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Abstract 

We study the use of rich syntax-based 
statistical models for generating gram-
matical case for the purpose of machine 
translation from a language which does 
not indicate case explicitly (English) to a 
language with a rich system of surface 
case markers (Japanese). We propose an 
extension of n-best re-ranking as a 
method of integrating such models into a 
statistical MT system and show that this 
method substantially outperforms stan-
dard n-best re-ranking. Our best perform-
ing model achieves a statistically signifi-
cant improvement over the baseline MT 
system according to the BLEU metric. 
Human evaluation also confirms the re-
sults. 

1 Introduction 

Generation of grammatical elements such as in-
flectional endings and case markers is an impor-
tant component technology for machine transla-
tion (MT). Statistical machine translation (SMT) 
systems, however, have not yet successfully in-
corporated components that generate grammati-
cal elements in the target language. Most state-
of-the-art SMT systems treat grammatical ele-
ments in exactly the same way as content words, 
and rely on general-purpose phrasal translations 
and target language models to generate these ele-
ments (e.g., Och and Ney, 2002; Koehn et al., 
2003; Quirk et al., 2005; Chiang, 2005; Galley et 
al., 2006). However, since these grammatical 
elements in the target language often correspond 
to long-range dependencies and/or do not have 
any words corresponding in the source, they may 
be difficult to model, and the output of an SMT 
system is often ungrammatical.  
 For example, Figure 1 shows an output from 
our baseline English-to-Japanese SMT system on 
a sentence from a computer domain. The SMT 
system, trained on this domain, produces a natu-
ral lexical translation for the English word patch 
as correction program, and translates replace 

into passive voice, which is more appropriate in 
Japanese.1 However, there is a problem in the 
case marker assignment: the accusative marker 
wo, which was output by the SMT system, is 
completely inappropriate when the main verb is 
passive. This type of mistake in case marker as-
signment is by no means isolated in our SMT 
system: a manual analysis showed that 16 out of 
100 translations had mistakes solely in the as-
signment of case markers. A better model of case 
assignment could therefore improve the quality 
of an SMT system significantly.  

S: The patch replaces the .dll file.  

O: 修正プログラムを.dllファイルが置き換えられます。 
    shuusei puroguramu-wo    .dll fairu-ga   okikae-raremasu 
    correction program-ACC dll file-NOM replace-PASS 

C: 修正プログラムで.dllファイルが置き換えられます。 
    shuusei puroguramu-de    .dll fairu-ga   okikae-raremasu 
    correction program-with dll file-NOM replace-PASS  

Figure 1: Example of SMT (S: source; O: output of 
MT; C: correct translation) 

 In this paper, we explore the use of a statisti-
cal model for case marker generation in  English-
to-Japanese SMT. Though we focus on the gen-
eration of case markers in this paper, there are 
many other surface grammatical phenomena that 
can be modeled in a similar way, so any SMT 
system dealing with morpho-syntactically diver-
gent language pairs may benefit from a similar 
approach to modeling grammatical elements. Our 
model uses a rich set of syntactic features of both 
the source (English) and the target (Japanese) 
sentences, using context which is broader than 
that utilized by existing SMT systems. We show 
that the use of such features results in very high 
case assignment quality and also leads to a nota-
ble improvement in MT quality.  

Previous work has discussed the building of 
special-purpose classifiers which generate gram-
matical elements such as prepositions (Hajič et al. 
2002), determiners (Knight and Chander, 1994) 
and case markers (Suzuki and Toutanova, 2006) 
with an eye toward improving MT output. How-

                                                
1 There is a strong tendency to avoid transitive sentences 
with an inanimate subject in Japanese.  
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ever, these components have not actually been 
integrated in an MT system. To our knowledge, 
this is the first work to integrate a grammatical 
element production model in an SMT system and 
to evaluate its impact in the context of end-to-
end MT.  
 A common approach of integrating new mod-
els with a statistical MT system is to add them as 
new feature functions which are used in decod-
ing or in models which re-rank n-best lists from 
the MT system (Och et al., 2004). In this paper 
we propose an extension of the n-best re-ranking 
approach, where we expand n-best candidate lists 
with multiple case assignment variations, and 
define new feature functions on this expanded 
candidate set. We show that expanding the n-best 
lists significantly outperforms standard n-best re-
ranking. We also show that integrating our case 
prediction model improves the quality of transla-
tion according to BLEU (Papineni et al., 2002) 
and human evaluation. 

2 Background 

In this section, we provide necessary background 
of the current work. 

2.1 Task of case marker prediction 

Our definition of the case marker prediction task 
follows Suzuki and Toutanova (2006). That is, 
we assume that we are given a source English 
sentence, and its translation in Japanese which 
does not include case markers. Our task is to pre-
dict all case markers in the Japanese sentence.   

We determine the location of case marker in-
sertion using the notion of bunsetsu. A bunsetsu 
consists of one content (head) word followed by 
any number of function words. We can therefore 
segment any sentence into a sequence of bun-
setsu by using a part-of-speech (POS) tagger. 

Once a sentence is segmented into bunsetsu, it 
is trivial to determine the location of case mark-
ers in a sentence: each bunsetsu can have at most 
one case marker, and the position of the case 
maker within a phrase is predictable, i.e., the 
rightmost position before any punctuation marks. 
The sentence in Figure 1 thus has the following 
bunsetsu analysis (denoted by square brackets), 
with the locations of potential case marker inser-
tion indicated by □:  

[修正'correction'□][プログラム'program'□][.dll□][ファイル'file'□][置き換えられます'replace-PASS'□。] 
For each of these positions, our task is to predict 
the case marker or to predict NONE, which means 
that the phrase does not have a case marker. 

The case markers we used for the prediction 
task are the same as those defined in Suzuki and 
Toutatnova (2006), and are summarized in Table 
1: in addition to the case markers in a strict sense, 
the topic marker wa is also included as well as 
the combination of a case marker plus the topic 
marker for the case markers with the column 
+wa checked in the table. In total, there are 18 
case markers to predict: ten simple case markers, 
the topic marker wa, and seven case+wa combi-
nations. The case prediction task is therefore a 
19-fold classification task: for each phrase, we 
assign one of the 18 case markers or NONE. 

2.2 Treelet translation system 

We constructed and evaluated our case predic-
tion model in the context of a treelet-based trans-
lation system, described in Quirk et al. (2005).2 
In this approach, translation is guided by treelet 
translation pairs, where a treelet is a connected 
subgraph of a dependency tree.  

A sentence is translated in the treelet system 
as follows. The input sentence is first parsed into 
a dependency structure, which is then partitioned 
into treelets, assuming a uniform probability dis-
tribution over all partitions. Each source treelet is 
then matched to a treelet translation pair, the col-
lection of which will form the target translation. 
The target language treelets are then joined to 
form a single tree, and the ordering of all the 
nodes is determined, using the method described 
in Quirk et al. (2005).  

Translations are scored according to a linear 
combination of feature functions:  

( ) ( )j j
j

score t f tλ= ∑  (1) 

                                                
2 Though this paper reports results in the context of a treelet 
system, the model is also applicable to other syntax-based 
or phrase-based SMT systems.  

case markers grammatical functions +wa が ga subject; object  を wo object; path  の no genitive; subject  に ni dative object, location ✓ から kara source ✓ と to quotative, reciprocal, as ✓ で de location,instrument, cause ✓ へ e goal, direction ✓ まで made goal (up to, until) ✓ より yori source, comparison target ✓ は wa Topic  

Table 1. Case markers to be predicted 
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where 
�

j are the model parameters and fj(t) is the 
value of the feature function j on the candidate t. 
There are ten feature functions in the treelet sys-
tem, including log-probabilities according to in-
verted and direct channel models estimated by 
relative frequency, lexical weighting channel 
models following Vogel et al. (2003), a trigram 
target language model, an order model, word 
count, phrase count, average phrase size func-
tions, and whole-sentence IBM Model 1 log-
probabilities in both directions (Och et al. 2004). 
The weights of these models are determined us-
ing the max-BLEU method described in Och 
(2003). As we describe in Section 4, the case 
prediction model is integrated into the system as 
an additional feature function.  

The treelet translation model is estimated us-
ing a parallel corpus. First, the corpus is word-
aligned using GIZA++ (Och and Ney, 2000); 
then the source sentences are parsed into a de-
pendency structure, and the dependency is pro-
jected onto the target side following the heuris-
tics described in Quirk et al. (2005). Figure 2 
shows an example of an aligned sentence pair: on 
the source (English) side, POS tags and word 
dependency structure are assigned (solid arcs); 
the word alignments between English and Japa-
nese words are indicated by the dotted lines. On 
the target (Japanese) side, projected word de-
pendencies (solid arcs) are available. Additional 
annotations in Figure 2, namely the POS tags and 
the bunsetsu dependency structure (bold arcs) on 
the target side, are derived from the treelet sys-
tem to be used for building a case prediction 
model, which we describe in Section 3.  

2.3 Data 

All experiments reported in this paper are run 
using parallel data from a technical (computer) 
domain. We used two main data sets: train-500K, 
consisting of 500K sentence pairs which we used 
for training the baseline treelet system as well as 

the case prediction model, and a disjoint set of 
three data sets, lambda-1K, dev-1K and test-2K, 
which are used to integrate and evaluate the case 
prediction model in an end-to-end MT scenario. 
Some characteristics of these data sets are given 
in Table 2. We will refer to this table as we de-
scribe our experiments in later sections.  

# sent 
pairs 

# of words  
(average sent length in words) 

data set 

 English Japanese 
train-500K 500K 7,909,198 

(15.81) 
9,379,240 
(18.75) 

lambda-1K 1,000 15,219(15.2) 20,660 (20.7) 
dev-1K 1,000 15,397(15.4) 21,280 (21.3) 
test-2K 2,000 30,198(15.1) 41,269 (20.6) 

Table 2: Data set characteristics 

3 Statistical Models for Case Prediction 
in MT 

3.1 Case prediction model  

Our model of case marker prediction closely fol-
lows our previous work of case prediction in a 
non-MT context (Suzuki and Toutanova, 2006). 
The model is a multi-class log-linear (maximum 
entropy) classifier using 19 classes (18 case 
markers and NONE). It assigns a probability dis-
tribution over case marker assignments given a 
source English sentence, all non-case marker 
words of a candidate Japanese translation, and 
additional annotation information. Let t denote a 
Japanese translation, s a corresponding source 
sentence, and A additional annotation informa-
tion such as alignment, dependency structure, 
and POS tags (such as shown in Figure 2). Let 
rest(t) denote the sequence of words in t exclud-
ing all case markers, and case(t) a case marking 
assignment for all phrases in t. Our case marking 
model estimates the probability of a case as-
signment given all other information:  

),),(|)(( AstresttcasePcase
 

The probability of a complete case assignment is 
a product over all phrases of the probability of 
the case marker of the phrase given all context 
features used by the model. Our model assumes 
that the case markers in a sentence are independ-
ent of each other given the input features. This 
independence assumption may seem strong, but 
the results presented in our previous work (Su-
zuki and Toutanova, 2006) showed that a joint 
model did not result in large improvements over 
a local one in predicting case markers in a non-
MT context. 

 
Figure 2. Aligned English-Japanese sentence pair 
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3.2 Model features and feature selection  

The features of our model are similar to the ones 
described in Suzuki and Toutanova (2006). The 
main difference is that in the current model we 
applied a feature selection and induction algo-
rithm to determine the most useful features and 
feature combinations. This is important for un-
derstanding what sources of information are im-
portant for predicting grammatical elements, but 
are currently absent from SMT systems. We 
used 490K sentence pairs for training the case 
prediction model, which is a subset of the train-
500K set of Table 2. We divided the remaining 
10K sentences for feature selection (5K-feat) and 
for evaluating the case prediction models on ref-
erence translations (5K-test, discussed in Section 
3.3). The paired data is annotated using the 
treelet translation system: as shown in Figure 2, 
we have source and target word dependency 
structure, source language POS and word align-
ment directly from the aligned treelet structure. 
Additionally, we used a POS tagger of Japanese 
to assign POS to the target sentence as well as to 
parse the sentence into bunsetsu (indicated by 
brackets in Figure 2), using the method described 
in Section 2.1. We then compute bunsetsu de-
pendency structure on the target side (indicated 
by bold arcs in Figure 2) based on the word de-
pendency structure projected from English. We 
apply this procedure to annotate a paired corpus 
(in which case the Japanese sentence is a refer-
ence translation) as well as translations generated 
by the SMT system (which may potentially be 
ill-formed).  

We derived a large set of possible features 
from these annotations. The features are repre-
sented as feature templates, such as "Headword 
POS=X", which generate a set of binary features 
corresponding to different instantiations of the 
template, such as "Headword POS=NOUN". We 
applied an automatic feature selection and induc-
tion algorithm to the base set of templates. 

The feature selection algorithm considers the 
original templates as well as arbitrary (bigram 
and trigram) conjunctions of these templates. 
The algorithm performs forward stepwise feature 
selection, choosing templates which result in the 
highest increase in model accuracy on the 5K-
feat set mentioned above. The algorithm is simi-
lar to the one described in McCallum (2003).  

The application of this feature selection pro-
cedure gave us 17 templates, some of which are 
shown in Table 3, along with example instantia-
tions for the phrase headed by saabisu ‘service’ 

from Figure 2. Conjunctions are indicated by &. 
Note that many features that refer to POS and 
syntactic (parent) information are selected, on 
both the target and source sides. We also note 
that the context required by these features is 
more extensive than what is usually available 
during decoding in an SMT system due to a limit 
imposed on the treelet or phrase size. For exam-
ple, our model uses word lemma and POS tags of 
up to six words (previous word, next word, word 
in position +2, head word, previous head word 
and parent word), which covers more context 
than the treelet system we used (the system im-
poses the treelet size limit of four words). This 
means that the case model can make use of much 
richer information from both the source and tar-
get than the baseline MT system. Furthermore, 
our model makes better use of the context by 
combining the contributions of multiple sources 
of knowledge using a maximum entropy model, 
rather than using the relative frequency estimates 
with a very limited amount of smoothing, which 
are used by most state-of-the art SMT systems. 

3.3 Performance on reference translations 

Before discussing the integration of the case pre-
diction model with the MT system, we present an 
evaluation of the model on the task of predicting 
the case assignment of reference translations. 
This performance constitutes an upper bound on 
the model’s performance in MT, because in ref-
erence translations, the word choice and the word 
order are perfect. 
 Table 4 summarizes the results of the refer-
ence experiments on the 5K-test set using two 
metrics: accuracy, which denotes the percentage 
of phrases for which the respective model 
guessed the case marker correctly, and BLEU 
score against the reference translation. For com-

Features Example 
Words in position  –1 and +2 kono,moodo 

Headword & previous headword saabisu&kono 
Parent word kaishi 
Aligned word  service 
Parent of word aligned to headword started 
Next word POS NOUN 
Next word & next word POS seefu&NN 
Headword POS NOUN 
Parent headword POS VN 
Aligned to parent word POS & next word 
POS & prev word POS 

VERB&NN&an
d 

Parent POS of word aligned to headword VERB 
Aligned word POS & headword POS & 
prev word POS 

NN&NN&ADN 

POS of word aligned to headword NOUN 

Table 3: Features for the case prediction model 
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parison, we also include results from two base-
lines: a frequency-based baseline, which always 
assigns the most likely class (NONE), and a lan-
guage model (LM) baseline, which is one of the 
standard methods of generating grammatical 
elements in MT. We trained a word-trigram LM 
using the CMU toolkit (Clarkson and Rosenfeld, 
1997) on the same 490K sentences which we 
used for training the case prediction model. 

Table 4 shows that our model performs sub-
stantially better than both baselines: the accuracy 
of the frequency-based baseline is 59%, and an 
LM-based model improves it to 87.2%. In con-
trast, our model achieves an accuracy of 95%, 
which is a 60% error reduction over the LM 
baseline. It is also interesting to note that as the 
accuracy goes up, so does the BLEU score.   
 These results show that our best model can 
very effectively predict case markers when the 
input to the model is clean, i.e., when the input 
has correct words in correct order. Next, we see 
the impact of applying this model to improve MT 
output.  

4 Integrating Case Prediction Models in 
MT 

In the end-to-end MT scenario, we integrate our 
case assignment model with the SMT system and 
evaluate its contribution to the final MT output.  
 As a method of integration with the MT sys-
tem, we chose an n-best re-ranking approach, 
where the baseline MT system is left unchanged 
and additional models are integrated in the form 
of feature functions via re-ranking of n-best lists 
from the system. Such an approach has been 
taken by Och et al. (2004) for integrating sophis-
ticated syntax-informed models in a phrase-
based SMT system. We also chose this approach 
for ease of implementation: as discussed in Sec-
tion 3.2, the features we use in our case model 
extend over long distance, and are not readily 
available during decoding. Though a tighter inte-
gration with the decoding process is certainly 
worth exploring in the future, we have taken an 
approach here that allows fast experimentation.  
 Within the space of n-best re-ranking, we 
have considered two variations: the standard n-

best re-ranking method, and our significantly 
better performing extension. These are now dis-
cussed in turn.  

4.1 Method 1: Standard n-best re-ranking 

This method is a straightforward application of 
the n-best re-ranking approach described in Och 
et al. (2004). As described in Section 2.2, our 
baseline SMT system is a linear model which 
weighs the values of ten feature functions. To 
integrate a case prediction model, we simply add 
it to the linear model as an 11th feature function, 
whose value is the log-probability of the case 
assignment of the candidate hypothesis t accord-
ing to our model. The weights of all feature func-
tions are then re-estimated using max-BLEU 
training on the n-best list of the lambda-1K set in 
Table 2. As we show in Section 5, this re-ranking 
method did not result in good performance.  

4.2 Method 2: Re-ranking of expanded 
candidate lists 

A drawback of the previous method is that in an 
n-best list, there may not be sufficiently many 
case assignment variations of existing hypothe-
ses. If this is the case, the model cannot be effec-
tive in choosing a hypothesis with a good case 
assignment. We performed a simple experiment 
to test this. We took the first (best) hypothesis t 
from the MT system and generated the top 40 
case variations t’  of t, according to the case as-
signment model. These variations differ from t 
only in their case markers. We wanted to see 
what fraction of these new hypotheses t’  oc-
curred in a 1000-best list of the MT system. In 
the dev-1K set of Table 2, the fraction of new 
case variations of the first hypothesis occurring 
in the 1000-best list of hypotheses was 0.023. 
This means that only less than one (2.3% of 40 = 
0.92) case variant of the first hypothesis is ex-
pected to be found in the 1000-best list, indicat-
ing that even an n-best list for a reasonably large 
n (such as 1000) does not contain enough candi-
dates varying in case marker assignment. 
 In order to allow more case marking candi-
dates to be considered, we propose the following 
method to expand the candidate translation list: 
for each translation t in the n-best list of the base-
line SMT system, we also consider case assign-
ment variations of t. For simplicity, we chose to 
consider the top k case assignment variations of 
each hypothesis according to our case model,3 
for 1 ≤ k ≤ 40.4  

                                                
3 From a computational standpoint, it is non-trivial to con-

Model ACC BLEU 
Baseline (frequency) 58.9 40.0 
Baseline (490K LM) 87.2 83.6 
Log-linear model 94.9 93.0 

Table 4: Accuracy (%) and BLEU score for case 
prediction when given correct context (reference 

translations) on the 5K-test set 
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  After we expand the translation candidate set, 
we compute feature functions for all candidates 
and train a linear model which chooses from this 
larger set. While some features (e.g., word count 
feature) are easy to recompute for a new candi-
date, other features (e.g., treelet phrase transla-
tion probability) are difficult to recompute. We 
have chosen to recompute only four features of 
the baseline model:  the language model feature, 
the word count feature, and the direct and reverse 
whole-sentence IBM Model 1 features,  assum-
ing that the values of the other baseline model 
features for a casing variation t’  of t are the same 
as their values for t. In addition, we added the 
following four feature functions, specifically 
meant to capture the extent to which the newly 
generated case marking variations differ from the 
original baseline system hypotheses they are de-
rived from: 

� Generated: a binary feature with a value of 0 
for original baseline system candidates, and a 
value of 1 for newly generated candidates. 

� Number NONE→non-NONE: the count of case 
markers changed from NONE to non-NONE 
with respect to an original translation candi-
date. 

� Number non-NONE→NONE: the count of case 
markers changed from non-NONE to NONE. 

� Number non-NONE→non-NONE: the count of 
case markers changed from non-NONE to an-
other non-NONE case marker. 

Note that these newly defined features all have a 
value of 0 for original baseline system candidates 
(i.e., when k=0) and therefore would have no 
effect in Method 1. Therefore, the only differ-
ence between our two methods of integration is 
the presence or absence of case-expanded candi-
date translations. 

5 Experiments and Results  

5.1 Data and settings 

For our end-to-end MT experiments, we used 
three datasets in Table 2 that are disjoint from 
the train-500K data set. They consist of source 
English sentences and their top 1000 candidate 
translations produced by the baseline SMT sys-
                                                                       
sider all possible case assignment variations of a hypothesis: 
even though the case assignment score for a sentence is 
locally decomposable, there are still global dependencies in 
the linear model from Equation (1) due to the reverse 
whole-sentence IBM model 1 score used as a feature func-
tion.  
4 Our results indicate that additional case variations would 
not be helpful. 

tem. These datasets are the lambda-1K set for 
training the weights � of the linear model from 
Equation (1), the dev-1K set for model selection, 
and the test-2K set for final testing including 
human evaluation. 

5.2 Results  

The results for the end-to-end experiments on the 
dev-1K set are summarized in Table 5. The table 
is divided into four sections. The first section 
(row) shows the BLEU score of the baseline 
SMT system, which is equivalent to the 1-best 
re-ranking scenario with no case expansion. The 
BLEU score for the baseline was 37.99. In the 
table, we also show the oracle BLEU scores for 
each model, which are computed by greedily se-
lecting the translation in the candidate list with 
the highest BLEU score.5 

The second section of Table 5 corresponds to 
the results obtained by Method 1, i.e., the stan-
dard n-best re-ranking, for n = 20, 100, and 1000. 
Even though the oracle scores improve as n is 
increased, the actual performance improves only 
slightly. These results show that the strategy of 
only including the new information as features in 
a standard n-best re-ranking scenario does not 
lead to an improvement over the baseline. 
 In contrast, Method 2 obtains notable im-
provements over the baseline. Recall that we ex-
pand the n-best SMT candidates with their k-best 
case marking variations in this method, and re-

                                                
5 A modified version of BLEU was used to compute sen-
tence-level BLEU in order to select the best hypothesis per 
sentence. The table shows corpus-level BLEU on the result-
ing set of translations. 

Models #MT 
hypothe

ses 

#case  
expan-
sions 

BLEU Oracle 
BLEU 

Baseline 1 0 37.99 37.99 
 20 0 37.83 41.79 
Method 1 100 0 38.02 42.79 
 1000 0 38.08 43.14 
 1 1 38.18 38.75 
Method 2 1 10 38.42 40.51 
 1 20 38.54 41.15 
 1 40 38.41 41.74 
 20 10 38.91 45.32 
 20 20 38.72 45.94 
Method 2 20 40 38.78 46.56 
 100 10 38.73 46.87 
 100 20 38.64 47.47 
 100 40 38.74 47.96 

Table 5. Results of end-to-end experiments on the 
dev-1K set 
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train the model parameters on the resulting can-
didate lists. For the values n=1 and k=1 (which 
we refer to as 1best-1case), we observe a small 
BLEU gain of .19 over the baseline. Even though 
this is not a big improvement, it is still better 
than the improvement of standard n-best re-
ranking with a 1000-best list. By considering 
more case marker variations (k = 10, 20 and 40), 
we are able to gain about a half BLEU point over 
the baseline. The fact that using more case varia-
tions performs better than using only the best 
case assignment candidate proposed by the case 
model suggests that the proposed approach, 
which integrates the case prediction model as a 
feature function and retrains the weights of the 
linear model, works better than using the case 
prediction model as a post-processor of the MT 
output.  

The last section of the table explores combi-
nations of the values for n and k. Considering 20 
best SMT candidates and their top 10 case varia-
tions gave the highest BLEU score on the dev-
1K set of 38.91, which is an 0.92 BLEU points 
improvement over the baseline. Considering 
more case variations (20 or 40), and more SMT 
candidates (100) resulted in a similar but slightly 
lower performance in BLEU. This is presumably 
because the case model does affect the choice of 
content words as well, but this influence is lim-
ited and can be best captured when using a small 
number (n=20) of baseline system candidates.  

Based on these results on the dev-1K set, we 
chose the best model (i.e., 20-best-10case) and 
evaluated it on the test-2K set against the base-
line. Using the pair-wise statistical test design 
described in Collins et al. (2005), the BLEU im-
provement (35.53 vs. 36.29) was statistically 
significant (p < .01) according to the Wilcoxon 
signed-rank test. 

5.3 Human evaluation 

These results demonstrate that the proposed 
model is effective at improving the translation 
quality according to the BLEU score. In this sec-
tion, we report the results of human evaluation to 
ensure that the improvements in BLEU lead to 
better translations according to human evaluators. 
 We performed human evaluation on the 
20best-10case (n=20, k=10) and 1best-40case 
(n=1, k=40) models against the baseline using 
our final test set, the test-2K data. The perform-
ance in BLEU of these models on the full test-2K 
data was 35.53 for the baseline, 36.09 for the 
1best-40case model, and 36.29 for the 20best-
10case model, respectively. 

In our human evaluation, two annotators were 
asked to evaluate a random set of 100 sentences 
for which the models being compared produced 
different translations. The judges were asked to 
compare two translations, the baseline output 
from the original SMT system and the output 
chosen by the system augmented with the case 
marker generation component. Each judge was 
asked to run two separate evaluations along dif-
ferent evaluation criteria. In the evaluation of 
fluency, the judges were asked to decide which 
translation is more readable/grammatical, ignor-
ing the reference translation. In the evaluation of 
adequacy, they were asked to judge which trans-
lation more correctly reflects the meaning of the 
reference translation. In either setting, they were 
not given the source sentence.  
 Table 6 summarizes the results of the evalua-
tion of the 20best-10case model. The table shows 
the results along two evaluation criteria sepa-
rately, fluency on the left and adequacy on the 
right. The evaluation results of Annotator #1 are 
shown in the columns, while those of Annotator 
#2 are in the rows. Each grid in the table shows 
the number of sentences the annotators classified 
as the proposed system output better (S), the 
baseline system better (B) or the translations are 
of equal quality (E). Along the diagonal (in bold-
face) are the judgments that were agreed on by 
the two annotators: both annotators judged the 
output of the proposed system to be more fluent 
in 27 translations, less fluent in 9 translations; 
they judged that our system output was more 
adequate in 17 translations and less adequate in 9 
translations. Our system output was thus judged 
better under both criteria, though according to a 
sign test, the improvement is statistically signifi-
cant (p < .01) in fluency, but not in adequacy.  

One of the reasons for this inconclusive result 
is that human evaluation may be very difficult 
and can be unreliable when evaluating very dif-
ferent translation candidates, which happens of-
ten when comparing the results of models that 
consider n-best candidates where n>1, as is the 
case with the 20best-10case model. In Table 6, 

Fluency Adequacy 
Annotator #1 Annotator #1 

 

S B E S B E 
S 27 1 8 17 0 9 
B 1 9 16 0 9 12 

Anno- 
tator 
#2 E 7 4 27 9 8 36 

Table 6. Results of human evaluation comparing 
20best-10case vs. baseline. S: proposed system is bet-

ter; B: baseline is better; E: of equal quality  
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we can see that the raw agreement rate between 
the two annotators (i.e., number of agreed judg-
ments over all judgments) is only 63% (27+9+27 
/100) in fluency and 62% (17+9+36/100) in ade-
quacy. We therefore performed an additional 
human evaluation where translations being com-
pared differ only in case markers: the baseline vs. 
the 1best-40case model output. The results are 
shown in Table 7.  

This evaluation has a higher rate of agreement, 
74% for fluency and 71% for adequacy, indicat-
ing that comparing two translations that differ 
only minimally (i.e., in case markers) is more 
reliable. The improvements achieved by our 
model are statistically significant in both fluency 
and adequacy according to a sign test; in particu-
lar, it is remarkable that on 42 sentences, the 
judges agreed that our system was better in flu-
ency, and there were no sentences on which the 
judges agreed that our system caused degradation. 
This means that the proposed system, when 
choosing among candidates differing only in case 
markers, can improve the quality of MT output 
in an extremely precise manner, i.e. making im-
provements without causing degradations. 

6 Conclusion 

We have described a method of using a case 
marker generation model to improve the quality 
of English-to-Japanese MT output. We have 
shown that the use of such a model contributes to 
improving MT output, both in BLEU and human 
evaluation. We have also proposed an extension 
of n-best re-ranking which significantly outper-
formed standard n-best re-ranking. This method 
should be generally applicable to integrating 
models which target specific phenomena in 
translation, and for which an extremely large n-
best list would be needed to cover enough vari-
ants of the phenomena in question. 

Our model improves the quality of generated 
case markers in an extremely precise manner. 
We believe this result is significant, as there are 
many phenomena in the target language of MT 
that may be improved by using special-purpose 
models, including the generation of articles, aux-

iliaries, inflection and agreement. We plan to 
extend and generalize the current approach to 
cover these phenomena in morphologically com-
plex languages in general in the future. 
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Fluency Adequacy 
Annotator #1 Annotator #1 

 

S B E S B E 
S 42 0 9 30 1 9 
B 1 0 7 0 9 7 

Anno- 
tator 
#2 E 7 2 32 9 3 32 

Table 7. Results of human evaluation comparing 
1best-40case vs. baseline  
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