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Abstract

We present a novel machine translation
framework based on kernel regression
techniques. In our model, the translation
task is viewed as a string-to-string map-
ping, for which a regression type learning
is employed with both the source and the
target sentences embedded into their ker-
nel induced feature spaces. We report the
experiments on a French-English transla-
tion task showing encouraging results.

1 Introduction

Fig. 1 illustrates an example of phrase alignment
for statistical machine translation (SMT). A rough
linear relation is shown by the co-occurences of
phrases in bilingual sentence pairs, which motivates
us to introduce a novel study on the SMT task:

If we define the feature spaceHx of our source
languageX as all its possible phrases (i.e. informa-
tive blended wordn-grams), and define the mapping
Φx : X → Hx, then a sentencex ∈ X can be ex-
pressed by its feature vectorΦx(x) ∈ Hx. Each
component ofΦx(x) is indexed by a phrase with the
value being the frequency of it inx. The definition
of the feature spaceHy of our target languageY can
be made in a similar way, with corresponding map-
ping Φy : Y → Hy. Now in the machine translation
task, givenS = {(xi, yi) : xi ∈ X , yi ∈ Y, i =
1, . . . ,m}, a set of sample sentence pairs whereyi

is the translation ofxi, we are trying to learnW a
matrix represented linear operator, such that:

Φy(y) = f(x) = WΦx(x) (1)
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Figure 1: Phrase alignment in SMT

to predict the translationy for a new sentencex.
Comparing with traditional methods, this model

gives us a theoretical framework to capture higher-
dimensional dependencies within the sentences. To
solve the multi-output regression problem, we inves-
tigate two models, least squares regression (LSR)
similar to the technique presented in (Cortes et al.,
2005), and maximum margin regression (MMR) in-
troduced in (Szedmak et al., 2006).

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of the regression models.
Section 3 details the solution to the pre-image prob-
lem. We report the experimental results in Section
4, with discussions in Section 5.

2 Kernel Regression with Vector Outputs

2.1 Kernel Induced Feature Space

In the practical learning process, only the inner prod-
ucts of the feature vectors are needed (see Section
2.2, 2.3 and 3), so we can perform the so-called
kernel trick to avoid dealing with the very high-
dimensional feature vectors explicitly. That is, for
x, z ∈ X , a kernel function is defined as:

κx(x, z) = 〈Φx(x),Φx(z)〉 = Φx(x)⊤Φx(z) (2)
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Similarly, a kernel functionκy(·, ·) is defined inHy.
In our case, the blendedn-spectrum string ker-

nel (Lodhi et al., 2002) that compares two strings
by counting how many (contiguous) substrings of
length from 1 up ton they have in common, is a good
choice for the kernel function to induce our feature
spacesHx andHy implicitly, even though it brings
in some uninformative features (word n-grams) as
well, when compared to our original definition.

2.2 Least Squares Regression

A basic method to solve the problem in Eq. 1 is least
squares regression that seeks the matrixW mini-
mizing the squared loss inHy on the training setS:

min ‖WMx −My‖
2
F (3)

where Mx = [Φx(x1), ...,Φx(xm)], My =
[Φy(y1), ...,Φy(ym)], and‖ · ‖F denotes the Frobe-
nius norm.

Differentiating the expression and setting it to
zero gives:

2WMxM
⊤
x − 2MyM

⊤
x = 0

⇒ W = MyK
−1
x M

⊤
x (4)

whereKx = M
⊤
x Mx = (κx(xi, xj)1≤i,j≤m) is the

Gram matrix.

2.3 Maximum Margin Regression

An alternative solution to our regression learn-
ing problem is proposed in (Szedmak et al.,
2006), called maximum margin regression. If L2-
normalized feature vectors are used in Eq. 1, de-
noted byΦ̄x(·) andΦ̄y(·), MMR solves the follow-
ing optimization:

min
1

2
‖W‖2

F + C

m∑

i=1

ξi (5)

s.t. 〈Φ̄y(yi),WΦ̄x(xi)〉Hy
≥ 1− ξi,

ξi > 0, i = 1, . . . ,m.

whereC > 0 is the regularization coefficient, and
ξi are the slack variables. The Lagrange dual form
with dual variablesαi gives:

min

m∑

i,j=1

αiαj κ̄x(xi, xj)κ̄y(yi, yj)−

m∑

i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m. (6)

where κ̄x(·, ·) and κ̄y(·, ·) denote the kernel func-
tions associated to the respective normalized feature
vectors.

This dual problem can be solved efficiently with
a perceptron algorithm based on an incremental
subgradient method, of which the bounds on the
complexity and achievable margin can be found in
(Szedmak et al., 2006).

Then according to Karush-Kuhn-Tucker theory,
W is expressed as:

W =

m∑

i=1

αiΦ̄y(yi)Φ̄x(xi)
⊤ (7)

In practice, MMR works better when the distribu-
tion of the training points are symmetrical. So we
center the data before normalizing them. IfΦSx

=
1
m

∑m
i=1 Φx(xi) is the centre of mass of the source

sentence sample set{xi} in the feature space, the
new feature map is given bŷΦx(·) = Φx(·) − ΦSx

.
The similar operation is performed onΦy(·) to ob-
tain Φ̂y(·). Then the L2-normalizations of̂Φx(·) and
Φ̂y(·) yield our final feature vectors̄Φx(·) andΦ̄y(·).

3 Pre-image Solution

To find the pre-image sentencey = f−1(x) can be
achieved by seekingyt that has the minimum loss
between its feature vectorΦy(yt) and our prediction
f(x). That is (Eq. 8: LSR, Eq. 9: MMR):

yt = arg min
y∈Y(x)

‖WΦx(x)− Φy(y)‖2

= arg min
y∈Y(x)

κy(y, y)− 2ky(y)K−1
x kx(x) (8)

yt = arg min
y∈Y(x)

1− 〈Φ̄y(y),WΦ̄x(x)〉Hy

= arg max
y∈Y(x)

m∑

i=1

αiκ̄y(yi, y)κ̄x(xi, x) (9)

whereY(x) ⊂ Y is a finite set covering all po-
tential translations for the given source sentence
x, and kx(·) = (κx(·, xi)1≤i≤m) and ky(·) =
(κy(·, yi)1≤i≤m) arem× 1 column matrices.

A properY(x) can be generated according to a
lexicon that contains possible translations for every
component (word or phrase) inx. But the size of it
will grow exponentially with the length ofx, which
poses implementation problem for a decoding algo-
rithm.
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In earlier systems, several heuristic search meth-
ods were developed, of which a typical example
is Koehn (2004)’s beam search decoder for phrase-
based models. However, in our case, because of the
κy(y, y) item in Eq. 8 and the normalization opera-
tion in MMR, neither the expression in Eq. 8 nor
the one in Eq. 9 can be decomposed into a sum
of subfunctions each involving feature components
in a local area only. It means we cannot estimate
exactly how well a part of the source sentence is
translated, until we obtain a translation for the entire
sentence, which prevents us doing a straightforward
beam search similar to (Koehn, 2004).

To simplify the situation, we restrict the reorder-
ing (distortion) of phrases that yield the output sen-
tences by only allowing adjacent phrases to ex-
change their positions. (The discussion of this strat-
egy can be found in (Tillmann, 2004).) We usex[i:j]

andy[i:j] to denote the substrings ofx andy that be-
gin with theith word and end with thejth. Now, if
we go back to the implementation of a beam search,
the current distortion restriction guarantees that in
each expansion of the search states (hypotheses) we
havex[1:lx] translated to ay[1:ly], either like state (a)
or like state (b) in Fig. 2, wherelx is the number of
words translated in the source sentence, andly is the
number of words obtained in the translation.

We assume that ify is a good translation ofx,
theny[1:ly] is a good translation ofx[1:lx] as well. So
we can expect that the squared loss‖WΦx(x[1:lx])−
Φy(y[1:ly])‖

2 in the LSR is small, or the inner prod-
uct 〈Φ̄y(y[1:ly]),WΦ̄x(x[1:lx])〉Hy

in the MMR is
large, for the hypothesis yielding a good translation.
According to Eq. 8 and Eq. 9, the hypotheses in the
search stacks can thus be reranked with the follow-
ing score functions (Eq. 10: LSR, Eq. 11: MMR):

Score(x[1:lx], y[1:ly]) = (10)

κy(y[1:ly], y[1:ly])− 2ky(y[1:ly])K
−1
x kx(x[1:lx])

Score(x[1:lx], y[1:ly]) =
m∑

i=1

αiκ̄y(yi, y[1:ly])κ̄x(xi, x[1:lx]) (11)

Therefore, to solve the pre-image problem, we
just employ the same beam search algorithm as
(Koehn, 2004), except we limit the derivation of new
hypotheses with the distortion restriction mentioned

nous revenous aux questions

we return to questions

marquées …(a)

(b)

marked

…nous revenous aux questions

we return to questions

marquées

Figure 2: Search states with the limited distortion.

above. However, our score functions will bring
more runtime complexities when compared with tra-
ditional probabilistic methods. The time complexity
of a naive implementation of the blendedn-spectrum
string kernel between two sentencessi and sj is
O(n|si||sj|), where|·| denotes the length of the sen-
tence. So the score function in Eq. 11 results in an
average runtime complexity ofO(mnlyl), wherel is
the average length of the sentencesyi in the training
set. Note herēκx(x[1:lx], xi) can be pre-computed
for lx from 1 to |x| before the beam search, which
calls forO(m|x|) space. The average runtime com-
plexity of the score function in Eq. 10 will be the
same if we pre-computeK−1

x kx(x[1:lx]).

4 Experimental Results

4.1 Resource Description

Baseline System To compare with previous work,
we take Pharaoh (Koehn, 2004) as a baseline system,
with its default settings (translation table size 10,
beam size 100). We train a trigram language model
with the SRILM toolkit (Stocke, 2002). Whilst, the
parameters for the maximum entropy model are de-
veloped based on the minimum error rate training
method (Och, 2003).

In the following experiments, to facilitate com-
parison, each time we train our regression models
and the language model and translation model for
Pharaoh on a common corpus, and use the same
phrase translation table as Pharaoh’s to decode our
systems. According to our preliminary experiments,
with the beam size of 100, the search errors of our
systems can be limited within 1.5%.

Corpora To evaluate our models, we randomly
take 12,000 sentences from the French-English por-
tion of the 1996–2003 Europarl corpus (Koehn,
2005) for scaling-up training, 300 for test (Test), and
300 for the development of Pharaoh (Dev). Some
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Vocabulary Words Perplexity
Fr En Fr En Dev Test

4k 5084 4039 43k 39k 32.25 31.92
6k 6426 5058 64k 59k 30.81 29.03
8k 7377 5716 85k 79k 29.91 28.94
10k 8252 6339 106k 98k 27.55 27.09
12k 9006 6861 127k 118k 27.19 26.41

Table 1: Statistics of the corpora.

characteristics of the corpora are summarized in Ta-
ble 1.

4.2 Results

Based on the 4k training corpus, we test the per-
formance of the blendedn-spectrum string kernel in
LSR and MMR using BLEU score, with n increas-
ing from 2 to 7. Fig. 3 shows the results. It can be
found that the performance becomes stable whenn
reaches a certain value. Finally, we choose the 3-
spectrum for LSR, and the 5-spectrum for MMR.

Then we scale up the training set, and compare the
performance of our models with Pharaoh in Fig. 4.
We can see that the LSR model performs almost as
well as Pharaoh, whose differences of BLEU score
are within 0.5% when the training set is larger than
6k. But MMR model performs worse than the base-
line. With the training set of 12k, it is outperformed
by Pharaoh by 3.5%.

5 Discussions

Although at this stage the main contribution is
still conceptual, the capability of our approach to
be applied to machine translation is still demon-
strated. Comparable performance to previous work
is achieved by the LSR model.

But a main problem we face is to scale-up the
training set, as in practice the training set for SMT
will be much larger than several thousand sentences.
A method to speed up the training is proposed in
(Cortes et al., 2005). By approximating the Gram
matrix with a n × m (n ≪ m) low-rank matrix,
the time complexity of the matrix inversion opera-
tion can be reduced fromO(m3) to O(n2m). But
the space complexity ofO(nm) in their algorithm is
still too expensive for SMT tasks. Subset selection
techniques could give a solution to this problem, of
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Figure 3: BLEU(%) versusn-spectrum
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Figure 4: BLEU(%) versus training set size

which we will leave the further exploration to future
work.
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