
AIR-based light clients for supporting Moses engine training

Jeffrey Rueppel Li Jiang Gong Yu Ray Flournoy
Adobe Systems Inc. Adobe Systems Inc. Adobe Systems Inc. Adobe Systems Inc.

345 Park Avenue 345 Park Avenue 345 Park Avenue 345 Park Avenue
San Jose, CA USA San Jose, CA USA San Jose, CA USA San Jose, CA USA

jrueppel@adobe.com ljiang@adobe.com ygong@adobe.com flournoy@adobe.com

Abstract

The Moses open source machine translation
system is a powerful research tool. However,
for doing machine translation at a production
level Moses remains a work in progress.
Adobe Systems Inc. has been working on
completing a set of lightweight AIR1 based
tools to address these limitations. We have
created a set of tools to improve corpus pro-
duction, to speed up automatic training, and to
carry out automatic scoring of Moses driven
MT projects. In the future these three tools
will be the building blocks for producing a
fully integrated and automatic Moses based
machine translation system.

1 Introduction

Building and training machine translation sys-
tems for research has become easier as the Moses
machine translation system has matured. At
Adobe we have been investigating what the limita-
tions of Moses are and working to develop tooling
which will make it possible to use Moses in a
production environment. The hurdles to be
addressed in order to use Moses for production ton
an industry level scale can in general be reduced to
those answering those questions which address the
stability and efficiency of Moses. I.E. The techno-

1 Adobe AIR, is a cross- platform runtime environment de-
veloped by Adobe Systems for building Rich Internet Appli-
cations (RIA) using Adobe Flash, Adobe Flex, HTML, and
AJAX that can be run as desktop applications.

logical level of Moses, and the quality of the ma-
chine translation that can be produced is high
enough now to meet industry needs, but integrating
Moses into an existing linguistic production proc-
esses is the crux of the problem. To address these
needs we have developed a trio of lightweight cli-
ent tools. First, we built a Corpus Cleaning tool,
which processes .tmx2 files into a Moses-ready
format. Second, we built a training harness to sim-
plify and speed up engine training. Third and fi-
nally we’ve put together a simple scoring harness,
which can call automatic scoring routines to evalu-
ate the quality of the engine being used. These
tools have been quickly produced using Adobe Air
technology for ease of installation and the ability to
run anywhere. When taken all together, these 3
tools become the building blocks of a larger sys-
tem. We will be using them to put in place a fully
integrated and automated engine training and de-
ployment schema for doing machine translation
with Moses.

The Adobe Moses tooling set (Corpus Tool,

Training Harness, Testing Tool) will install with
minimal system requirements onto MacOS and
Linux. It can be run in a client mode from the lo-
cal machine, and will allow the user to connect
directly to a previously installed Moses setup to
answer translation requests.

2 TMX (Translation Memory Exchange) is an open XML
standard for the exchange of translation memory data cre-
ated by computer-aided-translation and localization tools.
The tool could be easily configured to handle different input
file types.

503

2 Corpus Cleaning Tool

Moses and other MT systems require aligned
bi-bilingual corpus for training. MT engine devel-
opers frequently have access to legacy translations
from previous localization cycles. These resources
can be used to train MT engines if properly filtered
before hand. To make legacy translation memory
useful for MT training we have built a lightweight,
and configurable tool for handling corpus cleaning.
In this way we can quickly remove noise and less
useful data from a linguistic resource to achieve a
higher quality engine after training. A user should
be familiar enough with Moses to have it already
installed, but beyond that the tool is ready on in-
stallation to run. In its current form the Corpus
Cleaning Tool takes an industry standard transla-
tion memory exchange file .tmx as input and pro-
duces a pair of flat, Moses ready, aligned,
monolingual files as output. (In the future other
file types, .xliff for example, will also be available
to the user).

2.1 Current corpus cleaning options

Not all legacy corpuses are the same and there
are many ways a corpus developer might wish to
clean them in preparation for MT training. While
we have established a set of options and ordered
them to be effective, there remain many cleaning
options that might be useful against different cor-
pus. It might also improve the quality of the cor-
pus to reorder the sequence of cleaning options.
With this in mind we built the corpus tool in a
modular fashion. Users may select which options
they want to invoke. Users may reorder the execu-
tion of the selected options however they like. Fi-
nally we are including provisions by which users
may define their own cleaning options using regu-
lar expressions. Current options on the Corpus
Cleaning Tool include:

1. Placeholder handling
2. URL cleaning
3. Tokenization
4. Casing
5. Cleaning Numbers
6. Cleaning Duplicate Entries
7. Cleaning Long Entries
8. Cleaning Misaligned Translation Units.

The current options are a mixture of those stan-

dard to the normal requirements of preparing data
for MT engine training and of those specific to
cleaning the legacy data files we had to work with.
For example, options such as “Placeholder Clean-
ing” are specific to working with data derived from
software localization while the “Cleaning Mis-
aligned Units” could be expected of any data set
where data formatting has become corrupted.

In addition to the options listed below we have

provided access points, which allow the user to
install or develop their own language specific pars-
ers. By default, the Corpus Cleaning Tool uses a
Moses provided standard Western European lan-
guage parser but it can also be retargeted to use
Simplified Chinese, Japanese or other double byte
language parsers should they be required. The
corpus tool greatly reduces corpus cleaning pro-
duction time allowing a single engineer to multiply
their effectiveness by 5x-10x. In addition, the tool
allows a non-technical user to establish default
“batch style” processing routines for corpus clean-
ing and to avoid the labor of composing and exe-
cuting parsing commands by hand.

Figure 1. Moses Corpus Cleaning Tool UI

3 Training Harness Tool

The Adobe Training Harness is designed to sim-
plify and automate the training of Moses based MT

504

engines. Moses, as it is currently conceived, re-
quires the user to compose and execute a long
string of commands which contain the data of file
paths to executables and corpus, as well as all the
options flags required for the configuration. This
is an acceptable solution to providing inputs to a
Moses based engine while doing individual train-
ing rounds for very specific tasks. It does however
have considerable drawbacks when you begin to
assess the use of Moses in a production environ-
ment.

The Training Harness Tool simplifies the run-

ning of Moses by taking all the information from
that single composed string and breaks it down into
its component parts. All of the elements of the
string can be defined and redefined within the GUI
of the tool. The time required to change an ele-
ment is reduced and the chance of introducing er-
rors drops as well. In addition, the ability to run
subsequent training runs with small modifications
to basic elements becomes a task that can be ex-
ecutable programmatically. So that, given a par-
ticular data set and a Moses engine install, the user
is able to script the tool to train a series of engines
while using different reordering and alignment op-
tions. It is possible as well to tune this series of
engines based on those settings or others.

Figure 2. Moses Training Tool UI

3.1 Current training tool options

The training tool’s major use case is to make
feeding commands to a Moses engine both a re-
peatable and a scriptable action. To this end it is
constructed to mimic the standard commands that a
Moses user would use to call a Moses engine for a
training run. It allows the user to preset data for:

1. The Moses engine installation
2. A language model
3. Training scripts
4. Corpus to be used for training
5. Target and source languages
6. To set alignment and reordering options.

It allows the user to pre-visualize the command

being sent to the Moses engine. Commands can be
easily inspected in order to make changes and the
results stored programmatically for repeated use.
Finally the Training Tool can be run in tuning
mode to execute tuning on the newly produced
engine automatically.

4 Testing Harness Tool

The Adobe testing harness is a clean and simple
tool that allows the user to automatically test the
output quality of an MT engine. It allows the user
to quickly set paths to reference, source, and target
files. It also allows the user to determine which
testing method should be used. The user may tar-
get the Testing tool to use any particular testing
regime they would like. For example, the user
may choose between using Bleu or Meteor, etc. for
scoring. Results from the testing are displayed in
the GUI window of the tool and can be outputted
to log files for future automated comparison.

505

Figure 3. Moses Testing Tool UI

55. Next Steps To Integrating Moses
Tooling For Automated Training

The individual pieces of Adobe’s Moses
development work were built as stand alone
solutions to solve unique problems that we faced in
adapting Moses to a production environment. This
though is only the beginning of meeting those
needs. Beyond being able to function
independently, each piece is also a building block
towards creating a fully integrated solution to
provide machine translation as a service on
demand. We mentioned, concerning all three
pieces of the tooling set, our intention to make
them scriptable in nature. This would allow them
to be run in a headless and GUI free state,
remotely, and in sequence with each other. While
each individual part of the tooling set greatly
speeds up what was before a manual operation,
when each part can be run in an integrated system
then we’ve closed the loop on providing linguistic
translation services on demand via Moses.

For the next steps our goal is to provide a com-

plete real world solution for doing machine transla-
tion with Moses. We plan to integrate the corpus
tool with a remote repository of corpus resources.
These resources will be, as for most translation
systems static and will have been previously
cleaned during set up. In time, as we move away
from the launching of the system, new data will
come into the database with regular frequency.

The integrated corpus tool will be notified that new
data for a specific language pair and functional
domain is available for cleaning. The Corpus
Cleaning Tool then kicks off automatically using
preset values and cleans the incoming data.

When the new data has been cleaned, its reinte-

grated to the existing stock of clean data and in
turn sends notice to the Corpus Training Tool to
begin a new training run using both legacy data
and the newly included content. The Training
Tool can be pre-scripted to run against a series of
default configurations and to produce a series of
engines for each set. New engines are trained and
tuned and they too are stockpiled on a remote MT
server. Consequently, as new engines are trained,
the remote Testing Tool is called to action and be-
gins to run testing operations on each new engine
generating scores for them.

The Testing Tool can score new engines against
each other and also score those new engines
against previously deployed engines. Now, if a
new engine surpasses in quality a previously exist-
ing engine, system users can be notified and given
the option of promoting the engine above the exist-
ing one.

By integrating all three tools, with the addition

of a data repository on one end, and a consolidated
linguistic service layer on the other end, we can
now automatically complete the round trip. New
data can come into the system. New engines will
be automatically trained and scored. Finally new
engines can be pushed automatically the produc-
tion Moses server to provide translation services as
an end product.

Acknowledgments
We would like to acknowledge the ongoing

support we’ve had both within Adobe Systems and
from external organizations, such as TAUS, in
enabling us to make Machine Translation more
accessible to industry, researchers, and consumers.

References
Moses Statistical MT system:

http://www.statmt.org/moses/

506

