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Abstract

We introduce alignment models for Machine Trans-
lation that take into account the context of a source
word when determining its translation. Since the use
of these contexts alone causes data sparsity prob-
lems, we develop a decision tree algorithm for clus-
tering the contexts based on optimisation of the
EM auxiliary function. We show that our context-
dependent models lead to an improvement in align-
ment quality, and an increase in translation quality
when the alignments are used in Arabic-English and
Chinese-English translation.

1 Introduction
Alignment modelling for Statistical Machine Translation
(SMT) is the task of determining translational correspon-
dences between the words in pairs of sentences in parallel
text. Given a source language word sequence f J1 and a
target language word sequence eI1, we model the transla-
tion probability as P(eI1|fJ1 ) and introduce a hidden vari-
able aI1 representing a mapping from the target word po-
sitions to source word positions such that ei is aligned to
fai . Then P(eI1|f j1 ) =

∑
aI1

P(eI1, a
I
1|f j1 ) (Brown et al.,

1993).
Previous work on statistical alignment modelling has

not taken into account the source word context when de-
termining translations of that word. It is intuitive that a
word in one context, with a particular part-of-speech and
particular words surrounding it, may translate differently
when in a different context. We aim to take advantage
of this information to provide a better estimate of the
word’s translation. The challenge of incorporating con-
text information is maintaining computational tractability
of estimation and alignment, and we develop algorithms
to overcome this.

The development of efficient estimation procedures
for context-dependent acoustic models revolutionised the
field of Automatic Speech Recognition (ASR) (Young et

al., 1994). Clustering is used extensively for improv-
ing parameter estimation of triphone (and higher order)
acoustic models, enabling robust estimation of param-
eters and reducing the computation required for recog-
nition. Kannan et al. (1994) introduce a binary tree-
growing procedure for clustering Gaussian models for
triphone contexts based on the value of a likelihood ra-
tio. We adopt a similar approach to estimate context-
dependent translation probabilities.

We focus on alignment with IBM Model 1 and HMMs.
HMMs are commonly used to generate alignments from
which state of the art SMT systems are built. Model 1 is
used as an intermediate step in the creation of more pow-
erful alignment models, such as HMMs and further IBM
models. In addition, it is used in SMT as a feature in Min-
imum Error Training (Och et al., 2004) and for rescor-
ing lattices of translation hypotheses (Blackwood et al.,
2008). It is also used for lexically-weighted phrase ex-
traction (Costa-jussà and Fonollosa, 2005) and sentence
segmentation of parallel text (Deng et al., 2007) prior to
machine translation.

1.1 Overview
We first develop an extension to Model 1 that allows the
use of arbitrary context information about a source word
to estimate context-dependent word-to-word translation
probabilities. Since there is insufficient training data to
accurately estimate translation probabilities for less fre-
quently occurring contexts, we develop a decision tree
clustering algorithm to form context classes. We go on to
develop a context-dependent HMM model for alignment.

In Section 3, we evaluate our context-dependent mod-
els on Arabic-English parallel text, comparing them to
our baseline context-independent models. We perform
morphological decomposition of the Arabic text using
MADA, and use part-of-speech taggers on both lan-
guages. Alignment quality is measured using Alignment
Error Rate (AER) measured against a manually-aligned
parallel text. Section 4 uses alignments produced by
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our improved alignment models to initialise a statistical
machine translation system and evaluate the quality of
translation on several data sets. We also apply part-of-
speech tagging and decision tree clustering of contexts to
Chinese-English parallel text; translation results for these
languages are presented in Section 4.2.

1.2 Previous and related work

Brown et al. (1993) introduce IBM Models 1-5 for align-
ment modelling; Vogel et al. (1996) propose a Hidden
Markov Model (HMM) model for word-to-word align-
ment, where the words of the source sentence are viewed
as states of an HMM and emit target sentence words;
Deng and Byrne (2005a) extend this to an HMM word-to-
phrase model which allows many-to-one alignments and
can capture dependencies within target phrases.

Habash and Sadat (2006) perform morphological de-
composition of Arabic words, such as splitting of pre-
fixes and suffixes. This leads to gains in machine trans-
lation quality when systems are trained on parallel text
containing the modified Arabic and processing of Arabic
text is carried out prior to translation. Nießen and Ney
(2001a) perform pre-processing of German and English
text before translation; Nießen and Ney (2001b) use mor-
phological information of the current word to estimate
hierarchical translation probabilities.

Berger et al. (1996) introduce maximum entropy mod-
els for machine translation, and use a window either side
of the target word as context information. Varea et al.
(2002) test for the presence of specific words within a
window of the current source word to form features for
use inside a maximum entropy model of alignment.

Toutanova et al. (2002) use part-of-speech informa-
tion in both the source and target languages to estimate
alignment probabilities, but this information is not in-
corporated into translation probabilities. Popović and
Ney (2004) use the base form of a word and its part-of-
speech tag during the estimation of word-to-word transla-
tion probabilities for IBM models and HMMs, but do not
defined context-dependent estimates of translation prob-
abilities.

Stroppa et al. (2007) consider context-informed fea-
tures of phrases as components of the log-linear model
during phrase-based translation, but do not address align-
ment.

2 Use of source language context in
alignment modelling

Consider the alignment of the target sentence e = eI1 with
the source sentence f = fJ1 . Let a = aI1 be the align-
ments of the target words to the source words. Let cj be
the context information of fj for j = 1, . . . , J . This con-
text information can be any information about the word,

e.g. part-of-speech, previous and next words, part-of-
speech of previous and next words, or longer range con-
text information.

We follow Brown et al. (1993), but extend their mod-
elling framework to include information about the source
word from which a target word is emitted. We model the
alignment process as:

P(eI1, a
I
1, I |fJ1 , cJ1 ) =

P(I |fJ1 , cJ1 )
I∏

i=1

[
P(ei|ai1, ei−1

1 , fJ1 , c
J
1 , I)

× P(ai|ei−1
1 , ai−1

1 , fJ1 , c
J
1 , I)

]
(1)

We introduce word-to-word translation tables that depend
on the source language context for each word, i.e. the
probability that f translates to e given f has context c is
t(e|f, c). We assume that the context sequence is given
for a source word sequence. This assumption can be
relaxed to allow for multiple tag sequences as hidden
processes, but we assume here that a tagger generates
a single context sequence cJ1 for a word sequence fJ1 .
This corresponds to the assumption that, for a context se-
quence c̃J1 , P(c̃J1 |fJ1 ) = δcJ1 (c̃J1 ); hence

P(eI1, a
I
1|fJ1 ) =

∑

c̃J1

P(eI1, a
I
1, c̃

J
1 |fJ1 ) = P(eI1, a

I
1|cJ1 , fJ1 )

For Model 1, ignoring the sentence length distribution,

PM1(eI1, a
I
1|fJ1 , cJ1 ) =

1
(J + 1)I

I∏

i=1

t(ei|fai , cai). (2)

Estimating translation probabilities separately for ev-
ery possible context of a source word individually leads
to problems with data sparsity and rapid growth of the
translation table. We therefore wish to cluster source con-
texts which lead to similar probability distributions. Let
Cf denote the set of all observed contexts of source word
f . A particular clustering is denoted

Kf = {Kf,1, . . . ,Kf,Nf},
where Kf is a partition of Cf . We define a class mem-
bership function µf such that for any context c, µf (c)
is the cluster containing c. We assume that all contexts
in a cluster give rise to the same translation probability
distribution for that source word, i.e. for a cluster K,
t(e|f, c) = t(e|f, c′) for all contexts c, c′ ∈ K and all
target words e; we write this shared translation probabil-
ity as t(e|f,K).

The Model 1 sentence translation probability for a
given alignment (Equation 2) becomes

PM1(eI1, a
I
1|fJ1 , cJ1 ) =

1
(J + 1)I

I∏

i=1

t(ei|fai , µf (cai)).

(3)
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For HMM alignment, we assume that the transition prob-
abilities a(ai|ai−1) are independent of the word contexts
and the sentence translation probability is

PH(eI1, a
I
1|fJ1 , cJ1 ) =

I∏

i=1

a(ai|ai−1, J)t(ei|fai , µf (cai)).

(4)
Section 2.1.1 describes how the context classes are deter-
mined by optimisation of the EM auxiliary function. Al-
though the translation model is significantly more com-
plex than that of context-independent models, once class
membership is fixed, alignment and parameter estimation
use the standard algorithms.

2.1 EM parameter estimation
We train using Expectation Maximisation (EM), optimis-
ing the log probability of the training set {e(s), f (s)}Ss=1

(Brown et al., 1993). Given model parameters θ′, we es-
timate new parameters θ by maximisation of the EM aux-
iliary function
∑

s,a

Pθ′(a|f (s), c(s), e(s)) log Pθ(e(s), a, I(s)|f (s), c(s)).

We assume the sentence length distribution and align-
ment probabilities do not depend on the contexts of the
source words; hence the relevant part of the auxiliary
function is

∑

e

∑

f

∑

c∈Cf
γ′(e|f, c) log t(e|f, c), (5)

where

γ′(e|f, c) =
∑

s

I(s)∑

i=1

J(s)∑

j=1

[
δc(c

(s)
j )δe(e

(s)
i )δf (f (s)

j )

× Pθ′(ai = j|e(s), f (s), c(s))
]

Here γ′ can be computed under Model 1 or the HMM,
and is calculated using the forward-backward algorithm
for the HMM.

2.1.1 Parameter estimation with clustered contexts
We can re-write the EM auxiliary function (Equation

5) in terms of the cluster-specific translation probabilities:

∑

e

∑

f

|Kf |∑

l=1

∑

c∈Kf,l
γ′(e|f, c) log t(e|f, c)

=
∑

e

∑

f

∑

K∈Kf
γ′(e|f,K) log t(e|f,K) (6)

where γ′(e|f,K) =
∑

c∈K
γ′(e|f, c)

Following the usual derivation, the EM update for the
class-specific translation probabilities becomes

t̂(e|f,K) =
γ′(e|f,K)∑
e′ γ
′(e′|f,K)

. (7)

Standard EM training can be viewed a special case of this,
with every context of a source word grouped into a sin-
gle cluster. Another way to view these clustered context-
dependent models is that contexts belonging to the same
cluster are tied and share a common translation proba-
bility distribution, which is estimated from all training
examples in which any of the contexts occur.

2.2 Decision trees for context clustering
The objective for each source word is to split the contexts
into classes to maximise the likelihood of the training
data. Since it is not feasible to maximise the likelihood
of the observations directly, we maximise the expected
log likelihood by considering the EM auxiliary function,
in a similar manner to that used for modelling contextual
variations of phones for ASR (Young et al., 1994; Singer
and Ostendorf, 1996). We perform divisive clustering in-
dependently for each source word f , by building a binary
decision tree which forms classes of contexts which max-
imise the EM auxiliary function. Questions for the tree
are drawn from a set of questions Q = {q1, . . . , q|Q|}
concerning the context information of f .

Let K be any set of contexts of f , and define

L(K) =
∑

e

∑

c∈K
γ′(e|f, c) log t(e|f, c)

=
∑

e

∑

c∈K
γ′(e|f, c) log

∑
c∈K γ

′(e|f, c)∑
e′
∑

c∈K γ
′(e′|f, c) .

This is the contribution to the EM auxiliary function of
source word f occurring in the contexts of K. Let q be
a binary question about the context of f , and consider
the effect on the partial auxiliary function (Equation 6)
of splitting K into two clusters using question q. Define
Kq be the set of contexts in K which answer ‘yes’ to q
and Kq̄ be the contexts which answer ‘no’. Define the
objective function

Qf,q(K) =
∑

e

∑

c∈Kq
γ′(e|f, c) log t(e|f, c)

+
∑

e

∑

c∈Kq̄
γ′(e|f, c) log t(e|f, c)

= L(Kq) + L(Kq̄)

When the node is split using question q, the increase in
objective function is given by

Qf,q(K)− L(K) = L(Kq̄) + L(Kq)− L(K).
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We choose q to maximise this.
In order to build the decision tree for f , we take the set

of all contexts Cf as the initial cluster at the root node.
We then find the question q̂ such that Qf,q(Cf ) is maxi-
mal, i.e.

q̂ = arg max
q∈Q

Qf,q(Cf )

This splits Cf , so our decision tree now has two nodes.
We iterate this process, at each iteration splitting (into
two further nodes) the leaf node that leads to the great-
est increase in objective function. This leads to a greedy
search to optimise the log likelihood over possible state
clusterings.

In order to control the growth of the tree, we put in
place two thresholds:

• Timp is the minimum improvement in objective func-
tion required for a node to be split; without it, we
would continue splitting nodes until each contained
only one context, even though doing so would cause
data sparsity problems.
• Tocc is the minimum occupancy of a node, based on

how often the contexts at that node occur in the train-
ing data; we want to ensure that there are enough ex-
amples of a context in the training data to estimate
accurately the translation probability distribution for
that cluster.

For each leaf node l and set of contextsKl at that node,
we find the question ql that, when used to split Kl, pro-
duces the largest gain in objective function:

ql = arg max
q∈Q

[L(Kl,q) + L(Kl,q̄)− L(Kl)]

= arg max
q∈Q

[L(Kl,q) + L(Kl,q̄)]

We then find the leaf node for which splitting gives the
largest improvement:

l̂ = arg max
l

[L(Kl,ql) + L(Kl,q̄l)− L(Kl)]

If the following criteria are both satisfied at that node, we
split the node into two parts, creating two leaf nodes in
its place:

• The objective function increases sufficiently

L(Kl,ql) + L(Kl,q̄l)− L(Kl) > Timp

• The occupancy threshold is exceeded for both child
nodes:

∑

e

∑

c∈Kl,x
γ′(e|f, c) > Tocc for x = q, q̄

We perform such clustering for every source word in the
parallel text.
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Figure 1: Alignment of the English selling in different contexts.
In the first, it is preceded by of and links to the infinitive of the
Arabic verb byE; in the second, it is preceded by were and links
to an inflected form of the same Arabic verb, ybyEwn.

3 Evaluation of alignment quality

Our models were built using the MTTK toolkit (Deng
and Byrne, 2005b). Decision tree clustering was imple-
mented and the process parallelised to enable thousands
of decision trees to be built. Our context-dependent (CD)
Model 1 models trained on context-annotated data were
compared to the baseline context-independent (CI) mod-
els trained on untagged data.

The models were trained using data allowed for the
NIST 08 Arabic-English evaluation1, excluding the UN
collections, comprising 300k parallel sentence pairs, a to-
tal of 8.4M words of Arabic and 9.5M words of English.

The Arabic language incorporates into its words sev-
eral prefixes and suffixes which determine grammatical
features such as gender, number, person and voice. The
MADA toolkit (Habash and Sadat, 2006) was used to
perform Arabic morphological word decomposition and
part-of-speech tagging. It determines the best analysis
for each word in a sentence and splits word prefixes and
suffixes, based on the alternative analyses provided by
BAMA (Buckwalter, 2002). We use tokenisation scheme

1http://nist.gov/speech/tests/mt/2008
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‘D2’, which splits certain prefixes and has been reported
to improve machine translation performance (Habash and
Sadat, 2006). The alignment models are trained on this
processed data, and the prefixes and suffixes are treated
as words in their own right; in particular their contexts
are examined and clustered.

The TnT tagger (Brants, 2000), used as distributed
with its model trained on the Wall Street Journal portion
of the Penn treebank, was used to obtain part-of-speech
tags for the English side of the parallel text. Marcus et al.
(1993) gives a complete list of part-of-speech tags pro-
duced. No morphological analysis is performed for En-
glish.

Automatic word alignments were compared to a
manually-aligned corpus made up of the IBM Arabic-
English Word Alignment Corpus (Ittycheriah et al.,
2006) and the word alignment corpora LDC2006E86 and
LDC2006E93. This contains 28k parallel text sentences
pairs: 724k words of Arabic and 847k words of English.
The alignment links were modified to reflect the MADA
tokenisation; after modification, there are 946k word-to-
word alignment links.

Alignment quality was evaluated by computing Align-
ment Error Rate (AER) (Och and Ney, 2000) relative to
the manual alignments. Since the links supplied con-
tain only ‘sure’ links and no ‘possible’ links, we use the
following formula for computing AER given reference
alignment links S and hypothesised alignment links A:
AER = 1− 2|S∩A|

|S|+|A| .

3.1 Questions about contexts
The algorithm presented in Section 2 allows for any infor-
mation about the context of the source word to be consid-
ered. We could consider general questions of the form ‘Is
the previous word x?’ and ‘Does word y occur within n
words of this one?’. To maintain computational tractabil-
ity, we restrict the questions to those concerning the part-
of-speech tag assigned to the current, previous and next
words. We do not ask questions about the identities of the
words themselves. For each part-of-speech tag T , we ask
the question ‘Does w have tag T?’. In addition, we group
part-of-speech tags to ask more general questions: e.g.
the set of contexts which satisfies ‘Is w a noun?’ contains
those that satisfy ‘Is w a proper noun?’ and ‘Is w a sin-
gular or mass noun?’. We also ask the same questions
of the previous and next words in the source sentence.
In English, this gives a total of 152 distinct questions,
each of which is considered when splitting a leaf node.
The MADA part-of-speech tagger uses a reduced tag set,
which produces a total of 68 distinct questions.

Figure 1 shows the links of the English source word
selling in two different contexts where it links to different
words in Arabic, which are both forms of the same verb.
The part-of-speech of the previous word is useful for dis-
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Figure 2: Increase in log probability of training data during
training for varying Timp, with Model 1, for Arabic to English
(top) and English to Arabic (bottom)

criminating between the two cases, whereas a context-
independent model would assign the same probability to
both Arabic words.

3.2 Training Model 1

Training is carried out in both translation directions. For
Arabic to English, the Arabic side of the parallel text is
tagged and the English side remains untagged; we view
the English words as being generated from the Arabic
words and questions are asked about the context of the
Arabic words to determine clusters for the translation ta-
ble. For English to Arabic, the situation is reversed: we
used tagged English text as the source language and un-
tagged Arabic text, with morphological decomposition,
as the target language.

Standard CI Model 1 training, initialised with a uni-
form translation table so that t(e|f) is constant for all
source/target word pairs (f, e), was run on untagged data
for 10 iterations in each direction (Brown et al., 1993;
Deng and Byrne, 2005b). A decision tree was built to
cluster the contexts and a further 10 iterations of training
were carried out using the tagged words-with-context to
produce context-dependent models (CD Model 1). The
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English question Frequency
Is Next Preposition 1523
Is Prev Determiner 1444
Is Prev Preposition 1209
Is Prev Adjective 864
Is Next Noun Singular Mass 772
Is Prev Noun Singular Mass 690
Is Next Noun Plural 597
Is Next Noun 549
Arabic question Frequency
Is Prev Preposition 1110
Is Next Preposition 993
Is Prev Noun 981
Is Next Noun 912
Is Prev Coordinating Conjunction 627
Is Prev Noun SingularMass 607
Is Next Punctuation 603
Is Next Adjective Adverb 559

Table 1: Most frequent root node context questions

models were then evaluated using AER at each train-
ing iteration. A number of improvement thresholds Timp

were tested, and performance compared to that of models
found after further iterations of CI Model 1 training on
the untagged data. In both alignment directions, the log
probability of the training data increases during training
(see Figure 2). As expected, the training set likelihood
increases as the threshold Timp is reduced, allowing more
clusters and closer fitting to the data.

3.2.1 Analysis of frequently used questions

Table 1 shows the questions used most frequently at
the root node of the decision tree when clustering con-
texts in English and Arabic. Because they are used first,
these are the questions that individually give the great-
est ability to discriminate between the different contexts
of a word. The list shows the importance of the left and
right contexts of the word in predicting its translation: of
the most common 50 questions, 25 concern the previous
word, 19 concern the next, and only 6 concern the part-
of-speech of the current word. For Arabic, of the most
frequent 50 questions, 21 concern the previous word, 20
concern the next and 9 the current word.

3.2.2 Alignment Error Rate

Since MT systems are usually built on the union of the
two sets of alignments (Koehn et al., 2003), we consider
the union of alignments in the two directions as well as
those in each direction. Figure 3 shows the change in
AER of the alignments in each direction, as well as the
alignment formed by taking their union at corresponding
thresholds and training iterations.

Timp Arabic-English (%) English-Arabic (%)
10 30601 (25.33) 26011 (39.87)
20 11193 (9.27) 18365 (28.15)
40 1874 (1.55) 9104 (13.96)
100 307 (0.25) 1128 (1.73)

Table 2: Words [number (percentage)] with context-dependent
translation for varying Timp

3.2.3 Variation of improvement threshold Timp

There is a trade-off between modelling the data accu-
rately, which requires more clusters, and eliminating data
sparsity problems, which requires each cluster to contain
contexts that occur frequently enough in the training data
to estimate the translation probabilities accurately. Use of
a smaller threshold Timp leads to more clusters per word
and an improved ability to fit to the data, but this can lead
to reduced alignment quality if there is insufficient data
to estimate the translation probability distribution accu-
rately for each cluster. For lower thresholds, we observe
over-fitting and the AER rises after the second iteration of
CD training, similar to the behaviour seen in Och (2002).
Setting Timp = 0 results in each context of a word having
its own cluster, which leads to data sparsity problems.

Table 2 shows the percentage of words for which the
contexts are split into multiple clusters for CD Model 1
with varying improvement thresholds. This occurs when
there are enough training data examples and sufficient
variability between the contexts of a word that splitting
the contexts into more than one cluster increases the EM
auxiliary function. For words where the contexts are not
split, all the contexts remain in the same cluster and pa-
rameter estimation is exactly the same as for the unclus-
tered context-independent models.

3.3 Training HMMs

Adding source word context to translation has so far led
to improvements in AER for Model 1, but the perfor-
mance does not match that of HMMs trained on untagged
data; we therefore train HMMs on tagged data.

We proceed with Model 1 and Model 2 trained in the
usual way, and context-independent (CI) HMMs were
trained for 5 iterations on the untagged data. Statistics
were then gathered for clustering at various thresholds,
after which 5 further EM iterations were performed with
tagged data to produce context-dependent (CD) HMMs.
The HMMs were trained in both the Arabic to English
and the English to Arabic directions. The log likelihood
of the training set varies with Timp in much the same
way as for Model 1, increasing at each iteration, with
greater likelihood at lower thresholds. Figure 4 shows
how the AER of the union alignment varies with Timp

during training. As with Model 1, the clustered HMM
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Figure 3: Variation of AER during Model 1 training for varying
Timp, for Arabic to English (top), English to Arabic (middle)
and their union (bottom)
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Figure 5: Precision/recall curves for the context-dependent
HMM and the baseline context-independent HMM, for Arabic
to English and English to Arabic. p0 varies from 0.00 to 0.95 in
steps of 0.05.

models produce alignments with a lower AER than the
baseline model, and there is evidence of over-fitting to
the training data.

3.3.1 Alignment precision and recall
The HMM models include a null transition probability,
p0, which can be modified to adjust the number of align-
ments to the null token (Deng and Byrne, 2005a). Where
a target word is emitted from null, it is not included in
the alignment links, so this target word is viewed as not
being aligned to any source word; this affects the preci-
sion and recall. The results reported above use p0 = 0.2
for English-Arabic and p0 = 0.4 for Arabic-English; we
can tune these values to produce alignments with the low-
est AER. Figure 5 shows precision-recall curves for the
CD HMMs compared to the CI HMMs for both transla-
tion directions. For a given value of precision, the CD
HMM has higher recall; for a given value of recall, the
CD HMM has higher precision.

We do not report F-score (Fraser and Marcu, 2006)
since in our experiments we have not found strong cor-
relation with translation performance, but we note that
these results for precision and recall should lead to im-
proved F-scores as well.

4 Evaluation of translation quality

We have shown that the context-dependent models pro-
duce a decrease in AER measured on manually-aligned
data; we wish to show this improved model performance
leads to an increase in translation quality, measured by
BLEU score (Papineni et al., 2001). In addition to the
Arabic systems already evaluated by AER, we also report
results for a Chinese-English translation system.

Alignment models were evaluated by aligning the
training data using the models in each translation direc-
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tion. HiFST, a WFST-based hierarchical translation sys-
tem described in (Iglesias et al., 2009), was trained on
the union of these alignments. MET (Och, 2003) was
carried out using a development set, and the BLEU score
evaluated on two test sets. Decoding used a 4-gram lan-
guage model estimated from the English side of the entire
MT08 parallel text, and a 965M word subset of monolin-
gual data from the English Gigaword Third Edition.

For both Arabic and English, the CD HMM models
were evaluated as follows. Iteration 5 of the CI HMM
was used to produce alignments for the parallel text train-
ing data: these were used to train the baseline system.
The same data is aligned using CD HMMs after two
further iterations of training and a second WFST-based
translation system built from these alignments. The mod-
els are evaluated by comparing BLEU scores with those
of the baseline model.

4.1 Arabic to English translation

Alignment models were trained on the NIST MT08
Arabic-English parallel text, excluding the UN portion.
The null alignment probability was chosen based on the
AER, resulting in values of p0 = 0.05 for Arabic to
English and p0 = 0.10 for English to Arabic. We per-
form experiments on the NIST Arabic-English transla-
tion task. The mt02 05 tune and mt02 05 test data sets
are formed from the odd and even numbered sentences
of the NIST MT02 to MT05 evaluation sets respectively;
each contains 2k sentences and 60k words. We use
mt02 05 tune as a development set and evaluate the sys-
tem on mt02 05 test and the newswire portion of the
MT08 set, MT08-nw. Table 3 shows a comparison of the
system trained using CD HMMs with the baseline sys-
tem, which was trained using CI HMM models on un-
tagged data. The context-dependent models result in a
gain in BLEU score of 0.3 for mt02 05 test and 0.6 for
MT08-nw.

4.2 Chinese to English translation

The Chinese training set was 600k random parallel text
sentences of the newswire LDC collection allowed for
NIST MT08, a total of 15.2M words of Chinese and
16.6M words of English. The Chinese text was tagged us-
ing the MXPOST maximum-entropy part of speech tag-
ging tool (Ratnaparkhi, 1996) trained on the Penn Chi-
nese Treebank 5.1; the English text was tagged using the
TnT part of speech tagger (Brants, 2000) trained on the
Wall Street Journal portion of the English Penn treebank.

The development set tune-nw and validation set test-nw
contain a mix of the newswire portions of MT02 through
MT05 and additional developments sets created by trans-
lation within the GALE program. We also report results
on the newswire portion of the MT08 set. Again we see
an increase in BLEU score for both test sets: 0.5 for test-

Arabic-English
Alignments tune mt02 05 test MT08-nw
CI HMM 50.0 49.4 46.3
CD HMM 50.0 49.7 46.9

Chinese-English
Alignments tune test-nw MT08-nw
CI HMM 28.1 28.5 26.9
CD HMM 28.5 29.0 27.7

Table 3: Comparison, using BLEU score, of the CD HMM with
the baseline CI HMM

nw and 0.8 for MT08-nw.

5 Conclusions and future work

We have introduced context-dependent Model 1 and
HMM alignment models, which use context information
in the source language to improve estimates of word-
to-word translation probabilities. Estimation of parame-
ters using these contexts without smoothing leads to data
sparsity problems; therefore we have developed decision
tree clustering algorithms to cluster source word contexts
based on optimisation of the EM auxiliary function. Con-
text information is incorporated by the use of part-of-
speech tags in both languages of the parallel text, and the
EM algorithm is used for parameter estimation.

We have shown that these improvements to the model
lead to decreased AER compared to context-independent
models. Finally, we compare machine translation sys-
tems built using our context-dependent alignments. For
both Arabic- and Chinese-to-English translation, we
report an increase in translation quality measured by
BLEU score compared to a system built using context-
independent alignments.

This paper describes an initial investigation into
context-sensitive alignment models, and there are many
possible directions for future research. Clustering the
probability distributions of infrequently occurring may
produce improvements in alignment quality, different
model training schemes and extensions of the context-
dependence to more sophisticated alignment models will
be investigated. Further translation experiments will be
carried out.
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