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Abstract

The aim of this work is to show the abil-
ity of finite-state transducers to simultane-
ously translate speech into multiple lan-
guages. Our proposal deals with an ex-
tension of stochastic finite-state transduc-
ers that can produce more than one out-
put at the same time. These kind of de-
vices offer great versatility for the inte-
gration with other finite-state devices such
as acoustic models in order to produce a
speech translation system. This proposal
has been evaluated in a practical situation,
and its results have been compared with
those obtained using a standard mono-
target speech transducer.

1 Introduction

Finite-state models constitute an important frame-
work both in syntactic pattern recognition and in
language processing. Specifically, stochastic finite-
state transducers (SFSTs) have proved to be useful
for machine translation tasks within restricted do-
mains; they usually offer high speed during the de-
coding step and they provide competitive results in
terms of error rates (Mohri et al., 2002). Moreover,
SFSTs have proved to be versatile models, which
can be easily integrated with other finite-state mod-
els (Pereira and Riley, 1997).

The article (Casacuberta and Vidal, 2004) ex-
plored an automatic method to learn an SFST from a
bilingual set of samples for machine translation pur-
poses, the so-called GIATI (Grammar Inference and

Alignments for Transducers Inference). It described
how to learn both the structural and the probabilistic
components of an SFST making use of underlying
alignment models.

A multi-target SFST is a generalization of stan-
dard SFSTs, in such a way that every input string
in the source language results in a tuple of output
strings each being associated to a different target
language. An extension of GIATI that allowed to in-
fer a multi-target SFST from a multilingual corpus
was proposed in (González and Casacuberta, 2006).
A syntactic variant of this method (denoted as GI-
AMTI) has been used in this work in order to infer
the models from training samples as it is summa-
rized in section 3.

On the other hand, speech translation has been al-
ready carried out by integrating acoustic models into
a SFST (Casacuberta et al., 2004). Our main goal
in this work is to extend and assess these method-
ologies to accomplish spoken language multi-target
translation. Section 2 deals with this proposal by
presenting a new integrated architecture for speech-
input multi-target translation. Under this approach
spoken language can be simultaneously decoded and
translated into m languages using a unique network.
In section 4, the performance of the system has
been experimentally evaluated over a trilingual task
which aims to translate TV weather forecast into two
languages at the same time.

2 An integrated architecture for
speech-input multi-target translation

The classical architecture for spoken language
multi-target translation involves a speech recogni-
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tion system in a serial architecture with m decoupled
text-to-text translators. Thus, the whole process in-
volves m + 1 searching stages, a first one for the
speech signal transcription into the source language
text string, and further m for the source language
translation into the m target languages. If we re-
placed the m translators by the multi-target SFST,
the problem would be reduced to 2 searching stages.
Nevertheless, in this paper we propose a natural way
for acoustic models to be integrated in the same net-
work. As a result, the input speech-signal can be
simultaneously decoded and translated into m target
languages just in a single searching stage.

Given the acoustic representation (x) of a speech
signal, the goal of multi-target speech translation
is to find the most likely m target strings (tm);
that is, one string (ti) per target language involved
(i ∈ {1, . . . ,m}). This approach is summarized
in eq. (1), where the hidden variable s can be in-
terpreted as the transcription of the speech signal:

t̂m = arg max
tm

P (tm|x) = arg max
tm

∑
s

P (tm, s|x)

(1)
Making use of Bayes’ rule, the former expression

turns into:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|tm, s) (2)

Empirically, there is no loss of generality if we as-
sume that the acoustic signal representation depends
only on the source string: i.e., that P (x|tm, s) is in-
dependent of tm. In this sense, eq. (2) can be rewrit-
ten as:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|s) (3)

Equation (3) combines a standard acoustic model,
P (x|s), and a multi-target translation model,
P (tm, s), both of whom can be integrated on the fly
during the searching routine. Nevertheless, the outer
maximization is computationally very expensive to
search for the optimal tuple of target strings tm in
an effective way. Thus we make use of the so called
Viterbi approximation, which finds the best path.

3 Inference

Given a multilingual corpus, that is, a finite set of
multilingual samples (s, t1, . . . , tm) ∈ Σ∗ × ∆∗

1 ×

· · · × ∆∗
m, where ti denotes the translation of the

source sentence s (formed by words of the input vo-
cabulary Σ) into the i-th target language, which, in
its turn, has a vocabulary ∆i, the GIAMTI method
can be outlined as follows:

1. Each multilingual sample is transformed into a
single string from an extended vocabulary (Γ ⊆
Σ×∆∗

1× · · · ×∆∗
m) using a labelling function

(Lm). This transformation searches an ade-
quate monotonous segmentation for each of the
m source-target language pairs. A monotonous
segmentation copes with monotonous align-
ments, that is, j < k ⇒ aj < ak following
the notation of (Brown et al., 1993). Each
source word is then joined with a target phrase
of each language as the corresponding segmen-
tation suggests. Each extended symbol consists
of a word from the source language plus zero
or more words from each target language.

2. Once the set of multilingual samples has been
converted into a set of single extended strings
(z ∈ Γ∗), a stochastic regular grammar can be
inferred.

3. The extended symbols associated with the
transitions of the automaton are transformed
into one input word and m output phrases
(w/p̃1/ . . . /p̃m) by the inverse labeling func-
tion (L−m), leading to the required transducer.

In this work, the first step of the algorithm (as
described above), which is the one that handles
the alignment and segmentation routines, relies on
statistical alignments obtained with GIZA++ (Och,
2000). The second step was implemented us-
ing our own language modeling toolkit, which
learns stochastic k-testable in the string-sense gram-
mars (Torres and Varona, 2001), and allows for
back-off smoothing.

4 Experimental results

4.1 Task and corpus
We have implemented a highly practical application
that could be used to translate on-line TV weather
forecasts into several languages, taking the speech
of the presenter as the input and producing as output
text-strings, or sub-titles, in several languages. For

134



this purpose, we used the corpus METEUS (see Ta-
ble 1) which consists of a set of trilingual sentences,
in English, Spanish and Basque, as extracted from
weather forecast reports that had been published on
the Internet. Basque language is a minority lan-
guage, spoken in a small area of Europe and also
within some small American communities (such as
that in Boise, Idaho). In the Basque Country it has
an official status along with Spanish. However both
languages differs greatly in syntax and in semantics.
The differences in the size of the vocabulary (see
Table 1), for instance, are due to the agglutinative
nature of the Basque language.

With regard to the speech test, the input consisted
of the speech signal recorded by 36 speakers, each
one reading out 50 sentences from the test-set in Ta-
ble 1. That is, each sentence was read out by at least
three speakers. The input speech resulted in approx-
imately 3.50 hours of audio signal. Needless to say,
the application that we envisage has to be speaker-
independent if it is to be realistic.

Spanish Basque English

Tr
ai

ni
ng

Sentences 14,615
Different Sent. 7,225 7,523 6,634
Words 191,156 187,462 195,627
Vocabulary 702 1,147 498
Average Length 13.0 12.8 13.3

Te
st

Different Sent. 500
Words 8,706 8,274 9,150
Average Length 17.4 16.5 18.3
Perplexity (3grams) 4.8 6.7 5.8

Table 1: Main features of the METEUS corpus.

4.2 System evaluation

The experimental setup was as follows: the multi-
target SFST was learned from the training set in Ta-
ble 1 using the GIAMTI algorithm described in sec-
tion 1; then, the speech test was translated, and the
output provided by the system in each language was
compared to the corresponding reference sentence.
Additionally, two mono-target SFST were inferred
from the same training set with their outputs for the
aforementioned test to be taken as baseline.

4.2.1 Computational cost
The expected searching time and the amount of

memory that needs to be allocated for a given model
are two key parameters to bear in mind in speech-

input machine translation applications. These values
can be objectively measured based on the size and on
the average branching factor of the model displayed
in Table 2.

multi-target mono-target
S2B S2E

Nodes 52,074 35,034 20,148
Edges 163,146 115,526 69,690
Braching factor 3.30 3.13 3.46

Table 2: Features of multi-target model and the two
decoupled mono-target models (one for Spanish to
Basque translation, referred to as S2B, and the sec-
ond for Spanish to English, S2E).

Adding the states and the edges up for the two
mono-target SFSTs that take part in the decoupled
architecture (see Table 2), we conclude that the de-
coupled model needs a total of 185, 216 edges to be
allocated in memory, which represents an increment
of 13% in memory-space with respect to the multi-
target model.

On the other hand, the multi-target approach of-
fers a slightly smaller branching factor than each
mono-target approach. As a result, fewer paths have
to be explored with the multi-target approach than
with the decoupled one, which means that searching
for a translation can be faster. In fact, experimental
results in Table 3 show that the mono-target archi-
tecture works %11 more slowly than the multi-target
one.

multi-target mono-target
S2B S2E S2B+S2E

Time (s) 30,514 24,398 9,501 33,899

Table 3: Time needed to translate the speech-test
into two languages.

Summarizing, in terms of computational cost
(space and time), a multi-target SFST performs bet-
ter than the mono-target decoupled system.

4.2.2 Performance
So far, the capability of the systems have been as-

sessed in terms of time and spatial costs. However,
the quality of the translations they provide is, doubt-
less, the most relevant evaluation criterion. In order
to assess the performance of the system in a quan-
titative manner, the following evaluation parameters
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were computed for each scenario: bilingual evalua-
tion under study (BLEU), position independent er-
ror rate (PER) and word error rate (WER).

As can be derived from the Speech-input trans-
lation results shown in Table 4, slightly better re-
sults are obtained with the classical mono-target SF-
STs, compared with the multi-target approach. From
Spanish into English the improvement is around
3.4% but from Spanish into Basque, multi-target ap-
proach works better with an improvement of a 0.8%.

multi-target mono-target
S2B S2E S2B S2E

BLEU 39.5 59.0 39.2 61.1
PER 42.2 25.3 41.5 23.6
WER 51.5 33.9 50.5 31.9

Table 4: Speech-input translation results for Spanish
into Basque (S2B) and Spanish into English (S2E)
using a multi-target SFST or two mono-target SF-
STs.

The process of speech signal decoding is itself
introducing some errors. In an attempt to measure
these errors, the text transcription of the recognized
input signal was extracted and compared to the input
reference in terms of WER as shown in Table 5.

multi-target mono-target
S2B S2E

WER 10.7 9.3 9.1

Table 5: Spanish speech decoding results for the
multi-target SFST and the two mono target SFSTs.

5 Concluding remarks and further work

A fully embedded architecture that integrates the
acoustic model into the multi-target translation
model for multiple speech translation has been pro-
posed. Due to the finite-state nature of this model,
the speech translation engine is based on a Viterbi-
like algorithm. The most significant feature of this
approach is its ability to carry out both the recogni-
tion and the translation into multiple languages inte-
grated in a unique model.

In contrast to the classical decoupled systems,
multi-target SFSTs enable the translation from one
source language simultaneously into several target

languages with lower computational costs (in terms
of space and time) and comparable qualitative re-
sults.

In future work we intend to make a deeper study
on the performance of the multi-target system as the
amount of targets increase, since the amount of pa-
rameters to be estimated also increases.
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