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Abstract

We use the Margin Infused Relaxed Algo-
rithm of Crammer et al. to add a large num-
ber of new features to two machine transla-
tion systems: the Hiero hierarchical phrase-
based translation system and our syntax-based
translation system. On a large-scale Chinese-
English translation task, we obtain statistically
significant improvements of +1.5 B and
+1.1 B, respectively. We analyze the im-
pact of the new features and the performance
of the learning algorithm.

1 Introduction

What linguistic features can improve statistical ma-
chine translation (MT)? This is a fundamental ques-
tion for the discipline, particularly as it pertains to
improving the best systems we have. Further:

• Do syntax-based translation systems have
unique and effective levers to pull when design-
ing new features?

• Can large numbers of feature weights be
learned efficiently and stably on modest
amounts of data?

In this paper, we address these questions by exper-
imenting with a large number of new features. We
add more than 250 features to improve a syntax-
based MT system—already the highest-scoring sin-
gle system in the NIST 2008 Chinese-English
common-data track—by +1.1 B. We also add
more than 10,000 features to Hiero (Chiang, 2005)
and obtain a +1.5 B improvement.

∗This research was supported in part by DARPA contract
HR0011-06-C-0022 under subcontract to BBN Technologies.

Many of the new features use syntactic informa-
tion, and in particular depend on information that
is available only inside a syntax-based translation
model. Thus they widen the advantage that syntax-
based models have over other types of models.

The models are trained using the Margin Infused
Relaxed Algorithm or MIRA (Crammer et al., 2006)
instead of the standard minimum-error-rate training
or MERT algorithm (Och, 2003). Our results add
to a growing body of evidence (Watanabe et al.,
2007; Chiang et al., 2008) that MIRA is preferable to
MERT across languages and systems, even for very
large-scale tasks.

2 Related Work

The work of Och et al (2004) is perhaps the best-
known study of new features and their impact on
translation quality. However, it had a few shortcom-
ings. First, it used the features for reranking n-best
lists of translations, rather than for decoding or for-
est reranking (Huang, 2008). Second, it attempted to
incorporate syntax by applying off-the-shelf part-of-
speech taggers and parsers to MT output, a task these
tools were never designed for. By contrast, we incor-
porate features directly into hierarchical and syntax-
based decoders.

A third difficulty with Och et al.’s study was that
it used MERT, which is not an ideal vehicle for fea-
ture exploration because it is observed not to per-
form well with large feature sets. Others have in-
troduced alternative discriminative training meth-
ods (Tillmann and Zhang, 2006; Liang et al., 2006;
Turian et al., 2007; Blunsom et al., 2008; Macherey
et al., 2008), in which a recurring challenge is scal-
ability: to train many features, we need many train-
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ing examples, and to train discriminatively, we need
to search through all possible translations of each
training example. Another line of research (Watan-
abe et al., 2007; Chiang et al., 2008) tries to squeeze
as many features as possible from a relatively small
dataset. We follow this approach here.

3 Systems Used

3.1 Hiero
Hiero (Chiang, 2005) is a hierarchical, string-to-
string translation system. Its rules, which are ex-
tracted from unparsed, word-aligned parallel text,
are synchronous CFG productions, for example:

X→ X1 de X2,X2 of X1

As the number of nonterminals is limited to two, the
grammar is equivalent to an inversion transduction
grammar (Wu, 1997).

The baseline model includes 12 features whose
weights are optimized using MERT. Two of the fea-
tures are n-gram language models, which require
intersecting the synchronous CFG with finite-state
automata representing the language models. This
grammar can be parsed efficiently using cube prun-
ing (Chiang, 2007).

3.2 Syntax-based system
Our syntax-based system transforms source Chinese
strings into target English syntax trees. Following
previous work in statistical MT (Brown et al., 1993),
we envision a noisy-channel model in which a lan-
guage model generates English, and then a transla-
tion model transforms English trees into Chinese.
We represent the translation model as a tree trans-
ducer (Knight and Graehl, 2005). It is obtained from
bilingual text that has been word-aligned and whose
English side has been syntactically parsed. From this
data, we use the the GHKM minimal-rule extraction
algorithm of (Galley et al., 2004) to yield rules like:

NP-C(x0:NPB PP(IN(of x1:NPB))↔ x1 de x0

Though this rule can be used in either direction,
here we use it right-to-left (Chinese to English). We
follow Galley et al. (2006) in allowing unaligned
Chinese words to participate in multiple translation
rules, and in collecting larger rules composed of

minimal rules. These larger rules have been shown
to substantially improve translation accuracy (Gal-
ley et al., 2006; DeNeefe et al., 2007).

We apply Good-Turing discounting to the trans-
ducer rule counts and obtain probability estimates:

P(rule) =
count(rule)

count(LHS-root(rule))

When we apply these probabilities to derive an En-
glish sentence e and a corresponding Chinese sen-
tence c, we wind up with the joint probability P(e, c).

The baseline model includes log P(e, c), the two
n-gram language models log P(e), and other features
for a total of 25. For example, there is a pair of
features to punish rules that drop Chinese content
words or introduce spurious English content words.
All features are linearly combined and their weights
are optimized using MERT.

For efficient decoding with integrated n-gram lan-
guage models, all transducer rules must be binarized
into rules that contain at most two variables and
can be incrementally scored by the language model
(Zhang et al., 2006). Then we use a CKY-style parser
(Yamada and Knight, 2002; Galley et al., 2006) with
cube pruning to decode new sentences.

We include two other techniques in our baseline.
To get more general translation rules, we restruc-
ture our English training trees using expectation-
maximization (Wang et al., 2007), and to get more
specific translation rules, we relabel the trees with up
to 4 specialized versions of each nonterminal sym-
bol, again using expectation-maximization and the
split/merge technique of Petrov et al. (2006).

3.3 MIRA training

We incorporate all our new features into a linear
model (Och and Ney, 2002) and train them using
MIRA (Crammer et al., 2006), following previous
work (Watanabe et al., 2007; Chiang et al., 2008).

Let e stand for output strings or their derivations,
and let h(e) stand for the feature vector for e. Initial-
ize the feature weights w. Then, repeatedly:

• Select a batch of input sentences f1, . . . , fm and
decode each fi to obtain a forest of translations.

• For each i, select from the forest a set of hy-
pothesis translations ei1, . . . , ein, which are the
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10-best translations according to each of:

h(e) · w
B(e) + h(e) · w
−B(e) + h(e) · w

(1)

• For each i, select an oracle translation:

e∗ = arg max
e

(B(e) + h(e) · w) (2)

Let ∆hi j = h(e∗i ) − h(ei j).

• For each ei j, compute the loss

`i j = B(e∗i ) − B(ei j) (3)

• Update w to the value of w′ that minimizes:

1
2
‖w′ − w‖2 + C

m∑
i=1

max
1≤ j≤n

(`i j − ∆hi j · w′) (4)

where C = 0.01. This minimization is per-
formed by a variant of sequential minimal opti-
mization (Platt, 1998).

Following Chiang et al. (2008), we calculate the sen-
tence B scores in (1), (2), and (3) in the context
of some previous 1-best translations. We run 20 of
these learners in parallel, and when training is fin-
ished, the weight vectors from all iterations of all
learners are averaged together.

Since the interface between the trainer and the de-
coder is fairly simple—for each sentence, the de-
coder sends the trainer a forest, and the trainer re-
turns a weight update—it is easy to use this algo-
rithm with a variety of CKY-based decoders: here,
we are using it in conjunction with both the Hiero
decoder and our syntax-based decoder.

4 Features

In this section, we describe the new features intro-
duced on top of our baseline systems.

Discount features Both of our systems calculate
several features based on observed counts of rules in
the training data. Though the syntax-based system
uses Good-Turing discounting when computing the
P(e, c) feature, we find, as noted above, that it uses
quite a few one-count rules, suggesting that their
probabilities have been overestimated. We can di-
rectly attack this problem by adding features counti

that reward or punish rules seen i times, or features
count[i, j] for rules seen between i and j times.

4.1 Target-side features

String-to-tree MT offers some unique levers to pull,
in terms of target-side features. Because the system
outputs English trees, we can analyze output trees on
the tuning set and design new features to encourage
the decoder to produce more grammatical trees.

Rule overlap features While individual rules ob-
served in decoder output are often quite reasonable,
two adjacent rules can create problems. For exam-
ple, a rule that has a variable of type IN (preposi-
tion) needs another rule rooted with IN to fill the po-
sition. If the second rule supplies the wrong prepo-
sition, a bad translation results. The IN node here
is an overlap point between rules. Considering that
certain nonterminal symbols may be more reliable
overlap points than others, we create a binary fea-
ture for each nonterminal. A rule like:

IN(at)↔ zai

will have feature rule-root-IN set to 1 and all
other rule-root features set to 0. Our rule root fea-
tures range over the original (non-split) nontermi-
nal set; we have 105 in total. Even though the
rule root features are locally attached to individual
rules—and therefore cause no additional problems
for the decoder search—they are aimed at problem-
atic rule/rule interactions.

Bad single-level rewrites Sometimes the decoder
uses questionable rules, for example:

PP(x0:VBN x1:NP-C)↔ x0 x1

This rule is learned from 62 cases in our training
data, where the VBN is almost always the word
given. However, the decoder misuses this rule with
other VBNs. So we can add a feature that penalizes
any rule in which a PP dominates a VBN and NP-C.
The feature class bad-rewrite comprises penalties
for the following configurations based on our analy-
sis of the tuning set:

PP→ VBN NP-C

PP-BAR→ NP-C IN

VP→ NP-C PP

CONJP→ RB IN
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Node count features It is possible that the de-
coder creates English trees with too many or too few
nodes of a particular syntactic category. For exam-
ple, there may be an tendency to generate too many
determiners or past-tense verbs. We therefore add a
count feature for each of the 109 (non-split) English
nonterminal symbols. For a rule like

NPB(NNP(us) NNP(president) x0:NNP)

↔ meiguo zongtong x0

the feature node-count-NPB gets value 1, node-
count-NNP gets value 2, and all others get 0.

Insertion features Among the rules we extract
from bilingual corpora are target-language insertion
rules, which have a word on the English side, but no
words on the source Chinese side. Sample syntax-
based insertion rules are:

NPB(DT(the) x0:NN)↔ x0

S(x0:NP-C VP(VBZ(is) x1:VP-C))↔ x0 x1

We notice that our decoder, however, frequently fails
to insert words like is and are, which often have no
equivalent in the Chinese source. We also notice that
the-insertion rules sometimes have a good effect, as
in the translation “in the bloom of youth,” but other
times have a bad effect, as in “people seek areas of
the conspiracy.”

Each time the decoder uses (or fails to use) an in-
sertion rule, it incurs some risk. There is no guaran-
tee that the interaction of the rule probabilities and
the language model provides the best way to manage
this risk. We therefore provide MIRA with a feature
for each of the most common English words appear-
ing in insertion rules, e.g., insert-the and insert-is.
There are 35 such features.

4.2 Source-side features

We now turn to features that make use of source-side
context. Although these features capture dependen-
cies that cross boundaries between rules, they are
still local in the sense that no new states need to
be added to the decoder. This is because the entire
source sentence, being fixed, is always available to
every feature.

Soft syntactic constraints Neither of our systems
uses source-side syntactic information; hence, both
could potentially benefit from soft syntactic con-
straints as described by Marton and Resnik (2008).
In brief, these features use the output of an in-
dependent syntactic parser on the source sentence,
rewarding decoder constituents that match syntac-
tic constituents and punishing decoder constituents
that cross syntactic constituents. We use separately-
tunable features for each syntactic category.

Structural distortion features Both of our sys-
tems have rules with variables that generalize over
possible fillers, but neither system’s basic model
conditions a rule application on the size of a filler,
making it difficult to distinguish long-distance re-
orderings from short-distance reorderings. To rem-
edy this problem, Chiang et al. (2008) introduce a
structural distortion model, which we include in our
experiment. Our syntax-based baseline includes the
generative version of this model already.

Word context During rule extraction, we retain
word alignments from the training data in the ex-
tracted rules. (If a rule is observed with more than
one set of word alignments, we keep only the
most frequent one.) We then define, for each triple
( f , e, f+1), a feature that counts the number of times
that f is aligned to e and f+1 occurs to the right of
f ; and similarly for triples ( f , e, f−1) with f−1 occur-
ring to the left of f . In order to limit the size of the
model, we restrict words to be among the 100 most
frequently occurring words from the training data;
all other words are replaced with a token <unk>.

These features are somewhat similar to features
used by Watanabe et al. (2007), but more in the spirit
of features used in the word sense disambiguation
model introduced by Lee and Ng (2002) and incor-
porated as a submodel of a translation system by
Chan et al. (2007); here, we are incorporating some
of its features directly into the translation model.

5 Experiments

For our experiments, we used a 260 million word
Chinese/English bitext. We ran GIZA++ on the en-
tire bitext to produce IBM Model 4 word align-
ments, and then the link deletion algorithm (Fossum
et al., 2008) to yield better-quality alignments. For
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System Training Features # Tune Test
Hiero MERT baseline 11 35.4 36.1

MIRA syntax, distortion 56 35.9 36.9∗

syntax, distortion, discount 61 36.6 37.3∗∗

all source-side, discount 10990 38.4 37.6∗∗

Syntax MERT baseline 25 38.6 39.5
MIRA baseline 25 38.5 39.8∗

overlap 132 38.7 39.9∗

node count 136 38.7 40.0∗∗

all target-side, discount 283 39.6 40.6∗∗

Table 1: Adding new features with MIRA significantly improves translation accuracy. Scores are case-insensitive IBM
B scores. ∗ or ∗∗ = significantly better than MERT baseline (p < 0.05 or 0.01, respectively).

the syntax-based system, we ran a reimplementation
of the Collins parser (Collins, 1997) on the English
half of the bitext to produce parse trees, then restruc-
tured and relabeled them as described in Section 3.2.
Syntax-based rule extraction was performed on a 65
million word subset of the training data. For Hiero,
rules with up to two nonterminals were extracted
from a 38 million word subset and phrasal rules were
extracted from the remainder of the training data.

We trained three 5-gram language models: one on
the English half of the bitext, used by both systems,
one on one billion words of English, used by the
syntax-based system, and one on two billion words
of English, used by Hiero. Modified Kneser-Ney
smoothing (Chen and Goodman, 1998) was applied
to all language models. The language models are
represented using randomized data structures simi-
lar to those of Talbot et al. (2007).

Our tuning set (2010 sentences) and test set (1994
sentences) were drawn from newswire data from the
NIST 2004 and 2005 evaluations and the GALE pro-
gram (with no overlap at either the segment or doc-
ument level). For the source-side syntax features,
we used the Berkeley parser (Petrov et al., 2006) to
parse the Chinese side of both sets.

We implemented the source-side context features
for Hiero and the target-side syntax features for the
syntax-based system, and the discount features for
both. We then ran MIRA on the tuning set with 20
parallel learners for Hiero and 73 parallel learners
for the syntax-based system. We chose a stopping it-
eration based on the B score on the tuning set,
and used the averaged feature weights from all iter-

Syntax-based Hiero
count weight count weight
1 +1.28 1 +2.23
2 +0.35 2 +0.77
3–5 −0.73 3 +0.54
6–10 −0.64 4 +0.29

5+ −0.02

Table 2: Weights learned for discount features. Nega-
tive weights indicate bonuses; positive weights indicate
penalties.

ations of all learners to decode the test set.
The results (Table 1) show significant improve-

ments in both systems (p < 0.01) over already very
strong MERT baselines. Adding the source-side and
discount features to Hiero yields a +1.5 B im-
provement, and adding the target-side syntax and
discount features to the syntax-based system yields a
+1.1 B improvement. The results also show that
for Hiero, the various classes of features contributed
roughly equally; for the syntax-based system, we see
that two of the feature classes make small contribu-
tions but time constraints unfortunately did not per-
mit isolated testing of all feature classes.

6 Analysis

How did the various new features improve the trans-
lation quality of our two systems? We begin by ex-
amining the discount features. For these features,
we used slightly different schemes for the two sys-
tems, shown in Table 2 with their learned feature
weights. We see in both cases that one-count rules
are strongly penalized, as expected.
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Reward
−0.42 a
−0.13 are
−0.09 at
−0.09 on
−0.05 was
−0.05 from
−0.04 ’s
−0.04 by
−0.04 is
−0.03 it
−0.03 its

...

Penalty
+0.67 of
+0.56 the
+0.47 comma
+0.13 period
+0.11 in
+0.08 for
+0.06 to
+0.05 will
+0.04 and
+0.02 as
+0.02 have

...

Table 3: Weights learned for inserting target English
words with rules that lack Chinese words.

6.1 Syntax features

Table 3 shows word-insertion feature weights. The
system rewards insertion of forms of be; examples
1–3 in Figure 1 show typical improved translations
that result. Among determiners, inserting a is re-
warded, while inserting the is punished. This seems
to be because the is often part of a fixed phrase, such
as the White House, and therefore comes naturally
as part of larger phrasal rules. Inserting the outside
these fixed phrases is a risk that the generative model
is too inclined to take. We also note that the system
learns to punish unmotivated insertions of commas
and periods, which get into our grammar via quirks
in the MT training data.

Table 4 shows weights for rule-overlap features.
MIRA punishes the case where rules overlap with
an IN (preposition) node. This makes sense: if a
rule has a variable that can be filled by any English
preposition, there is a risk that an incorrect preposi-
tion will fill it. On the other hand, splitting at a pe-
riod is a safe bet, and frees the model to use rules that
dig deeper into NP and VP trees when constructing
a top-level S. Table 5 shows weights for generated
English nonterminals: SBAR-C nodes are rewarded
and commas are punished.

The combined effect of all weights is subtle.
To interpret them further, it helps to look at gross
changes in the system’s behavior. For example, a
major error in the baseline system is to move “X
said” or “X asked” from the beginning of the Chi-
nese input to the middle or end of the English trans-

Bonus
−0.50 period
−0.39 VP-C
−0.36 VB
−0.31 SG-C
−0.30 MD
−0.26 VBG
−0.25 ADJP
−0.22 -LRB-
−0.21 VP-BAR
−0.20 NPB-BAR
−0.16 FRAG
−0.16 PRN
−0.15 NPB
−0.13 RB
−0.12 SBAR-C
−0.12 VP-C-BAR
−0.11 -RRB-

...

Penalty
+0.93 IN
+0.57 NNP
+0.44 NN
+0.41 DT
+0.34 JJ
+0.24 right double quote
+0.20 VBZ
+0.19 NP
+0.16 TO
+0.15 ADJP-BAR
+0.14 PRN-BAR
+0.14 NML
+0.13 comma
+0.12 VBD
+0.12 NNPS
+0.12 PRP
+0.11 SG

...

Table 4: Weights learned for employing rules whose En-
glish sides are rooted at particular syntactic categories.

Bonus
−0.73 SBAR-C
−0.54 VBZ
−0.54 IN
−0.52 NN
−0.51 PP-C
−0.47 right double quote
−0.39 ADJP
−0.34 POS
−0.31 ADVP
−0.30 RP
−0.29 PRT
−0.27 SG-C
−0.22 S-C
−0.21 NNPS
−0.21 VP-BAR
−0.20 PRP
−0.20 NPB-BAR

...

Penalty
+1.30 comma
+0.80 DT
+0.58 PP
+0.44 TO
+0.33 NNP
+0.30 NNS
+0.30 NML
+0.22 CD
+0.18 PRN
+0.16 SYM
+0.15 ADJP-BAR
+0.15 NP
+0.15 MD
+0.15 HYPH
+0.14 PRN-BAR
+0.14 NP-C
+0.11 ADJP-C

...

Table 5: Weights learned for generating syntactic nodes
of various types anywhere in the English translation.
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lation. The error occurs with many speaking verbs,
and each time, we trace it to a different rule. The
problematic rules can even be non-lexical, e.g.:

S(x0:NP-C x1:VP x2:, x3:NP-C x4:VP x5:.)

↔ x3 x4 x2 x0 x1 x5

It is therefore difficult to come up with a straightfor-
ward feature to address the problem. However, when
we apply MIRA with the features already listed,
these translation errors all disappear, as demon-
strated by examples 4–5 in Figure 1. Why does this
happen? It turns out that in translation hypotheses
that move “X said” or “X asked” away from the be-
ginning of the sentence, more commas appear, and
fewer S-C and SBAR-C nodes appear. Therefore, the
new features work to discourage these hypotheses.
Example 6 shows additionally that commas next to
speaking verbs are now correctly deleted.

Examples 7–8 in Figure 1 show other kinds of
unanticipated improvements. We do not have space
for a fuller analysis, but we note that the specific ef-
fects we describe above account for only part of the
overall B improvement.

6.2 Word context features
In Table 6 are shown feature weights learned for the
word-context features. A surprising number of the
highest-weighted features have to do with transla-
tions of dates and bylines. Many of the penalties
seem to discourage spurious insertion or deletion
of frequent words (for, ’s, said, parentheses, and
quotes). Finally, we note that several of the features
(the third- and eighth-ranked reward and twelfth-
ranked penalty) shape the translation of shuo ‘said’,
preferring translations with an overt complementizer
that and without a comma. Thus these features work
together to attack a frequent problem that our target-
syntax features also addressed.

Figure 2 shows the performance of Hiero with all
of its features on the tuning and test sets over time.
The scores on the tuning set rise rapidly, and the
scores on the test set also rise, but much more slowly,
and there appears to be slight degradation after the
18th pass through the tuning data. This seems in line
with the finding of Watanabe et al. (2007) that with
on the order of 10,000 features, overfitting is possi-
ble, but we can still improve accuracy on new data.

 35

 35.5

 36

 36.5

 37

 37.5

 38

 38.5

 0  5  10  15  20  25

B
L

E
U

Epoch

Tune
Test

Figure 2: Using over 10,000 word-context features leads
to overfitting, but its detrimental effects are modest.
Scores on the tuning set were obtained from the 1-best
output of the online learning algorithm, whereas scores
on the test set were obtained using averaged weights.

Early stopping would have given +0.2 B over the
results reported in Table 1.1

7 Conclusion

We have described a variety of features for statisti-
cal machine translation and applied them to syntax-
based and hierarchical systems. We saw that these
features, discriminatively trained using MIRA, led
to significant improvements, and took a closer look
at the results to see how the new features qualita-
tively improved translation quality. We draw three
conclusions from this study.

First, we have shown that these new features can
improve the performance even of top-scoring MT
systems. Second, these results add to a growing body
of evidence that MIRA is preferable to MERT for
discriminative training. When training over 10,000
features on a modest amount of data, we, like Watan-
abe et al. (2007), did observe overfitting, yet saw
improvements on new data. Third, we have shown
that syntax-based machine translation offers possi-
bilities for features not available in other models,
making syntax-based MT and MIRA an especially
strong combination for future work.

1It was this iteration, in fact, which was used to derive the
combined feature count used in the title of this paper.
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1 MERT: the united states pending israeli clarification on golan settlement plan
MIRA: the united states is waiting for israeli clarification on golan settlement plan

2 MERT: . . . the average life expectancy of only 18 months , canada ’s minority goverment will . . .
MIRA: . . . the average life expectancy of canada’s previous minority government is only 18 months . . .

3 MERT: . . . since un inspectors expelled by north korea . . .
MIRA: . . . since un inspectors were expelled by north korea . . .

4 MERT: another thing is . . . , " he said , " obviously , the first thing we need to do . . . .
MIRA: he said : " obviously , the first thing we need to do . . . , and another thing is . . . . "

5 MERT: the actual timing . . . reopened in january , yoon said .
MIRA: yoon said the issue of the timing . . .

6 MERT: . . . us - led coalition forces , said today that the crash . . .
MIRA: . . . us - led coalition forces said today that a us military . . .

7 MERT: . . . and others will feel the danger .
MIRA: . . . and others will not feel the danger .

8 MERT: in residential or public activities within 200 meters of the region , . . .
MIRA: within 200 m of residential or public activities area , . . .

Figure 1: Improved syntax-based translations due to MIRA-trained weights.

Bonus
f e context

−1.19 <unk> <unk> f−1 = ri ‘day’
−1.01 <unk> <unk> f−1 = (
−0.84 , that f−1 = shuo ‘say’
−0.82 yue ‘month’ <unk> f+1 = <unk>

−0.78 " " f−1 = <unk>

−0.76 " " f+1 = <unk>

−0.66 <unk> <unk> f+1 = nian ‘year’
−0.65 , that f+1 = <unk>

...

Penalty
f e context

+1.12 <unk> ) f+1 = <unk>

+0.83 jiang ‘shall’ be f+1 = <unk>

+0.83 zhengfu ‘government’ the f−1 = <unk>

+0.73 <unk> ) f−1 = <unk>

+0.73 <unk> ( f+1 = <unk>

+0.72 <unk> ) f−1 = ri ‘day’
+0.70 <unk> ( f−1 = ri ‘day’
+0.69 <unk> ( f−1 = <unk>

+0.66 <unk> for f−1 = <unk>

+0.66 <unk> ’s f−1 = ,
+0.65 <unk> said f−1 = <unk>

+0.60 , , f−1 = shuo ‘say’
...

Table 6: Weights learned for word-context features, which fire when English word e is generated aligned to Chinese
word f , with Chinese word f−1 to the left or f+1 to the right. Glosses for Chinese words are not part of features.

225



References
Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008. A

discriminative latent variable model for statistical ma-
chine translation. In Proc. ACL-08: HLT.

Peter F. Brown, Stephen A. Della Pietra, Vincent Della J.
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational Linguistics, 19(2):263–312.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word sense disambiguation improves statistical ma-
chine translation. In Proc. ACL 2007.

Stanley F. Chen and Joshua T. Goodman. 1998. An
empirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Computer Sci-
ence Group, Harvard University.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In Proc. EMNLP 2008.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proc. ACL 2005.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2).

Michael Collins. 1997. Three generative, lexicalized
models for statistical parsing. In Proc. ACL 1997.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585.

Steve DeNeefe, Kevin Knight, Wei Wang, and Daniel
Marcu. 2007. What can syntax-based MT learn from
phrase-based MT? In Proc. EMNLP-CoNLL-2007.

Victoria Fossum, Kevin Knight, and Steven Abney. 2008.
Using syntax to improve word alignment for syntax-
based statistical machine translation. In Proc. Third
Workshop on Statistical Machine Translation.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In
Proc. HLT-NAACL 2004, Boston, Massachusetts.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic models. In Proc. ACL 2006.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proc. ACL 2008.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Proceedings of the Sixth International
Conference on Intelligent Text Processing and Compu-
tational Linguistics (CICLing).

Yoong Keok Lee and Hwee Tou Ng. 2002. An em-
pirical evaluation of knowledge sources and learn-
ing algorithms for word sense disambiguation. In
Proc. EMNLP 2002, pages 41–48.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and
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