
Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 61–64,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Learning Multi Character Alignment Rules and Classification of training
data for Transliteration

Dipankar Bose
Dept. of Computer Science and Engg.

Indian Institute of Technology
Kharagpur, West Bengal

India - 721302
dipankarcsiit@gmail.com

Sudeshna Sarkar
Dept. of Computer Science and Engg.

Indian Institute of Technology
Kharagpur, West Bengal

India - 721302
shudeshna@gmail.com

Abstract

We address the issues of transliteration be-
tween Indian languages and English, es-
pecially for named entities. We use an
EM algorithm to learn the alignment be-
tween the languages. We find that there
are lot of ambiguities in the rules map-
ping the characters in the source language
to the corresponding characters in the tar-
get language. Some of these ambiguities
can be handled by capturing context by
learning multi-character based alignments
and use of character n-gram models. We
observed that a word in the source script
may have actually originated from differ-
ent languages. Instead of learning one
model for the language pair, we propose
that one may use multiple models and a
classifier to decide which model to use. A
contribution of this work is that the models
and classifiers are learned in a completely
unsupervised manner. Using our system
we were able to get quite accurate translit-
eration models.

1 Introduction

Transliteration is the practice of transcribing a
word or text written in one writing system into an-
other writing system which may have a different
script (wikipedia1). The rules are often quite am-
biguous, and they are often related with the pro-
nunciation of the word.

Many applications like Machine Transla-
tion (MT), Cross Language Information Re-
trieval (CLIR), Question Answering (QA) require

1http://www.wikipedia.org

transliteration of named entities, which are the ma-
jor component of out-of-vocabulary (OOV) words,
and they are most often transliterated and not
translated, in any cross language system. For ex-
ample ,‘Europe’ is transliterated as ‘iuropa’ and
‘Michael’ transliterates to ‘maaikela’ in Bengali.2

In this paper we develop a scheme of translit-
eration, which captures context by creating a dic-
tionary of multi-character transliteration rules. We
have tested our system for English and several In-
dian languages. For Indian Languages, we have an
additional preprocessor which enhances the per-
formance.

2 Related Work

Brown et al. (1993) have come up with their revo-
lutionary IBM alignment models, and the Giza++
(Och and Ney, 2000) is a well appreciated imple-
mentation which work with parallel data in two
languages. Though originally designed for ma-
chine translation, the package can as well be used
for transliteration, where the alignment is between
the characters in the languages. Moses further en-
hances the accuracy by using phrase based decod-
ing, which can capture context. We have Moses3

as our baseline system.
Li et al. (2004) have pointed out the prob-

lems of using language information. Apart from
the difficulty of collecting the language informa-
tion, they pointed out that, although written in
the same script, the origin of the source names
may vary widely. For example French and Eng-
lish names may vary a lot. But it is difficult
to collect information for each and every lan-
guage. They came up with a joint source chan-

2above Bengali words are scripted using ITrans, instead
of traditional Bengali script.

3http://www.statmt.org/moses/

61

nel model, to transliterate foreign names to Chi-
nese, Korean, and Japanese, which uses, direct or-
thographic mapping (DOM), between two differ-
ent languages, to find out how the source and tar-
get words can be generated simultaneously. Ekbal
et al. (2006) also used this model for English-
Bengali Transliteration. Ganesh et al. (2008)
used Hidden Markov Model (HMM) alignment
and Conditional Random Field (CRF), a discrim-
inative model together. Surana et al. (2008) used
fuzzy string matching algorithms to identify the
origin of the source word, and then apply rules of
transliteration accordingly. However the classifier
makes use of labeled training data, which is often
not available.

3 Issues

Transliteration is ambiguous. Firstly, the translit-
eration rules depend on the context. For exam-
ple, ‘a’ in English may transliterate to ‘a’ or ‘A’
in Hindi, but ‘aa’ almost definitely maps to ‘A’.
Secondly, there can be multiple transliterations
of the same source word. For example ‘abhi-
jIta’ may transliterate to ‘abhijit’ and ‘abhijeet’ as
well. Thirdly, the transliteration rules also vary,
depending on the origin of the word. For exam-
ple, when considering Hindi to English translitera-
tion the English characters used vary depending on
whether the word originated from Arabic or from
Sanskrit. We elaborate more on this in the section
on classification of corpus.

4 Approach

Our method is primarily based on IBM models
used in machine translation based on the EM al-
gorithm. But before we move on to the IBM mod-
els, we first preprocess the training data. Other
than marking the ‘Start’ and ‘End’, for each of the
parallel words, we can do further preprocessing if
any of the scripts is Indian. All Indian language
scripts consist of a set of consonants and vowels.
Independent vowels and their corresponding dia-
critic markers (Matra) are considered as the same
character in the standard analysis of words into
their constituent characters (varna vishleshhana).
Unlike ITrans, Unicode assigns different codes to
them. We found in our experiment that treating
them as one, improves the accuracy of the system.
Our preprocessor thus transforms Unicode data to
ITrans format. We have seen that preprocessor im-
proves the accuracy by around 10-15%.

After preprocessing, we align the letters us-
ing the expectation maximization (EM) algorithm
of IBM model 1, using the parallel corpus of
named entities as input. We use only the IBM
model 1; the subsequent models are omitted since
in transliteration we need not consider the re-
ordering of letters. Both Unicode and transliter-
ated text are in phonetic order, and re-ordering of
letters are rarely observed. As an output of the EM
learner we get a table of translation probabilities
TP , of source letters to target letters. If,si and
tj are source and target letters,∀si, tj , TP si,tj ∈
[0, 1], denotes the corresponding translation prob-
ability. For example after EM learning, the values
of TPbha,v andTPbha,b will be much more than
TPbha,k, since ‘bha’ rarely transliterates to ‘k’.

4.1 Learning Phrase Mappings

We now move on to capture context. For each
word in the parallel data, we compute an align-
ment array,Ae, wheree ∈ [0, E], andI andE
are the corresponding lengths of the words in In-
dian and English script respectively. So, we have,
∀e ∈ [0, E], Ae ∈ [0, I]. Following is an example:
Let, source word be: Starts1 s2 s3 End, target
word be: Startt1 t2 t3 t4 End, and Alignment ar-
ray be: 0 1 1 2 3 4. This means thats1 maps to
t1 and t2; s2 maps tot3 and so on. We further
enforceAe1 ≤ Ae2 iff e1 ≤ e2, since we neglect
re-ordering of letters. The aim is to figure out null
mappings, filter out noises in the TP-table, and fi-
nally create a phrase to phrase mapped dictionary.
Using the TP-table values, we propose an iterative
algorithm to find the alignment array A.WL[i] de-
notes theith letter of a word in language ‘L’. Ini-
tially Ai = 0 if i = 0, Ai = I−1 if i < E, otherwise
Ai = I. The first and last characters are always the
‘Start’ and ‘End’ tags, in all the words.

Initially letters are allowed a larger window to
fit to. After each iteration, the window size de-
creases and thus the margins are made more strin-
gent. Using iterations we are being less greedy in
deciding the alignment, so that noises in the TP-
table are filtered out. Finally after 5 iterations,
we freeze the alignment array. It may happen that
∃i ∈ [0, I], such that∀j ∈ [0, E], Aj 6= i. It
means that the letter,WInd[i] maps to ‘null’ in this
case, and thus it is a ‘Schwa’ character.

4.2 Scoring the alignment

In spite of all our attempts, it may happen that the
words are not well aligned; the reason may be a

62

Algorithm 1 Method to compute Alignment
for window = 5 to 1do

for e = 1 toE − 1 do
left = Max(1, Ae−1 − window + 1)
right = Min(I, Ae+1 + window)
Ae = s : s ∈ [left, right] such that
TPWInd[s],WEng[e] × (1− |s/I − e/E|)
is maximum

end for
for e = 1 toE − 1 do

if ¬(Ae−1 ≤ Ae ≤ Ae+1) then
{try to smooth out anomalies}
Ae = (Ae−1 + Ae+1)/2

end if
end for

end for

deficiency in the Algorithm 1, or a badly transliter-
ated parallel word as input. For example the train-
ing data may contain ‘mississippi river’ translit-
erated to Bengali as ‘misisipi nadI’. In this case
we see that the second word is translated and not
transliterated. Retaining this in the training set
will introduce noise in the model. There may also
be typographical errors also. We have developed
a filtering mechanism, so that we can eliminate
these words, otherwise we will end up learning
spurious mappings. We find the score of an align-
ment,
SA =

∑N−1
e=1 (TPWInd[Ae],WEng [e] × (1− |Ae/I −

e/E|).
We were trying to maximizeSA under certain
constraints in algorithm 1. The value ofSA is
an estimate of how good our alignment is. Next
we set thresholds to distinguish between different
“Classes” of alignments.

4.3 Classifying the training corpus

The training corpus may consist of words from
varied origins. Though they are written in
the same script, pronunciation varies widely.
For example Urdu origin names like Farooque
(pharUka), Razzaq (rajjAka) tend to replace ‘q’ in
place of ‘ka’, but Hindi names like Latika (latika),
Nakul (nakula), tend to replace ‘k’ for ‘ka’. Unlike
Surana et al. (2008) who extracted 5-gram models
from labeled data in different languages, we pro-
pose Algorithm 2, to classify the parallel corpus
into groups, which does not need any labeled data.
We define, ClassesC1, C2, ...,CN , whereCi con-
sists of a set of parallel words< Ij , Ej >, (Ij ,

Ej being thejth word in Indian and English lan-
guage, in the training corpus), such that the align-
ment score of the word pairs, lie between the pre-
defined thresholds,thi+1 andthi. Let us assume
thatC1 is initialized with the parallel training cor-
pus from input.

Algorithm 2 Classify the Corpus
for i = 1 to Ndo

Set threshold,thi for ClassCi: thi ≤ thi−1

while size of ClassCi does not decreasedo
Compute TP-table using IBM model 1. on
Ci

for each parallel word pair< Ij , Ej > in
Ci do

Compute Alignment using Algorithm 1.
Compute Score of Alignment, SA.
if Score < thi then
{Move the word pair to the next
class}
Ci+1 = Ci+1∪ < Ij , Ej >
Ci = Ci\ < Ij , Ej >

end if
end for

end while{move on to nextClass}
end for

We continuously discard word pairs from a
class until there is no word pair to be discarded.
We use IBM Model 1 to re-learn the TP-table, on
the latest content of the class. Since the poor word
pairs have been removed, learning the TP-table
afresh, helps in improving theTPsi,tj values. It
helps in removing the bad word pairs yet left, in
the subsequent iterations. It is to be noted thatCN

consists of word pairs, which are of no use, and we
discard them completely. We had 5 useful classes,
and the thresholds ofC1 to C5 were 0.4, 0.35, 0.3,
0.25, 0.2 respectively. In each class, for each word
pair, we extract all possible ngrams on Indian lan-
guage side and collect their corresponding English
characters, using the alignment array. We keep fre-
quency counts of these ngram mappings, and use
this score in decoding. We use a language model,
which uses Good Turing smoothing technique. We
have used greedy beam search based decoder.

All that remains is to guess the class of an un-
known word. Given a test word, in source script
we calculate probabilityPi of it being in class,
Ci, based on ngram similarities. The decoders of
each of the classes returns a list of feasible translit-
eration candidates along with their ‘local scores’

63

Language Accuracy in Top1 Mean F-Score MRR MAPref MAP10 MAPsys

En2Ta 0.404 0.883 0.539 0.398 0.182 0.182
En2Hi 0.366 0.854 0.493 0.360 0.164 0.164
En2Ka 0.335 0.856 0.457 0.328 0.154 0.154

Table 1: Transliteration Accuracies. En2Ta: English to Tamil, En2Hi: English to Hindi, En2Ka: English
to Kannada

(score according to that class), We denote the lo-
cal score of a candidate from ClassCi asLS[Ci].
We calculate the global score,GS for each candi-
date, usingGS=

∑N−1
i=1 (LS[Ci]×Pi). The candi-

dates are sorted in decreasing order of their global
scores and top ‘K’ of them produced as output.

5 Results

We have evaluated our system, against datasets
with Hindi, Tamil, Kannada and English parallel
named entities (Kumaran and Kellner, 2007). The
results are in Table 1. The data consists of named
entities from varied origins: almost all Indian lan-
guages and English. We combined the training and
development sets to create the new training set.
There are about 9000 parallel words in the train-
ing sets and 1000 words for testing.

Algorithm 2 classifies the training corpus, into
5 sets of corpus. Following are some details af-
ter classifying the Tamil-English dataset. Corpus
1, consists of Sanskrit derived words mostly; they
get perfectly aligned and Schwa deletions rarely
occur; Ex: Keena, Asiya, Nehra, Hemaraaj, Vi-
jendra. This corpus contains 2167 words. Cor-
pus 2 also is mostly comprised of Sanskrit de-
rived words and also English words which eas-
ily align; like Wilton, Natesh, Raghu, Gerry,
Achintya, Amaanat. Schwa deletions does occur,
and hence the alignment scores are a little low.
Size of this corpus is 2168.

Corpus 3 consists more of Urdu origin and
English words, which are not fit for the normal
transliteration rules. The corpus consists of words
like Tarzan, Anoife, Sevier, Zahid Fazal, Floriane,
where letters like ‘q’, ’zz’, ‘y’ are more likely than
‘k’, ‘j’, ‘i’ respectively. The size of Corpus 3 is
1835. Corpus 4 & 5 consists largely of English
origin words, like Lucky number, Ian Healy, Clea-
vant, Fort Vancouver, Virginia Reel, Bundesver-
dienstkreuz. These words need completely differ-
ent set of rules, and moreover if these words were
in any other class, it would corrupt their learning
rules. Size of these corpora are 1234 and 1455 re-
spectively.

6 Conclusion

Our system is robust in the sense that it can filter
out noise in the training corpus, can handle words
of different origins by classifying them into dif-
ferent classes. Our classifying algorithm improves
the accuracy, but we believe that there is scope of
further improvement and we are working on it.

References

Asif Ekbal, Sudip Kumar Naskar, Sivaji Bandyopad-
hyay. 2006. A modified joint source-channel
model for transliteration. Proceedings of the
COLING/ACL on Main conference poster ses-
sions.Sydney, Australia.

Harshit Surana and A. K. Singh 2008.A More Dis-
cerning and Adaptable Multilingual Transliteration
Mechanism for Indian Languages.The Third In-
ternational Joint Conference on Natural Language
Processing (IJCNLP). Hyderabad, India.

Kumaran A. and Kellner Tobias. 2007. A generic
framework for machine transliterationSIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 721–722.

Li Haizhou, Zhang Min, Su Jian. 2004.A joint
source-channel model for machine transliteration.
Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics. Barcelona,
Spain.

Och Franz Josef and Hermann Ney. 2000.Improved
Statistical Alignment Models.Proc. of the 38th An-
nual Meeting of the Association for Computational
Linguistics, pp. 440-447, Hong Kong, China.

Peter F. Brown, Vincent J. Delta Pietra, Stephen A.
Delta Pietra and Robert L. Mercer. 1993.The math-
ematics of statistical machine translation: parame-
ter estimation.MIT Press Cambridge, MA, USA.

Surya Ganesh, Sree Harsha, Prasad Pingali, Vasudeva
Verma. 2008.Statistical Transliteration for Cross
Language Information Retrieval using HMM align-
ment model and CRF.CLIA-2008, 2nd International
workshop on Cross Language Information Access,
3rd International Joint Conference on Natural Lan-
guage Processing (IJCNLP 2008), January 7-12,
2008, Hyderabad, India.

64

