-
ever is portability. These systems currently only per-
form well if topic-specific models trained from sim-
ilar lectures are available. For each new topic, sig-
nificant effort and cost is required to manually tran-
scribe and translate similar lectures, without which
the system will generally perform poorly. In this
work, we propose to overcome this limitation by in-
troducing approaches to automatically adapt speech
translation systems to the diverse topics that occur
in educational lectures. Utilizing materials that are
available before the lecture begins, such as lecture
slides, our proposed framework iteratively searches
for related documents on the World Wide Web and
generates lecture-specific models and vocabularies
based on these documents.

One critical aspect for effective spoken language
translation is vocabulary coverage. If a word is not
present in the active system vocabulary then it can-
not be recognized or translated and is often dropped
from the system output. When the mismatch be-
tween the training data used to build a spoken lan-
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guage translation system and the topic of conver-
sation is severe, vocabulary coverage is poor lead-
ing to a high number of out-of-vocabulary (OOV)
words, poor translation quality and low intelligibil-
ity. For effective adaptation vocabulary coverage is
a key component that prior works have often over-
looked.

In (Kolss et al., 2008), a system for translating
German lectures into English was introduced. They
selected the system vocabulary based on word oc-
currence counts in both in-domain (lecture transcrip-
tions, presentation slides and web data) and out-of-
domain corpora and built lecture-independent mod-
els for speech recognition and machine translation
using these corpora. (Munteanu et al., 2007) in-
troduced an approach for language model adapta-
tion which leveraged the documents available on the
World Wide Web to aid the archiving and search of
lectures. Their method collected PDF documents
from the WWW based on search queries extracted
from the original lecture slides. This approach im-
proved transcription accuracy compared to a lecture-
independent baseline but vocabulary adaptation was
not considered thus limiting the usefulness of their
approach. An approach for joint vocabulary and
language model adaptation was introduced in (Ya-
mazaki et al., 2007) in which words from the lecture
slides were first added to the active system vocab-
ulary and then language model adaptation was per-
formed using an approach similar to that described
in (Munteanu et al., 2007). A similar approach was
applied for automatic subtitling of lectures for the
hearing impaired in (Kawahara et al., 2008; Kawa-
hara, 2010) with an additional step in which lan-
guage model adaptation was performed indepen-
dently for each slide, resulting in an adaptive lan-
guage model which followed the course of the on-
going lecture. Within the MIT Spoken Lecture Pro-
cessing Project (Glass et al., 2007) a lecture-specific
vocabulary was extracted from manually provided
supplemental text provided by the lecturer, includ-
ing lecture slides, journal articles, and book chap-
ters, which are available prior to the lecture.

Although the adaptation approaches described
above are effective for language model adaptation
they do not significantly improve vocabulary cov-
erage. Even when all words that are occur in the
lecture slides are added to the active vocabulary,

Figure 1: The interACT Lecture Translation System.

the out-of-vocabulary rate often remains high com-
pared to using topic specific vocabularies. In this
work, we propose a novel approach to improve vo-
cabulary coverage based on a feature-based vocabu-
lary ranking scheme and documents collected from
the WWW. Our proposed approach significantly im-
proves vocabulary coverage compared to a lecture-
independent system and further improves the effec-
tiveness of other adaptation approaches including
both language model adaptation for speech recog-
nition (Munteanu et al., 2007) and adaptation of ma-
chine translation models based on comparable cor-
pora (Vogel, 2003).

2 The interACT Simultaneous Lecture

Translation System

The interACT Simultaneous Lecture Translation
System (Fügen, 2009; Kolss et al., 2008) is a real-
time lecture translation system developed at the
international center for Advanced Communication
Technologies (interACT) at Karlsruhe Institute of
Technology (Germany) and Carnegie Mellon Uni-
versity (USA). This system, illustrated in Figure 1,
simultaneously translates lectures in real-time from
the speaker’s language into multiple languages re-
quired by the audience. To minimize the distraction
to the audience, our system delivers translation as
either text or speech output. The translated text is
displayed either on screens in the lecture room, on a
website accessible on mobile devices or on heads-up
displays. These technologies are especially useful
for listeners who have partial knowledge of a speak-
ers language and want to have supplemental lan-
guage assistance. Spoken translation output can be
listened to either via headphones or targeted audio
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Figure 2: Components of the Lecture Translation System

speakers, which make it possible to send the trans-
lated audio only to a small group of people while the
other listeners are not disturbed.

Figure 2 illustrates the three main components of
our lecture translation system: Automatic speech
recognition (ASR), machine translation (MT), and
speech synthesis (Text-to-Speech, TTS). The ASR
component consists of three models: An acoustic
model, which models the phonetic units in the input
speech, a recognition vocabulary and a source lan-
guage model which models the likelihood of word
sequences. The MT component consists of a trans-
lation model, which generates and scores translation
alternatives in the target language, and a target lan-
guage model which generates likelihoods for com-
peting word sequences.

Input speech from the lecturer is recognized by
the ASR component (Soltau et al., 2001) and the re-
sulting output is segmented into sentence-like units
which are then passed to MT. The ASR output is
then translated into one or more target languages via
our statistical machine translation engine STTK (Vo-
gel et al., 2003). The translated text is either directly
displayed to attendees or optionally converted into
speech output using a TTS engine.

In this work, we introduce a web-based topic
adaptation approach which adapts the four models
indicated in Figure 2. Adaptation is performed using
documents related to the lecture at hand, for exam-
ple slides or lecture notes. In this paper, we focus
on vocabulary selection for the speech recognition
component, but our proposed approach can also be
applied to adapt source and target language models
and the translation model.

3 Web-based Vocabulary Adaptation

The vocabulary used during a lecture can be seen
as a combination of two vocabularies (Glass et al.,

lecture vocabulary 
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“Viterbi algorithm” 
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recognition 
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lecture 

recognition 

selection 
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Figure 3: Document Collection and Vocabulary Ranking
Process

2004; Park et al., 2005): A topic-independent lecture
vocabulary, which contains vocabulary common to
spontaneous speech, and a topic-dependent vocab-
ulary. Our proposed approach for vocabulary se-
lection uses a similar breakdown. We begin with
a topic-independent lecture vocabulary, which con-
sists of stop words and common words used in spon-
taneous lecture speech (in the experimental evalu-
ation described in Section 4 this common vocabu-
lary consisted of 1788 words). In addition for each
lecture we then select a topic-specific vocabulary
based on a set of initial seed documents, for example
lecture-slides, handouts or book chapters. This un-
supervised vocabulary selection approach consists
of two parts. First the collection of documents re-
lated to the lecture at hand and second the ranking
and selection of an active recognition vocabulary.

3.1 Document Collection

Figure 3 illustrates the document collection and vo-
cabulary ranking process. The document collection
process begins with a set of lecture slides1 from
which words and key phrases are extracted. Search
queries are then generated and a large number of
web documents are collected by performing a web-
based search (here using the Microsoft Bing search
engine). The resulting documents are then filtered.
This document collection process is described in de-
tail in the following subsections.

1If slides are not available, it should be possible to use a
similar seed document which contains textual information on
the topic of the lecture
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Word Extraction The first step in document
selection involves extracting text from the lecture
slides. Symbols and punctuation are removed
and the text is lowercased and split into individ-
ual words. The resulting word-list is then veri-
fied against an extremely large vocabulary to re-
move erroneous words that were introduced during
the extraction process. In the experimental evalu-
ation described in this paper we used the unigram
occurrences from the Google Book Ngrams dataset2

(Michel et al., 2011) which in total contains 3M
word entries.

Query Selection Next, search queries are gen-
erate from the word sequences extracted from the
lecture slides. Single words and phrases of two
or three words which do not contain any topic-
independent vocabulary are selected as queries.

Web-Search Web-search is then performed us-
ing this query list. The search is limited to find only
results in the source language and for each query,
the 50 highest ranked documents were selected. The
text from the resulting documents (web page or PDF
file) were then extracted using a process similar to
that used for the lecture slides.

Document Filtering After performing search
language identification is performed on the result-
ing documents to ensure they are in the source lan-
guage. If the percentage of topic-independent vo-
cabulary Vindependent in a document is higher than a
predefined threshold the document is assumed to be
in the source language.

Threshold <
|{wi|wi ∈ Vindependent}|

|Wd| , (1)

where wi ∈ Wd is the word occurrences in docu-
ment d. The Threshold was selected based on a
small set of tuning data and was found to be robust
across lectures.

Vocabulary Ranking Finally, features (de-
scribed in section 3.2.1) are calculated for each
unique word that occur in the lecture slides or re-
trieved documents. The resulting vocabulary is then
ranked using either the value of a single feature, a
linear combination of multiple features, or a gaus-
sian mixture model trained on multiple features.

2Available at http://ngrams.googlelabs.com/datasets

3.2 Vocabulary Selection

3.2.1 Features

In the vocabulary selection step features are cal-
culated for each word observed during the retrieval
process. Ranking is then performed using either an
individual feature or a combination of multiple fea-
tures.

The definition of the features used in this work
follows. In these definitions: D is the set of all doc-
uments, Q is the set of all queries, and W is the set
of all words. The set which contains all documents
which contain the word wi is Dwi (equation 2). The
set which contains all documents which were found
by the query qk is Dqk (equation 3) and the set which
contains all queries that found the word wi is Qwi

(equation 4).
Dwi = {d ∈ D|wi ∈ d} (2)

Dqk = {d ∈ D|d ∈ qk} (3)

Qwi = {q ∈ Q|∃d ∈ D : wi ∈ d ∧ d ∈ q} (4)

Document Features For each document, two sim-
ilarities metrics between the document and the lec-
ture slides are calculated. These similarities are
based on the cosine similarity (equation 5), which
calculates the cosine distance between two vectors
a and b in the following manner:

cosine(a,b) =

n∑
i=1

ai × bi√
n∑

i=1
(ai)2 ×

√
n∑

i=1
(bi)2

(5)

Cosine Similarity based on Word Frequency

Equation 6 shows the first similarity metric
WFS(dk) between the slides and the document dk.

WFS(dk) = cosine(freqslides, freqdk
) (6)

where freqslides is the word frequency vector for
the slides and freqdk

is the word frequency vector
for the document dk. The word frequency vector is
explained in equation 7.

freqx = (countx(w1), ..., countx(wn)) (7)

where w1, ..., wn are the n unique words which
occur in the slides, countslides(wi) is the number
of occurrences of the word wi in the slides, and
countdk(wi) is the number of occurrences of the
word wi in the document k.
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Cosine Similarity based on Tf-Idf The second
similarity metric TIS(dk) (equation 12) is similar to
the first, however instead of the word frequencies,
the vectors contain the approximated tf-idf (term fre-
quency × inverse document frequency, equations 8
to 11) of every unique word in the slides. Tf-idf is
a common metric used for text retrieval (Salton and
Buckley, 1988) and is defined as:

tf(wi, dk) =
countdk(wi)∑

wj∈dk
countdk(wj)

(8)

idf(wi) = log
N

g(wi)
(9)

where N is the number of volumes in the Google
Book Ngrams dataset and g(wi) is the number of
volumes that contain the word wi in the Google
Book Ngrams dataset (Michel et al., 2011).

tfidf(wi, dk) = tf(wi, dk)× idf(wi) (10)

tfidfx = (tfidf(w1, x), ..., tfidf(wn, x)) (11)

TIS(dk) = cosine(tfidf slides, tfidfdk) (12)

Query Features Each query qk has two metrics.
The first metric QWF(qk) is the average similarity
between the slides and each document found by this
query based on the word frequency (equation 13).
The second metric QTI(qk) is the average similarity
between the slides and each document found by the
query based on tf-idf (equation 14).

QWF(qk) =

∑
d∈qk WFS(d)

|Dqk |
(13)

QTI(qk) =

∑
d∈qk TIS(d)
|Dqk |

(14)

Word Features For each word wi, 21 Features
(f1(wi), ..., f21(wi)) are calculated (equations 15 to
24). The majority leverage the document and query
features listed above.

1. DocCount: Number of documents in which the
word occurs.

f1(wi) = |Dwi | (15)

2. VocCount: Number of occurrences in all docu-
ments.

f2(wi) =
∑
d∈D

countd(wi) (16)

3. tfSum: Sum of term frequencies:

f3(wi) =
∑
d∈D

countd(w)∑
wi∈W

countd(wi)
(17)

4. tfCosineCount: Sum of term frequencies
weighted by the cosine similarity based on
word frequency:

f4(wi) =
∑
d∈D

WFS(d)
countd(w)∑

wi∈W
countd(wi)

(18)

5. tfCosineTfidf : Sum of term frequencies
weighted by the cosine similarity based on tf-
idf

f5(wi) =
∑
d∈D

TIS(d)
countd(w)∑

wi∈W
countd(wi)

(19)

6. DocCosineCount: max, min and average of
the document feature WFS of all documents
(Dwi) in which the word wi occurs.

f6,7,8(wi) = WFSmax,min,avg(Dwi) (20)

7. DocCosineTfidf : max, min and average of the
document feature TIS of all documents (Dwi)
in which the word wi occurs.

f9,10,11(wi) = TISmax,min,avg(Dwi) (21)

8. QueryScoreCount: max, min and average of
query feature QWF of all queries (Qwi) that
found the word wi.

f12,13,14(wi) = QWFmax,min,avg(Qwi) (22)

9. QueryScoreCount: max, min and average of
query feature QTI of all queries (Qwi) that
found the word wi.

f15,16,17(wi) = QTImax,min,avg(Qwi) (23)

10. GooglebookIDF: Inverse document frequency
based on the Google Book Ngrams dataset
(equation 9).

f18(wi) = idf(wi) (24)

11. GoogleBookNgrams: The word features
f19,20,21 are the values match count,
page count and volume count from the
Google Book Ngrams dataset (Michel et al.,
2011).
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3.2.2 Vocabulary Ranking and Selection

The resulting vocabulary after document collec-
tion is too large to be incorporated directly into
a speech translation system (in our work we ob-
served vocabularies between 135k and 680k) and
thus a smaller vocabulary must be selected. To
rank a vocabulary for selection, we compared three
approaches: single feature ranking, linear feature
combination-based ranking, and ranking using gaus-
sian mixture models. We also compared the rela-
tionship of vocabulary size to coverage of the lecture
transcripts.

Single Feature Ranking One method to select a
lecture-specific vocabulary is to sort words by one
specific feature (e.g., word occurrence). Based on
this ranking words are added to the vocabulary until
the desired vocabulary size is reached.

Linear Feature Combination Ranking Another
approach is to combine two or more features lin-
early and then sort words based on this multi-feature
score.

α× fi + (1− α)× fj (25)

Gaussian Mixture Model Ranking A third ap-
proach is to use Gaussian Mixture Models (GMMs)
for vocabulary ranking. In this approach two GMMs
were trained, the first on words which occurred in
the lecture and the second on words which did not
occur in the lecture. For ranking, the difference in
the log-likelihood of a word feature vector for each
of these GMMs was calculated, as in equation 26,
and words were ranked by this value.

log Pin(w)− log Pout(w) (26)

4 Experimental evaluation

We evaluated the effectiveness of our proposed un-
supervised vocabulary selection method for lecture
adaption within our German-English Simultaneous
Lecture Translation system (Kolss et al., 2008). The
evaluation was performed on 4 lectures (lect1, lect2,
lect3, lect4) which were held at Karlsruhe Institute
of Technology, Germany in 2009 and 2010. The
lectures were on a variety of different topics: Data
structures (lect1), machine translation (lect2), me-
chanics (lect3), and population geography (lect4).
Our baseline lecture translation system was trained

Figure 4: DocCount ranking results for a 40k vocabulary
compared with baseline and baseline+slides.

on lectures on Computer Science, and thus per-
formed especially poorly on lect3 and lect4.

4.1 Baseline

Baseline vocabularies with 40k, 90k, and 300k
words were selected from a combined corpora of
broadcast news, parliamentary debates, printed me-
dia, and university web data using the method de-
scribed in (Stüker et al., 2010). Using these vo-
cabularies, the average OOV rate across the four
lectures were: 5.7% (40k), 4.1% (90k), and 3.1%
(300k). Adding vocabulary that occurred in the lec-
ture slides (”Baseline+Slides”) reduced OOV rate on
average by 18.0%, obtaining average OOV rates of
4.7% (40k), 3.3% (90k), and 2.6% (300k). A de-
tailed breakdown per lecture for 40k vocabularies is
shown in Figure 4.

4.2 Feature-based Vocabulary Selection

First, we selected vocabularies by ranking them by
a single feature. The average OOV rate using a
40k vocabularies is shown in figure 5. The lowest
OOV rate was obtained using feature 1, DocCount
(f1). The feature 2, VocCount (f2) obtained a similar
OOV rate. Figure 6 shows the OOV rate for lecture
1 using these two features, compared with random
vocabulary selection and the baseline 40k, 90k, and
300k vocabularies. The OOV rate for DocCount and
VocCount is very similar, and vocabulary selection
using these two features is significantly lower than
the OOV rate of the three baseline systems. Figure 4
shows the OOV rate of a 40k vocabulary selected us-
ing the DocCount feature compared to the Baseline
(with and without slides). For all four lectures, the
OOV rate is significantly lower than the proposed
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Figure 5: Average OOV rate for all features (40k vocab-
ulary).

Figure 6: DocCount and VocCount compared to Baseline
and Random on lecture 1.

Baseline vocabularies even when slides were added.
Using the proposed vocabulary selection with the
DocCount feature improved our baseline OOV rate
on average by 59.8% while maintaining the same
vocabulary size.

4.3 Feature Combination

Next, we investigated the effectiveness of combining
multiple features for vocabulary ranking. The two
approaches we investigated were linear feature com-
bination and the gaussian mixture model method de-
scribed in section 3.2.2.

4.3.1 Linear Combination

We analyzed the effectiveness of linear combin-
ing two or more features during vocabulary ranking.
We linearly combined pairs of features (equation
25) evaluating across all feature combinations and
weights α ∈ {0.1, 0.2, ..., 0.9}. We observed that
combining DocCount and VocCount with α = 0.5
obtained an average reduction of OOV rate of 2.3%
compared to using the DocCount feature (f1) alone.

Figure 7: Average OOV rate of baseline compared with
linear combination in different vocabulary sizes.

A selection of results for linear combination are
shown in Table 1. Figure 7 shows the effectiveness
of our proposed linear combination approach using
the DocCount feature (f1) and the VocCount feature
(f2) compared to the baseline over varying vocabu-
lary sizes. On average the OOV rate of our proposed
approach with a 40k vocabulary is lower than the
OOV rate of the 300k Baseline vocabulary showing
the effectiveness of this method.

4.3.2 Gaussian Mixture Models

In this approach, we trained gaussian mixture
models for all feature pairs using labeled data from
one lecture. This models were then used for vocab-
ulary ranking (equation 26). GMMs were trained
with two components. Table 1 shows the results
for three feature pairs using GMMs with two com-
ponents. Using the GMM-based combination, the
average OOV rate was similar to that obtained us-
ing the single feature DocCount (f1). No feature-
pairs consistently improved performance across all
lectures.

5 Conclusion

Effective adaptation techniques are required to en-
able lecture transcription and lecture translation sys-
tems to perform adequately across diverse lecture
topics. Our proposed web-based approach solves
one of the key issues in current systems, that of se-
lecting an appropriate topic-specific vocabulary for
real-time speech recognition and translation. Us-
ing our approach, the OOV rate was reduced by
up to 83.8% (on average by 59.9%) compared to a
baseline vocabulary. We also analyzed two meth-
ods to optimize the vocabulary selection using fea-
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Approach Features Lecture 1 Lecture 2 Lecture 3 Lecture 4 Average
baseline - 3.680 6.021 6.697 6.303 5.675
single DocCount 1.514 3.730 1.598 2.876 2.429
linear DocCount (0.5), VocCount (0.5) 1.496 3.663 1.446 2.885 2.372
linear DocCount (0.8), tfCosineCount (0.2) 1.470 3.763 1.370 2.901 2.376
linear DocCount (0.6), tfCosineCount (0.4) 1.514 4.240 1.294 3.008 2.514
GMM DocCount, VocCount 1.522 3.621 1.446 2.942 2.383
GMM DocCosineCount-Max, -Avg 1.949 3.546 1.446 3.550 2.623
GMM DocCount, DocCosineTfidf-Avg 1.618 4.039 2.283 2.901 2.710

Table 1: Feature Combination - Linear Combination and Gaussian Mixture Models (OOV Rate in %, 40k Vocabularies)

ture combinations. During this tests, we identified a
linear combination which leads to a further improve-
ment of 2.3% compared to a single feature. Our re-
sults indicate that the quality of the data corpus is
more important than the specific selection method,
thus, in our future work, we intend to optimize our
document retrieval method for vocabulary coverage
and incorporate our approach into an online end-to-
end lecture translation system.
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