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Abstract

Filtering noisy parallel corpora or remov-
ing mistranslations out of training sets can
improve the quality of a statistical machine
translation. Discriminative methods for filter-
ing the corpora such as a maximum entropy
model, need properly labeled training data,
which are usually unavailable. Generating all
possible sentence pairs (the Cartesian product)
to generate labeled data, produces an imbal-
anced training set, containing a few correct
translations and thus inappropriate for train-
ing a classifier. In order to treat this problem
effectively, unsupervised methods are utilized
and the problem is modeled as an outlier de-
tection procedure. The experiments show that
a filtered corpus, results in an improved trans-
lation quality, even with some sentence pairs
removed.

1 Introduction

Statistical machine translation systems need large
parallel corpora to estimate the parameters of the
translation models. Such a corpus can be built man-
ually by human translators, but it is too costly and
takes too much time. Various automatic methods for
collecting parallel sentence pairs are proposed to re-
duce the time and energy needed to have a parallel
corpus, but it comes at a cost. Automatically gen-
erated parallel corpora usually contain some noisy
sentence pairs and are not perfect. Hence, the trans-
lation quality of a translation model, which is trained
on such corpora, may not be satisfying.

Several methods of automatic generation of par-
allel corpora have been proposed by researchers.

Some researchers have used alignment techniques
to find sentence pairs. Resnik (1999) suggests a
method to find an alignment between two sets of
sentences in two different languages to build a cor-
pus. Having a proper criterion for scoring candi-
date sentence pairs can improve the accuracy of the
model. Some researchers use characters (Gale and
Church, 1991) and words (Brown et al., 1991) to
form a scoring function and then use it to find align-
ments. Iterative algorithms for sentence alignment
are also suggested in some papers. As a sample of it-
erative algorithms, an EM-based unsupervised bilin-
gual information extraction method is proposed in
(Lee et al., 2010). The results of using a word-based
translation model to find a proper alignment between
two sets of sentence pairs are provided and discussed
in various papers (Chen, 1993; Wu, 1994). Ex-
tracting fragments (gathering sub-sentences instead
of full sentence pairs) to improve machine trans-
lation performance is also studied in some papers
(Munteanu and Marcu, 2006).

After extracting parallel sentence pairs, it might
be a good idea to reduce the noise level in a separate
post-processing phase by another filtering model.
The effect of different noise levels on the translation
quality is studied in (Khadivi and Ney, 2005). The
paper shows that the quality of the translation im-
proves when the training corpus contains less noisy
sentence pairs. Khadivi and Ney (2005) also remove
noisy sentence pairs by scoring them based on a lin-
ear combination of two lexical models. Several re-
searchers have studied the filtering problem and pro-
posed some solutions. Sarikaya et al. (2009) and
Turchi et al. (2009) use machine translation mod-
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els to remove the noisy sentence pairs. They train a
translation model on a noisy corpus and then use it
in different ways to refine the training data. Filter-
ing techniques based on the maximum entropy prin-
ciple are also used in some studies. After gathering
sentence pairs, Munteanu and Marcu (2005) use a
maximum entropy model to detect and remove noisy
pairs. Although we use a different model, some of
the features used in (Munteanu and Marcu, 2005) are
used in our model too. Tillmann (2009) uses a max-
imum entropy model as a filter and a beam search to
extract sentence pairs.

The noise is usually a complex concept. It is hard
to have a proper definition for noise, but it is rel-
atively easy to have one for the parallel sentence
pairs. Thus, a simple definition can be ’being not
parallel’. However, the definition is ambiguous and
not precise since it presumes the noise as a discrete
and binary concept. In this paper, we concern noise
as a spectral characteristic of all sentence pairs and
would like to remove sentences with higher degree
of noise. Moreover, if all sentence pairs are assumed
as vectors with different directions in space, parallel
sentence pairs have approximately the same direc-
tions while noisy ones may have any arbitrary an-
gle. This characteristic of noise makes it difficult
to be modeled. Hence, using discriminative meth-
ods to classify sentence pairs as noise or parallel
(Munteanu and Marcu, 2005) might be inappropri-
ate. In order for a binary discriminative classifier
to have a high power of generalization, it needs to
see enough observations of both classes in the train-
ing set but it is hard to provide adequate samples
of noise due to the variability of the noisy samples.
Such a model would find it difficult to recognize
unseen data with an unknown direction. Since the
generation of such a labeled training set seems mis-
leading, we will use unsupervised methods to han-
dle the problem. The main idea is to learn the di-
rection of the parallel samples and classify the most
novel samples as noise by means of density estima-
tors. Although, we assume that the number of noisy
sentences are not too much, we show that the accu-
racy is acceptable even with a noise level as high as
30% or 40%. It has to be considered that in the case
of density estimation, no weighting for features is
needed.

In this paper, we use some unsupervised out-

lier detection methods to filter out noisy sentence
pairs. The idea is to map the sentence pairs to an
n-dimensional space and then remove the outliers.
We show that omitting sentence pairs that are deter-
mined as outliers, reduces the noise of a corpus and
thus improves the translation quality.

The second section of this paper briefly notices
the outlier detection approaches that are used in this
study. We will explain the features in the third sec-
tion and the last part of the paper contains the exper-
iments and results.

2 Outlier detection based on probability

density estimation

In order to detect the outliers, we use density estima-
tors and assume points with lower densities as out-
liers. Since presuming a well-known model as the
generator for the data might be misleading, we use
non-parametric methods for estimating densities. A
good overview of the non-parametric density esti-
mators can be found in (Silverman, 1986). The gen-
eral expression for non-parametric density estima-
tion is

f̂(x) � K

nV
(1)

where n is the total number of samples, V is the vol-
ume around x and k is the number of samples that
fall in the volume V . Among different approaches to
estimate probability density function, we try kernel-
based techniques and also methods based on K-
nearest neighbors. Kernel density estimators are one
sort of methods that use the equation 1 by fixing V
and varying K and K-nearest neighbor methods fix
K and vary V . We selected kernel density estima-
tors and K-nearest neighbor methods to study the
problem in both cases. The methods are explained
later in detail.

The methods explained here are similar to
the famous algorithm DENCLUE (Hinneburg and
Gabriel, 2007). This algorithm can be used to de-
tect the outliers but it also tries to find the cluster
boundaries too. In our case, we just try to detect
the outliers, and cluster boundaries are of no use for
us. After estimating density, we filter the data points
with respect to the corresponding estimated density
and remove the least dense points.
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2.1 Density Estimation with Kernels

Given a sample of n observations X1, ..., Xn in a d-
dimensional space, a kernel based density estimator
with kernel K is defined by (Silverman, 1986)

f̂(x) =
1

nhd

n∑
i=1

K(
x−Xi

h
) (2)

where h is the window width or bandwidth and the
kernel K satisfies the condition∫ ∞

−∞
K(x)d(x) = 1 (3)

Different kernels can be used to estimate the den-
sity. The kernels that are used in this study are the
Epanechnikov, Gaussian and Laplace kernels (Li
and Racine, 2007; Li and Ruppert, 2008).

The Epanechnikov kernel is defined by

K(x) =
3

4
(1− x2)1{|x|≤1} (4)

where the 1{...} is the indicator function. The indica-
tor function in the Epanechnikov kernel formulation
forces the output to be zero when the value for x,
exceeds the boundary.

The definition for the Gaussian kernel is

K(x) =
1√
2π

e−
1
2
x2

(5)

This kernel function is not truncated and might be
better when the bandwidth is small, but it is slower
than the Epanechnikov kernel.

Finally, the Laplace (or double-exponential) ker-
nel is defined by

K(x) =
1

2
exp(−|x|) (6)

The Laplace kernel has the heaviest tail among the
kernels used in the experiments. A heavy tail of a
kernel makes it suitable when the training and test
data differ a lot or an unsuitable bandwidth is se-
lected.

Small values for the bandwidth makes the esti-
mation more detailed, while choosing larger values
results in a smooth function. Due to the impor-
tance of this parameter, we use automatic methods
to find a suitable bandwidth. Among various au-
tomatic bandwidth selection methods, we use the

plug-in selectors (Sheather and Jones, 1991), which
try to minimize an error function such as mean in-
tegrated squared error (MISE) or asymptotic MISE
(AMISE). The definitions for MISE and AMISE are
presented below:

MISE(h) = E

∫
(f̂h(x)− f(x))2dx (7)

AMISE(h) =
R(K)

nh
+

1

4
m2(K)2h4R(f ′′) (8)

where h is the bandwidth, f ′′ is the second derivative
of f and if g(x) is a function then

R(g) =

∫
g(x)2dx (9)

and
m2(K) =

∫
x2K(x)dx (10)

Variable bandwidth kernel methods are estima-
tors, which use variable or adaptive bandwidth for
density estimation. We also try the variable band-
width kernel estimator of (Kim and Scott, 1992) to
estimate the density.

2.2 Density Estimation with Nearest Neighbor

Methods

It is possible to estimate the probability density
function by the well-known K-nearest neighbor
methods. In this case, the degree of smoothing is
adapted to the local density of given sample of data
and is controlled by the parameter K (Silverman,
1986). Given a sample of n observations X1, ..., Xn,
a distance function d(x, y) between two points x and
y on the line is |x−y|, and for each t, dk(t) is defined
such that

d1(t) < d2(t) < ... < dn(t) (11)

in which the distances are sorted ascending. Then
the K-nearest neighbor estimator can be defined by

f̂(x) =
K

2ndk(x)
(12)

The choice of parameter K is important, because it
specifies the smoothing degree. Usually the value
for K is selected around

√
n.
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3 Features

The feature set used in this paper is a combination of
novel features and previously suggested ones. The
features can be categorized into 4 groups:

• Translation model probabilities

• Word alignments

• N-gram language model

• Sentence length

It is also worth mentioning that all features are
trained on the noisy training set. The reason is
to preserve the independence of the approach from
other sources of clean or labeled data. Although
training basic models on the noisy data might lead
to unacceptable feature functions, we believe that
the models are robust enough to maintain their func-
tionality when the degree of noise is low, relative
to the parallel sentence pairs. Additionally, the fea-
tures complement and supplement each other since
they consider different aspects of the complex noise
concept. The features are designed in a way that dis-
tribute the noisy samples, while concentrating the
parallel ones in a compact part of space. Also, to
have a homogeneous set of features, we normalize
all feature functions to vary at the boundary of [0 1].
Finally, the feature selection procedure is explained
in section 4.

3.1 Translation model probabilities

We train the word-based translation model IBM-1
(Brown et al., 1993) on the noisy corpus and use
the conditional translation probabilities as a feature.
IBM model 1 is defined by

PIBM1(e|f) = ε

(l + 1)m

m∏
j=1

l∑
i=0

t(fj |ei) (13)

where f and e are source and target sentences re-
spectively and t(fj |ei) is the probability of translat-
ing the word fj into ei. We use the IBM model 1 to
compute five features, which are listed below:

• PIBM1(e|f)
• PIBM1(f |e)

• Unnormalized PIBM1(e|f)
• Unnormalized PIBM1(f |e)
• Average of PIBM1(e|f) and PIBM1(f |e)

The unnormalized features are the outputs of the
model without the normalizing factors. Similar fea-
tures are used in several papers such as (Khadivi and
Ney, 2005). Since the goal is to improve the quality
of a statistical machine translation, it seems useful to
use translation model probabilities as feature func-
tions. Among different translation models, word
based models can be utilized much easier because of
their simplicity. The reason of using IBM model 1
is that this model is simpler and faster and produces
a sufficiently reliable measure of literal translation.
However, building other feature functions based on
more complex translation models can be useful to
detect and remove mistranslations.

3.2 Word alignments

Features based on word alignments are used in some
papers (Munteanu and Marcu, 2005). In order to get
a word alignment between two sentences, we use
the noisy corpus to train the IBM models (Brown
et al., 1993) in both directions and as a result we get
the source-to-target and target-to-source word align-
ments. By using the heuristics suggested in (Och
and Ney, 2003), a symmetric word alignment is pro-
duced. We use the word alignments to calculate fea-
tures:

• Number and percentage of null alignments in
both source and target sentences

• Number and percentage of null alignments in
the source sentence

• Number and percentage of null alignments in
the target sentence

• Alignment entropy of both source and target
sentences

• Alignment entropy of the source sentence

• Alignment entropy of the target sentence

Null alignments are the words which are not
aligned to any words of the other sentence and the
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alignment entropy is a criterion of the alignments
distribution. This feature scores the uniform align-
ments with a higher value. The source and target
alignment entropies are defined by

ent(eI1, A) =

∑
i q(ei, A).log(q(ei, A))

log(I)
(14)

and

ent(fJ
1 , A) =

∑
j q(fj , A).log(q(fj , A))

log(J)
(15)

where q(xk, A) is a normalized number of links in
which xk is involved. Finally, we define the total
alignment entropy by

ent(eI1, f
J
1 , A) = ent(eI1, A).ent(f

J
1 , A) (16)

This feature tends to score alignments with higher
degree of uniformity with larger values. The idea
is that when two sentences are translations of each
other, usually the alignments follow an approxi-
mately uniform distribution. But when a sentence
pair is a noisy entry, the word alignments are mostly
seen on separated parts of a pair.

3.3 N-gram language model

The next group of feature functions are based on
the language model probabilities of the source and
target sentence. We use M -gram language mod-
els to estimate the sentence probabilities. Given a
sequence of words w1, ..., wn, the language model
probability of the sequence is defined by

PLM (wn
1 ) =

N∏
n=1

p(wn|wn−1
1 ) (17)

Usually, the length of the history wn−1
1 is limited,

to have a feasible language model. Hence, an M -
gram language model is defined by

PLM (wn
1 ) =

N∏
n=1

p(wn|wn−1
n−M+1) (18)

The language model based features used in the
model are:

• Source and target 3-gram probabilities

• Difference and ratio of the source and target 3-
gram probabilities

Train
En Fr

#Sentences 45083
#Words 330154 348483
Avg. #Words 7.3 7.7

Table 1: Corpus Statistics: Training set

Dev. Test
En Fr En Fr

#Sentences 1000 1000
#Words 27620 29999 27594 30159
#OOVs 795 1151 800 1148

Table 2: Corpus Statistics: Dev. and Test sets

3.4 Sentence length

The last group of feature functions are based on the
length of a sentence pair. These features are used
in many papers to detect mistranslations (Munteanu
and Marcu, 2005; Gale and Church, 1991; Brown et
al., 1991). Following these papers, we use the sen-
tence length based on both characters and words to
form new features for the model. The feature func-
tions are the difference and ratio of the source and
target lengths based on words and characters. By the
help of the sentence length, it is easy to detect mis-
translations of large difference in source and target
lengths.

4 Experiments

We use the proposed approach to filter an automat-
ically generated French-English parallel corpus, in
which the sub-sentence pairs are gathered from the
multilingual Euronews website1. In order to eval-
uate the model, we use the filtered corpus as the
training data for a phrase-based statistical transla-
tion model (Koehn et al., 2003). The test and devel-
opment sets are selected from the parallel Europarl
corpus2. Some statistics about the data sets is pro-
vided in the tables 1 and 2.

Here, we use the rule of thumb (ROT) plug-in
method for a fast and appropriate bandwidth selec-
tion. ROT minimizes the AMISE criterion and is

1www.euronews.net
2www.statmt.org/europarl/
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Dev. Test
PIBM1(e|f) 33.62 33.12
PIBM1(f |fe 33.54 33.07
Unnormalized PIBM1(e|f) 33.27 32.97
Unnormalized PIBM1(f |e) 33.31 32.91
Avg(PIBM1(e|f), PIBM1(f |e) 33.49 33.46

Table 3: Evaluating translation model features: BLEU
score

Dev. Test
#null alignments (source) 33.57 32.94
#null alignments (target) 33.76 33.12
#null alignments (total) 33.71 33.17
%null alignments (source) 33.73 33.08
%null alignments (target) 33.76 33.36
%null alignments (total) 33.68 33.23
Alignment entropy (source) 33.41 33.00
Alignment entropy (target) 33.22 32.91
Alignment entropy (total) 33.05 32.86

Table 4: Evaluating word alignment features: BLEU
score

much faster than other methods. Using other meth-
ods for bandwidth selection can effect the estima-
tion, but are not tested here due to their less impor-
tance.

In order to have a proper feature set, we evalu-
ate each feature independently. The evaluation is
done by removing each feature, re-estimating the
densities and the observing the translation quality
(BLEU). This method of feature selection may not
be a perfect solution because it depends significantly
on the tuning set. However, considerable decrease
in BLEU score, may be a sign of degrader feature
function. The estimation method that is used in fea-
ture evaluation is the kernel-based density estimator
with the Gaussian kernel exploited. As mentioned
before the ROT selector is used to adjust the band-
width. The tables 3, 4, 5 and 6 display the effect of
each feature function on the translation quality.

Automatically generated corpora may contain dif-
ferent levels of noise. In order to estimate the noise
level of the target corpus, translation quality (BLEU)
is illustrated against the percentage of filtered sen-
tence pairs in figure 1. The plot shows that trim-

Dev. Test
PLM (source) 33.62 33.12
PLM (target) 33.78 33.24
PLM (source)− PLM (target) 33.54 33.42
PLM (source)/PLM (target) 33.72 33.09

Table 5: Evaluating language model features: BLEU
score

Dev. Test
Diff. of lengths (words) 33.29 33.30
Ratio of lengths (words) 33.45 33.09
Diff. of lengths (characters) 33.71 33.21
Ratio of lengths (characters) 33.55 33.17

Table 6: Evaluating length-based features: BLEU score

ming 5% of the corpus leads to a relatively improved
translation quality. As expected, removing higher
number of sentence pairs (e.g. 50%) from training
data results in decreased translation quality, but an
interesting point is that with higher levels of trim-
ming, translation quality reduces with much lower
pace. Even with 50% filtering and training the SMT
with half of the training set, the translation quality
only reduces 0.6 BLEU (0.02 relative to the base-
line). 50% of filtering means a model with approx-
imately half the size of the baseline and thus less
memory needs.

We remove a fixed percentage of data, instead of
using a fixed threshold for density. After removing
5% of sentence pairs that are detected as the least
dense points, the filtered corpus is used as the train-
ing data for a phrase-based machine translation. The
results for different kernel-based methods are dis-
played in the table 8 and KNN-based methods in 7.
Each row of the table shows the translation quality in
terms of BLEU (Papineni et al., 2002) for different
estimators.

It has to be mentioned that the baseline is trained
on the full corpus, and other rows of the table are
the models with 5% fewer sentence pairs. All esti-
mators are dependent and sensitive to the bandwidth
parameter.

Two tests are performed to prove that the im-
provement is statistically significant. We have uti-
lized the bootstrap resampling method to resam-
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Figure 1: Results (BLEU) of evaluating the SMT systems
for Dev. (Tu) and test sets (Ts). The X-axis shows the
percentage of sentence pairs removed from the training
corpus. The baseline scores are illustrated by Tu-base
and Ts-base

Dev. Test
Baseline 33.93 33.34
K = 50 33.67 32.94
K = 100 33.79 33.06
K = 150 33.82 33.21
K = 200 33.97 33.28
K = 250 33.85 33.17
K = 300 33.86 33.12

Table 7: Translation quality (BLEU) on the test and dev.
sets when filtered with KNN estimators

Dev. Test
Baseline 33.93 33.34
AGF 33.98 33.09
Epanechnikov 34.01 33.51

Gaussian 33.79 33.30
Laplace 33.72 33.22
KNN 33.89 33.24

Table 8: Translation quality (BLEU) on the test and dev.
sets when filtered with kernel estimators

Dev. Test
WSR T WSR T

5%, Epan., ROT 1e-64 0 5e-12 1e-12

Table 9: P-Values obtained from Wilcoxon signed-rank
test (WSR) and T-test (T) performed on samples of boot-
strap resampling method. The target system is the SMT
trained on 95% of training data, which is filtered by
Epanechnikov kernel and the ROT bandwidth selection
method

ple the development and the test sets and then use
Wilcoxon signed-rank (Wilcoxon, 1945) and the T-
test to evaluate the amount of improvement. The re-
sults (P-values) are shown in the table 9. It has be
noticed that the Wilcoxon test is performed directly
on BLEU scores of two SMT systems, but the T-test
is used on the differences of two BLEU scores.

5 Conclusion

In order to detect and remove the mistranslations in
a parallel corpus, we mapped each sentence pair into
an N -dimensional feature space and then estimated
the density for each one of them. The least dense
points are treated as outliers and thus are removed
from the corpus. After filtering the corpus, we used
it to train a phrase-based machine translation system
and evaluated the method.

The results show that the filtered corpus with
fewer sentence pairs not only results in comparable
quality to the larger corpus, but also improves the
quality when a proper estimator is used. The results
prove our claim that the model selects better trans-
lations and does not remove the useful phrase pairs.
Having a larger test set, in which most of the train-
ing phrase pairs are used, the improvement would be
much higher. We also showed that the method can be
used to reduce the translation model size with a min-
imum cost of quality degradation. Thus the method
can be utilized to reduce the model size and thus less
memory consumption with a trade-off between the
translation quality and memory needs.

All the features used in this study are evaluated
against translation quality. We removed each feature
and re-estimated the points to make sure that none
of the feature functions are reducing the quality on
the tuning set. However, having a better feature set
would definitely improve the efficiency. Although it
involves supervision, we also plan to use clean par-
allel corpora to have a more precise detection algo-
rithm and also a better feature selection method by
finding better feature functions.
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