
Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 69–71,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

NEWS 2009 Machine Transliteration Shared Task System Description:
Transliteration with Letter-to-Phoneme Technology

Colin Cherry and Hisami Suzuki
Microsoft Research
One Microsoft Way

Redmond, WA, 98052
{colinc,hisamis}@microsoft.com

Abstract
We interpret the problem of transliterat-
ing English named entities into Hindi or
Japanese Katakana as a variant of the
letter-to-phoneme (L2P) subtask of text-
to-speech processing. Therefore, we apply
a re-implementation of a state-of-the-art,
discriminative L2P system (Jiampojamarn
et al., 2008) to the problem, without fur-
ther modification. In doing so, we hope
to provide a baseline for the NEWS 2009
Machine Transliteration Shared Task (Li
et al., 2009), indicating how much can be
achieved without transliteration-specific
technology. This paper briefly sum-
marizes the original work and our re-
implementation. We also describe a bug
in our submitted implementation, and pro-
vide updated results on the development
and test sets.

1 Introduction

Transliteration occurs when a word is borrowed
into a language with a different character set from
its language of origin. The word is transcribed into
the new character set in a manner that maintains
phonetic correspondence.

When attempting to automate machine translit-
eration, modeling the channel that transforms
source language characters into transliterated tar-
get language characters is a key component to
good performance. Since the primary signal fol-
lowed by human transliterators is phonetic corre-
spondence, it makes sense that a letter-to-phoneme
(L2P) transcription engine would perform well at
this task. Of course, transliteration is often framed
within the larger problems of translation and bilin-
gual named entity co-reference, making available
a number of other interesting features, such as tar-
get lexicons (Knight and Graehl, 1998), distribu-
tional similarity (Bilac and Tanaka, 2005), or the

dates of an entity’s mentions in the news (Kle-
mentiev and Roth, 2006). However, this task’s fo-
cus on generation has isolated the character-level
component, which makes L2P technology a near-
ideal match. For our submission, we re-implement
the L2P approach described by Jiampojamarn et
al. (2008) as faithfully as possible, and apply it
unmodified to the transliteration shared task for
the English-to-Hindi (Kumaran and Kellner, 2007)
and English-to-Japanese Katakana1 tests.

2 Approach

2.1 Summary of L2P approach

The core of the L2P transduction engine is the
dynamic programming algorithm for monotone
phrasal decoding (Zens and Ney, 2004). The main
feature of this algorithm is its capability to trans-
duce many consecutive characters with a single
operation. This algorithm is used to conduct a
search for a max-weight derivation according to
a linear model with indicator features. A sample
derivation is shown in Figure 1.

There are two main categories of features: con-
text and transition features, which follow the first
two feature templates described by Jiampojamarn
et al. (2008). Context features are centered around
a transduction operation. These features include
an indicator for the operation itself, which is then
conjoined with indicators for all n-grams of source
context within a fixed window of the operation.
Transition features are Markov or n-gram features.
They ensure that the produced target string makes
sense as a character sequence, and are represented
as indicators on the presence of target n-grams.
The feature templates have two main parameters,
the size S of the character window from which
source context features are drawn, and the max-
imum length T of target n-gram indicators. We
fit these parameters using grid search over 1-best

1Provided by http://www.cjk.org

69

ame →�A , ri →J , can →�S

Figure 1: Example derivation transforming
“American” into “�AJ�S”.

accuracy on the provided development sets.

The engine’s features are trained using the
structured perceptron (Collins, 2002). Jiampo-
jamarn et al. (2008) show strong improvements
in the L2P domain using MIRA in place of the
perceptron update; unfortunately, we did not im-
plement a k-best MIRA update due to time con-
straints. In our implementation, no special con-
sideration was given to the availability of multi-
ple correct answers in the training data; we always
pick the first reference transliteration and treat it
as the only correct answer. Investigating the use
of all correct answers would be an obvious next
step to improve the system.

2.2 Major differences in implementation

Our system made two alternate design decisions
(we do not claim improvements) over those made
by (Jiampojamarn et al., 2008), mostly based on
the availability of software. First, we employed a
beam of 40 candidates in our decoder, to enable ef-
ficient use of large language model contexts. This
is put to good use in the Hindi task, where we
found n-gram indicators of length up to n = 6
provided optimal development performance.

Second, we employed an alternate character
aligner to create our training derivations. This
aligner is similar to recent non-compositional
phrasal word-alignment models (Zhang et al.,
2008), limited so it can only produce monotone
character alignments. The aligner creates sub-
string alignments, without insertion or deletion
operators. As such, an aligned transliteration pair
also serves as a transliteration derivation. We em-
ployed a maximum substring length of 3.

The training data was heuristically cleaned af-
ter alignment. Any derivation found by the aligner
that uses an operation occurring fewer than 3 times
throughout the entire training set was eliminated.
This reduced training set sizes to 8,511 pairs
for English-Hindi and 20,306 pairs for English-
Katakana.

Table 1: Development and test 1-best accuracies,
as reported by the official evaluation tool

System / Test set With Bug Fixed
Hindi Dev 36.7 39.6
Hindi Test 41.8 46.6
Katakana Dev 46.0 47.1
Katakana Test 46.6 46.9

3 The Bug

The submitted version of our system had a bug
in its transition features: instead of generating an
indicator for every possible n-gram in the gener-
ated target sequence, it generated n-grams over
target substrings, defined by the operations used
during transduction. Consider, for example, the
derivation shown in Figure 1, which generates
“�AJ�S”. With buggy trigram transition
features, the final operation would produce the
single indicator [AJ|�S], instead of the two
character-level trigrams [AJ|�] and [J�|S].
This leads to problems with data sparsity, which
we had not noticed on unrelated experiments with
larger training data. We report results both with
the bug and with fixed transition features. We do
so to emphasize the importance of a fine-grained
language discriminative language model, as op-
posed to one which operates on a substring level.

4 Development

Development consisted of performing a parameter
grid search over S and T for each language pair’s
development set. All combinations of S = 0 . . . 4
and T = 0 . . . 7 were tested for each language
pair. Based on these experiments, we selected (for
the fixed version), values of S = 2, T = 6 for
English-Hindi, and S = 4, T = 3 for English-
Katakana.

5 Results

The results of our internal experiments with the
official evaluation tool are shown in Table 1. We
report 1-best accuracy on both development and
test sets, with both the buggy and fixed versions of
our system. As one can see, the bug makes less of
an impact in the English-Katakana setting, where
more training data is available.

70

6 Conclusion

We have demonstrated that an automatic letter-
to-phoneme transducer performs fairly well on
this transliteration shared task, with no language-
specific or transliteration-specific modifications.
Instead, we simply considered Hindi or Katakana
to be an alternate encoding for English phonemes.
In the future, we would like to investigate proper
use of multiple reference answers during percep-
tron training.

Acknowledgments

We would like to thank the NEWS 2009 Machine
Transliteration Shared Task organizers for creating
this venue for comparing transliteration methods.
We would also like to thank Chris Quirk for pro-
viding us with his alignment software.

References
Slaven Bilac and Hozumi Tanaka. 2005. Extracting

transliteration pairs from comparable corpora. In
Proceedings of the Annual Meeting of the Natural
Language Processing Society, Japan.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In EMNLP.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. In ACL,
pages 905–913, Columbus, Ohio, June.

Alexandre Klementiev and Dan Roth. 2006. Named
entity transliteration and discovery from multilin-
gual comparable corpora. In HLT-NAACL, pages
82–88, New York City, USA, June.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. In Proc. of
the 30th SIGIR.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009. Report on NEWS 2009 machine
transliteration shared task. In Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

Richard Zens and Hermann Ney. 2004. Improvements
in phrase-based statistical machine translation. In
HLT-NAACL, pages 257–264, Boston, USA, May.

Hao Zhang, Chris Quirk, Robert C. Moore, and
Daniel Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing. In
ACL, pages 97–105, Columbus, Ohio, June.

71

