
Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 152–160,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Name Matching Between Chinese and Roman Scripts:

Machine Complements Human

Ken Samuel, Alan Rubenstein, Sherri Condon, and Alex Yeh

The MITRE Corporation; M/S H305; 7515 Colshire Drive; McLean, Virginia 22102-7508

samuel@mitre.org, rubenstein@mitre.org, scondon@mitre.org, and asy@mitre.org

Abstract

There are generally many ways to translite-

rate a name from one language script into

another. The resulting ambiguity can make it

very difficult to “untransliterate” a name by

reverse engineering the process. In this paper,

we present a highly successful cross-script

name matching system that we developed by

combining the creativity of human intuition

with the power of machine learning. Our sys-

tem determines whether a name in Roman

script and a name in Chinese script match

each other with an F-score of 96%. In addi-

tion, for name pairs that satisfy a computa-

tional test, the F-score is 98%.

1 Introduction

There are generally many ways to transliterate a

person‟s name from one language script into

another. For example, writers have transliterated

the Arabic name, الشكري, into Roman characters

in at least 13 ways, such as Al Choukri, Ash-

shukri, and al-Schoukri. This ambiguity can

make it very difficult to “untransliterate” a name

by reverse engineering the process.

We focused on a task that is related to transli-

teration. Cross-script name matching aims to de-

termine whether a given name part in Roman

script matches a given name part in Chinese

(Mandarin) script,
1
 where a name part is a single

“word” in a person‟s name (such as a surname),

and two names match if one is a transliteration of

the other.
2
 Cross-script name matching has many

1 In this paper, we often use the word “Roman” to refer to

“Roman script”, and similarly, “Chinese” usually stands

for “Chinese script”.

2 Sometimes a third script comes between the Roman and

Chinese versions of the name. For example, a Roman

name might be transliterated into Arabic, which is then

transliterated into Chinese, or an Arabic name could be

transliterated into Roman and Chinese independently.

applications, such as identity matching, improv-

ing search engines, and aligning parallel corpora.

We combine a) the creative power of human

intuition, which can come up with clever ideas

and b) the computational power of machine

learning, which can analyze large quantities of

data. Wan and Verspoor (1998) provided the

human intuition by designing an algorithm to

divide names into pieces that are just the right

size for Roman-Chinese name matching (Section

2.2.). Armed with Wan and Verspoor‟s algo-

rithm, a machine learning approach analyzes

hundreds of thousands of matched name pairs to

build a Roman-Chinese name matching system

(Section 3).

Our experimental results are in Section 4. The

system correctly determines whether a Roman

name and a Chinese name match each other with

F = 96.5%.
3
 And F = 97.6% for name pairs that

satisfy the Perfect Alignment hypothesis condi-

tion, which is defined in Section 2.2.

2 Related Work

Wan and Verspoor‟s (1998) work had a great

impact on our research, and we explain how we

use it in Section 2.2. In Section 2.1, we identify

other related work.

2.1 Chinese-English Name Matching

Condon et al. (2006) wrote a paper about the

challenges of matching names across Roman and

Chinese scripts. In Section 6 of their paper, they

offered an overview of several papers related to

Roman-Chinese name matching. (Cohen et al.,

2003; Gao et al., 2004; Goto et al., 2003; Jung et

al., 2000; Kang and Choi, 2000; Knight and

Graehl, 1997; Kondrak, 2000; Kondrak and

Dorr, 2004; Li et al., 2004; Meng et al., 2001; Oh

3 F stands for F-score, which is a popular evaluation metric.

(Andrade et al., 2009)

152

and Choi, 2006; Virga and Khudanpur, 2003;

Wellner et al., 2005; Winkler, 2002)

The Levenshtein algorithm is a popular way to

compute string edit distance. (Levenshtein, 1966)

It can quantify the similarity between two names.

However, this algorithm does not work when the

names are written in different scripts. So Free-

man et al. (2006) developed a strategy for Ro-

man-Arabic string matching that uses equiva-

lence classes of characters to normalize the

names so that Levenshtein‟s method can be ap-

plied. Later, Mani et al. (2006) transformed that

system from Roman-Arabic to Roman-Chinese

name matching and extended the Levenshtein

approach, attaining F = 85.2%. Then when they

trained a machine learning algorithm on the out-

put, the performance improved to F = 93.1%

 Mani et al. also tried applying a phonological

alignment system (Kondrak, 2000) to the Ro-

man-Chinese name matching task, and they re-

ported an F-score of 91.2%. However, when they

trained a machine learning approach on that sys-

tem‟s output, the F-score was only 90.6%.

It is important to recognize that it would be in-

appropriate to present a side-by-side comparison

between Mani‟s work and ours (F = 96.5%), be-

cause there are many differences, such as the

data that was used for evaluation.

2.2 Subsyllable Units

Transliteration is usually based on the way

names are pronounced.
4
 However, each character

in a Roman name generally corresponds to a sin-

gle phoneme, while a Chinese character (CC)

generally corresponds to a subsyllable unit

(SSU). A phoneme is the smallest meaningful

unit of sound, and a subsyllable unit is a se-

quence of one to three phonemes that conform to

the following three constraints. (Wan and Vers-

poor, 1998)

4 Of course, there are exceptions. For example, when a

name happens to be a word, sometimes that name is trans-

lated (rather than transliterated) into the other language.

But our experimental results suggest that the exceptions

are quite rare.

(1) There is exactly one vowel phoneme.
5

(2) At most, one consonant phoneme may pre-

cede the vowel phoneme.

(3) The vowel phoneme may be followed by, at

most, one nasal phoneme.
6

Consider the example in Table 1. The name

“Albertson” consists of eight phonemes in three

syllables.7 The last syllable, SAHN, satisfies the

definition of SSU, and the other two are split into

smaller pieces, resulting in a total of five SSUs.

There are also five CCs in the Chinese version,

阿尔贝特松. We note that the fourth and sixth rows

in the table show similarities in their pronuncia-

tions. For example, the first SSU, AE, sounds

like the first CC, /a/. And, although the sounds

are not always identical, such as BER and /pei/,

Wan and Verspoor claimed that these SSU-CC

correspondences can be generalized in the fol-

lowing way:

Perfect Alignment (PA) hypothesis

If a Roman name corresponds to a sequence of n

SSUs, S1, S2, ..., Sn, and the Chinese form of that

name is a sequence of n CCs, C1, C2, ..., Cn, then

Ci matches Si for all 1 ≤ i ≤ n.

In Section 4, we show that the PA hypothesis

works very well. However, it is not uncommon

to have more SSUs than CCs in a matching name

pair, in which case, the PA hypothesis does not

apply. Often this happens because an SSU is left

out of the Chinese transliteration, perhaps be-

cause it is a sound that is not common in Chi-

nese. For example, suppose “Carlberg” (KAA,

R,L,BER,G) is transliterated as 卡尔贝里 . In

this example, the SSU, R, does not corres-

pond to any of the CCs. We generalize this

phenomenon with another hypothesis:

SSUs Deletion (SSUD) hypothesis
If a Roman name corresponds to a sequence of

n+k SSUs (k>0), S1, S2, ..., Sn+k, and the Chinese

form of that name is a sequence of n CCs, C1, C2,

..., Cn, then, for some set of k Si’s, if those SSUs

are removed from the sequence of SSUs, then the

PA hypothesis holds.

And in the case where the number of CCs is

greater than the number of SSUs, we make the

5 Wan and Verspoor treat the phoneme, /ər/, as in Albertson,

as a vowel phoneme.

6 The nasal phonemes are /n/ and /ŋ/, as in “nothing”.

7 To represent phonemes, we use two different standards in

this paper. The symbols between slashes (like /ər/) are in

the IPA format (International Phonetic Association,

1999). And the phonemes written in capital letters (like

ER) are in the ARPABET format (Klatt, 1990).

Roman Characters: Albertson

Phonemes: AE,L,B,ER,T,S,AH,N

Syllables: AEL,BERT,SAHN

Subsyllable Units: AE,L,BER,T,SAHN

Chinese: 阿尔贝特松

Chinese Phonemes: /a/,/ər/,/pei/,/t
h
ə/,/suŋ/

Table 1. Subsyllable Units

153

corresponding CCs Deletion (CCD) hypothesis.

In the next section, we show how we utilize these

hypotheses.

3 Machine Learning

We designed a machine learning algorithm to

establish a mapping between SSUs and CCs. In

Section 3.1, we show how our system can do

Roman-Chinese name matching, and then we

present the training procedure in Section 3.2.

3.1 Application Mode

Given a Roman-Chinese name pair, our system

computes a match score, which is a number be-

tween 0 and 1 that is meant to represent the like-

lihood that two names match. This is accom-

plished via the process presented in Figure 1.

Starting in the upper-left node of the diagram

with a Roman name and a Chinese name, the

system determines how the Roman name should

be pronounced by running it through the Festival

system. (Black et al., 1999) Next, two algorithms

designed by Wan and Verspoor (1998) join the

phonemes to form syllables and divide the syl-

lables into SSUs.
8
 If the number of SSUs is equal

to the number of characters in the Chinese

name,
9
 we apply the PA hypothesis to align each

SSU with a CC.

The system computes a match score using a

data structure called the SSU-CC matrix (subsyl-

lable unit – Chinese character matrix), which has

a nonnegative number for each SSU-CC pair,

and this value should represent the strength of

the correspondence between the SSU and the

CC. Table 2 shows an example of an SSU-CC

matrix. With this matrix, the name pair <Albert,

阿尔贝特> receives a relatively high match score,

because the SSUs in Albert are AE, L, BER, and

T, and the numbers in the SSU-CC matrix for

<AE,阿>, <L,尔>, <BER,贝> and <T,特> are 2, 2,

3, and 2, respectively.
10

 Alternatively, the system

assigns a very low match score to <Albert,

尔贝特阿>, because the values of <AE,尔>, <L,贝>,

<BER,格>, and <T,阿> are all 0.

3.2 Training Mode

To generate an SSU-CC matrix, we train our sys-

tem on a corpus of Roman-Chinese name pairs

8 This procedure passes through three separate modules,

each of which introduces errors, so we would expect the

system to suffer from compounding errors. However, the

excellent evaluation results in Section 4 suggest other-

wise. This may be because the system encounters the

same kinds of errors during training that it sees in the ap-

plication mode, so perhaps it can learn to compensate for

them.

9 Section 3.3 discusses the procedure used when these num-

bers are not equal.

10 The equation used to derive the match score from these

values can be found in Section 5.

Figure 2. Training Mode

Figure 1. Application Mode

A
E

B
E
R

E
H G

K
A
A L

L
A
H
N

L
I
Y

N
A
H R

S
A
H
N T

伦 0 0 0 0 0 0 1 0 0 0 0 0

利 0 0 0 0 0 0 0 1 0 0 0 0

卡 0 0 0 0 1 0 0 0 0 0 0 0

叶 0 0 1 0 0 0 0 0 0 0 0 0

埃 0 0 1 0 0 0 0 0 0 0 0 0

娜 0 0 0 0 0 0 0 0 1 0 0 0

尔 0 0 0 0 0 2 0 0 0 1 0 0

松 0 0 0 0 0 0 0 0 0 0 1 0

特 0 0 0 0 0 0 0 0 0 0 0 2

贝 0 3 0 0 0 0 0 0 0 0 0 0

连 0 0 0 0 0 0 1 0 0 0 0 0

里 0 0 0 1 0 0 0 0 0 0 0 0

阿 2 0 0 0 0 0 0 0 0 0 0 0

Table 2. SSU-CC Matrix #1

154

that match. Figure 2 shows a diagram of the

training system. The procedure for transforming

the Roman name into a sequence of SSUs is

identical to that presented in Section 3.1. Then, if

the number of SSUs is the same as the number of

CCs,
9
 we apply the PA hypothesis to pair the

SSUs with the CCs. For example, the third name

pair in Table 3 has three SSU-CC pairs: <KAA,

卡>, <R,尔>, and <LIY,利>. So the system mod-

ifies the SSU-CC matrix by adding 1 to each cell

that corresponds to one of these SSU-CC pairs.

Training on the five name pairs in Table 3 pro-

duces the SSU-CC matrix in Table 2.

3.3 Imperfect Alignment

The system makes two passes through the train-

ing data. In the first pass, whenever the PA hypo-

thesis does not apply to a name pair (because the

number of SSUs differs from the number of

CCs), that name pair is skipped.

Then, in the second pass, the system builds

another SSU-CC matrix. The procedure for

processing each name pair that satisfies the PA

hypothesis‟s condition is exactly the same as in

the first pass (Section 3.2). But the other name

pairs require the SSUD hypothesis or the CCD

hypothesis to delete SSUs or CCs. For a given

Roman-Chinese name pair:

where D is the set of all deletion sets that make

the PA hypothesis applicable. Note that the size

of D grows exponentially as the difference be-

tween the number of SSUs and CCs grows.

As an example, consider adding the name pair

<Carlberg, 卡尔贝里> to the data in Table 3. Carl-

berg has five SSUs: KAA,R,L,BER,G, but 卡尔贝-

里 has only four CCs. So the PA hypothesis is not

applicable, and the system ignores this name pair

in the first pass. Table 2 shows the values in Ma-

trix #1 when it is completed.

In the second pass, we must apply the SSUD

hypothesis to <Carlberg, 卡尔贝里> by deleting

one of the SSUs. There are five ways to do this,

as shown in the five rows of Table 4. (For in-

stance, the last row represents the case where G

is deleted ― the SSU-CC pairs are <KAA,卡>,

<R,尔>, <L,贝>, <BER,里>, and <G,Ø>.
11

)

Each of the five options are evaluated using

the values in Matrix #1 (Table 2) to produce the

scores in the second column of Table 4. Then the

11 The Ø represents a deleted SSU. We include a row and

column named Ø in Matrix #2 to record values for the

cases in which the SSUs and CCs are deleted.

For every d in D:

Temporarily make the deletions in d.

Evaluate the resulting name pair with Matrix #1.

Scale the evaluation scores of the d‟s to sum to 1.

For every d in D:

Temporarily make the deletions in d.

For every SSU-CC pair, ssu-cc, in the result:

Add d‟s scaled score to cell [ssu,cc] in Matrix #2.

Example # 1 2 3 4 5

Roman

Characters
Albert Albertson Carly Elena Ellenberg

Subsyllable

Units
AE,L,BER,T AE,L,BER,T,SAHN KAA,R,LIY EH,LAHN,NAH EH,LAHN,BER,G

Chinese

Characters
阿尔贝特 阿尔贝特松 卡尔利 叶连娜 埃伦贝里

Table 3. Training Data

CCs Score Scaled Score

Ø卡尔贝里 0.00 0.00

卡Ø尔贝里 0.90 0.54

卡尔Ø贝里 0.76 0.46

卡尔贝Ø里 0.00 0.00

卡尔贝里Ø 0.00 0.00

Table 4. Subsyllable Unit Deletion

Ø

B
E
R G

K
A
A L R ...

Ø 0.00 0.00 0.00 0.46 0.54

卡 0.00 0.00 0.00 2.00 0.00 0.00

尔 0.00 0.00 0.00 0.00 2.54 1.46

贝 0.00 4.00 0.00 0.00 0.00 0.00

里 0.00 0.00 2.00 0.00 0.00 0.00

...

Table 5. SSU-CC Matrix #2

155

system scales the scores to sum to 1, as shown in

the third column, and it uses those values as

weights to determine how much impact each of

the five options has on the second matrix. Table

5 shows part of Matrix #2.

In application mode, when the system encoun-

ters a name pair that does not satisfy the PA hy-

pothesis‟s condition it tries all possible deletion

sets and selects the one that produces the highest

match score.

3.4 Considering Context

It might be easier to estimate the likelihood that

an SSU-CC pair is a match by using information

found in surrounding SSU-CC pairs, such as the

SSU that follows a given SSU-CC pair. We do

this by increasing the number of columns in the

SSU-CC matrix to separate the examples based

on the surrounding context.

For example, in Table 2, we cannot determine

whether LAHN should map to 伦 or 连. But the

SSU that follows LAHN clears up the ambiguity,

because when LAHN immediately precedes

BER, it maps to 伦, but when it is followed by

NAH, it corresponds to 连. Table 6 displays a

portion of the SSU-CC matrix that accounts for

the contextual information provided by the SSU

that follows an SSU-CC pair.

3.5 The Threshold

Given an SSU-CC name pair, the system produc-

es a number between 0 and 1. But in order to

evaluate the system in terms of precision, recall,

and F-score, we need the system to return a yes

(a match) or no (not a match) response. So we

use a threshold value to separate those two cases.

The threshold value can be manually selected

by a human, but this is often difficult to do effec-

tively. So we developed the following automated

approach to choose the threshold. After the train-

ing phase finishes developing Matrix #2, the sys-

tem processes the training data
12

 one more time.

12 We tried selecting the threshold with data that was not

used in training, and we found no statistically significant

improvement.

But this time it runs in application mode (Section

3.1), computing a match score for each training

example. Then the system considers all possible

ways to separate the yes and no responses with a

threshold, selecting the threshold value that is the

most effective on the training data.

Building the SSU-CC matrices does not re-

quire any negative examples (name pairs that do

not match). However, we do require negative

examples in order to determine the threshold and

to evaluate the system. Our technique for gene-

rating negative examples involves randomly

rearranging the names in the data.
13

4 Evaluation of the System

We ran several experiments to test our system

under a variety of different conditions. After de-

scribing our data and experimental method, we

present some of our most interesting experimen-

tal results.

We used a set of nearly 500,000 Roman-

Chinese person name pairs collected from Xin-

hua News Agency newswire texts. (Huang,

2005) Table 7 shows the distribution of the data

based on alignment. Note that the PA hypothesis

applies to more than 60% of the data.

We used the popular 10-fold cross validation

approach
14

 to obtain ten different evaluation

scores. For each experiment we present the aver-

age of these scores.

Our system‟s precision (P), recall (R), and F-

score (F) are: P = 98.19%, R = 94.83%, and F =

96.48%. These scores are much better than we

originally expected to see for the challenging

task of Roman-Chinese name matching.

Table 8 shows P, R, and F for subsets of the

test data, organized by the number of SSUs mi-

13 Unfortunately, there is no standard way to generate nega-

tive examples.
14 The data is divided into ten subsets of approximately the

same size, testing the system on each subset when trained

on the other nine.

LAHN
(BER)

LAHN
(NAH)

BER
(G)

BER
(T)

伦 1 0 0 0

贝 0 0 1 2

连 0 1 0 0

Table 6. Considering Context

Alignment % of Data

#SSUs - #CCs ≥ 3 1.62%

#SSUs - #CCs = 2 6.66%

#SSUs - #CCs = 1 20.00%

#SSUs - #CCs = 0 60.60%

#SSUs - #CCs = -1 10.48%

#SSUs - #CCs = -2 0.61%

#SSUs - #CCs ≤ -3 0.02%

Table 7. Statistics of the Data

156

nus the number of CCs in the name pairs. The

differences between scores in adjacent rows of

each column are statistically significant.
15

 Per-

fectly aligned name pairs proved to be the ea-

siest, with F = 97.55%, but the system was also

very successful on the examples with the number

of SSUs and the number of CCs differing by one

(F = 96.08% and F = 97.37%). These three cases

account for more than 91% of the positive exam-

ples in our data set. (See Table 7.)

4.1 Deletion Hypotheses

We ran tests to determine whether the second

pass through the training data (in which the

SSUD and CCD hypotheses are applied) is effec-

tive. Table 9 shows the results on the complete

set of test data, and all of the differences between

the scores are statistically significant.

The first row of Table 9 presents F when the

system made only one pass through the training

data. The second row‟s experiments utilized the

CCD hypothesis but ignored examples with more

SSUs than CCs during training. For the third

row, we used the SSUD hypothesis, but not the

CCD hypothesis, and the last row corresponds to

system runs that used all of the training exam-

ples. From these results, it is clear that both of

the deletion hypotheses are useful, particularly

the SSUD hypothesis.

4.2 Context

In Section 3.4, we suggested that contextual in-

formation might be useful. So we ran some tests,

obtaining the results shown in Table 10. For the

second row, we used no contextual information.

Row 5 corresponds to the case where we gave

the system access to the SSU immediately fol-

lowing the SSU-CC pair being analyzed. In row

15 We use the homoscedastic t test (“Student‟s t Test”, 2009)

to decide whether the difference between two results is

statistically significant.

6‟s experiment, we used the SSU immediately

preceding the SSU-CC pair under consideration,

and row 7 corresponds to system runs that ac-

counted for both surrounding SSUs.

We also tried simplifying the contextual in-

formation to boolean values that specify whether

an SSU-CC pair is at a boundary of its name or

not, and rows 1, 3, and 4 of Table 10 show those

results. “Left Border” is true if and only if the

SSU-CC pair is at the beginning of its name,

“Right Border” is true if and only if the SSU-CC

pair is at the end of its name, and “Both Borders”

is true if and only if the SSU-CC pair is at the

beginning or end of its name. All differences in

the table are statistically significant, except for

those between rows 2, 3, and 4. These results

suggest that the right border provides no useful

information, even if the left border is also in-

cluded in the SSU-CC matrix. But when the

SSU-CC matrix only accounted for the left bor-

der, the F-score was significantly higher than the

baseline. Providing more specific information in

the form of SSUs actually made the scores go

down significantly.

4.3 Sparse Data

We were initially surprised to discover that using

the rich information in the surrounding SSUs

made the results worse. The explanation for this

is that adding contextual information increases

the size of the SSU-CC matrix, and so several of

the numbers in the matrix become smaller. (For

example, compare the values in the “BER” col-

umns in Table 2 and Table 6.) This means that

the system might have been suffering from a

sparse data problem, which is a situation where

there are not enough training examples to distin-

guish correct answers from incorrect answers,

and so incorrect answers can appear to be correct

by random chance.

There are two factors that can contribute to a

sparse data problem. One is the amount of train-

ing data available ― as the quantity of training

data increases, the sparse data problem becomes

less severe. The other factor is the complexity of

Alignment P R F

#SSUs - #CCs ≥ 3 72.38% 94.02% 81.79%

#SSUs - #CCs = 2 95.26% 92.67% 93.95%

#SSUs - #CCs = 1 99.07% 93.27% 96.08%

#SSUs - #CCs = 0 99.87% 95.33% 97.55%

#SSUs - #CCs = -1 98.33% 96.42% 97.37%

#SSUs - #CCs = -2 73.80% 94.98% 83.04%

#SSUs - #CCs ≤ -3 7.54% 78.04% 13.71%

Table 8. Varying Alignment of Name Pairs

Contextual Information F

1 Left Border 96.48%

2 No Context 96.25%

3 Both Borders 96.24%

4 Right Border 96.19%

5 Next SSU 87.53%

6 Previous SSU 85.89%

7 Previous SSU and Next SSU 47.89%

Table 10. Evaluation with Context

Hypotheses F

PA 75.25%

PA & CCD 83.74%

PA & SSUD 92.86%

PA & CCD & SSUD 96.48%
Table 9. Varying the Training Data

157

the learned model ― as the model becomes more

complex, the sparse data problem worsens.

Our system‟s model is the SSU-CC matrix,

and a reasonable measure of the its complexity is

the number of entries in the matrix. The second

column of Table 11 shows the number of SSU-

CC pairs in training divided by the number of

cells in the SSU-CC matrix. These ratios are

quite low, suggesting that there is a sparse data

problem. Even without using any context, there

are nearly 8 cells for each SSU-CC pair, on aver-

age.
16

It might be more reasonable to ignore cells

with extremely low values, since we can assume

that these values are effectively zero. The third

column of Table 11 only counts cells that have

values above 10
-7

. The numbers in that column

look better, as the ratio of cells to training pairs

is better than 1:4 when no context is used. How-

ever, when using the previous SSU, there are still

more cells than training pairs.

Another standard way to test for sparse data is

to compare the system‟s results as a function of

the quantity of training data. As the amount of

training data increases, we expect the F-score to

rise, until there is so much training data that the

F-score is at its optimal value.
17

 Figure 3 shows

the results of all of the context experiments that

we ran, varying the amount of training data.

(90% of the training data was used to get the F-

scores in Table 10.) The t test tells us that “No

Context” is the only curve that does not increase

significantly on the right end. This suggests that

all of the other curves might continue increasing

if we used more training data. So even the “Both

SSUs” case could potentially achieve a competi-

tive score, given enough training examples. Also,

16 It is true that a name pair can have multiple SSU-CC

pairs, but even if the average number of SSU-CC pairs per

name pair is as high as 8 (and it is not), one training name

pair per SSU-CC matrix cell is still insufficient.

17 Note that this value may not be 100%, because there are

factors that can make perfection difficult to achieve, such

as errors in the data.

more training data could produce higher scores

than 96.48%.

5 Summary

We designed a system that achieved an F-score

of 96.48%, and F = 97.55% on the 60.61% of the

data that satisfies the PA hypothesis‟s condition.

Due to the paper length restriction, we can on-

ly provide short summaries of the other experi-

ments that that we ran.

1) We experimentally compared six different

equations for computing match scores and

found that the best of them is an arithmetic

or geometric average of Prob(SSU|CC) and

Prob(CC|SSU).

2) We attempted to make use of two simple

handcrafted rules, but they caused the sys-

tem‟s performance to drop significantly.

3) We compared two approaches for automati-

cally computing the pronunciation of a Ro-

man name and found that using the Festival

system (Black et al., 1999) alone is just as ef-

fective as using the CMU Pronunciation Dic-

tionary (CMUdict, 1997) supplemented by

Festival.

4) We tried computing the threshold value with

data that was not used in training the system.

However, this failed to improve the system‟s

performance significantly.

6 Future Work

There are so many things that we still want to do,

including:

1. modifying our system for the task of

transliteration (Section 6.1),

2. running fair comparisons between our

work and related research,

3. using Levenshtein‟s algorithm (Levensh-

tein, 1966) to implement the SSUD and

Contextual Info. All Cells Cells > 10
-7

No Context 0.128 4.35

Right Border 0.071 3.45

Left Border 0.069 3.45

Both Borders 0.040 3.13

Next SSU 0.002 1.12

Previous SSU 0.001 0.78

Both SSUs far less far less

Table 11. Num. SSU-CC Pairs per Matrix Cell

Figure 3. Testing for Sparse Data

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

F
-S

c
o

re

Training Set Size (% of available data)

Left Border Next SSU
No Context Previous SSU
Right Border Both SSUs
Both Borders

158

CCD hypotheses, instead of exhaustively

evaluating all possible deletion sets (Sec-

tion 3.3),
18

4. developing a standard methodology for

creating negative examples,

5. when using contextual information, split-

ting rows or columns of the SSU-CC

matrix only when they are ambiguous

according to a metric such as Informa-

tion Gain (Section 3.4),
19

6. combining our system with other Ro-

man-Chinese name matching systems in

a voting structure (Van Halteren, Zavrel,

and Daelemans, 1998),

7. independently evaluating the modules

that determine pronunciation, construct

syllables, and separate subsyllable units

(Section 3),

8. converting phonemes into feature vectors

(Aberdeen, 2006),

9. modifying our methodology to apply it

to other similar languages, such as Japa-

nese, Korean, Vietnamese, and Ha-

waiian.

10. manually creating rules based on infor-

mation in the SSU-CC matrix, and

11. utilizing graphemic information.

6.1 Transliteration

We would like to modify our system to enable

it to transliterate a given Roman name into Chi-

nese in the following way. First, the system

computes the SSUs as in Section 3.1. Then it

produces a match score for every possible se-

quence of CCs that has the same length as the

sequence of SSUs, returning all of the CC se-

quences with match scores that satisfy a prede-

termined threshold restriction.

For example, in a preliminary experiment,

given the Roman name Ellen, the matcher pro-

duced the transliterations below, with the match

scores in parentheses.
20

 埃 伦 (0.32)

 埃 兰 (0.14)

 埃 隆 (0.11)

 埃 朗 (0.05)

18 We thank a reviewer for suggesting this method of im-

proving efficiency.

19 We thank a reviewer for this clever way to control the

size of the SSU-CC matrix when context is considered.

20 A manually-set threshold of 0.05 was used in this experi-

ment.

Based on our data, the first and fourth results

are true transliterations of Ellen, and the only

true transliteration that failed to make the list is

埃连.

7 Conclusion

There was a time when computational linguistics

research rarely used machine learning. Research-

ers developed programs and then showed how

they could successfully handle a few examples,

knowing that their programs were unable to ge-

neralize much further. Then the language com-

munity became aware of the advantages of ma-

chine learning, and statistical systems almost

completely took over the field. Researchers

solved all kinds of problems by tapping into the

computer‟s power to process huge corpora of

data. But eventually, the machine learning sys-

tems reached their limits.

We believe that, in the future, the most suc-

cessful systems will be those developed by

people cooperating with machines. Such systems

can solve problems by combining the computer‟s

ability to process massive quantities of data with

the human‟s ability to intuitively come up with

new ideas.

Our system is a success story of human-

computer cooperation. The computer tirelessly

processes hundreds of thousands of training ex-

amples to generate the SSU-CC matrix. But it

cannot work at all without the insights of Wan

and Verspoor. And together, they made a system

that is successful more than 96% of the time.

References

Aberdeen, J. (2006) “geometric-featurechart-jsa-

20060616.xls”. Unpublished.

Andrade, Miguel. Smith, S. Paul. Cowlisha, Mike F.

Gantner, Zeno. O‟Brien, Philip. Farmbrough, Rich.

et al. “F1 Score.” (2009) Wikipedia: The Free En-

cyclopedia. http://en.wikipedia.org/wiki/F-score.

Black, Alan W. Taylor, Paul. Caley, Richard. (1999)

The Festival Speech Synthesis System: System Do-

cumentation. Centre for Speech Technology Re-

search (CSTR). The University of Edinburgh.
http://www.cstr.ed.ac.uk/projects/festival/manual

CMUdict. (1997) The CMU Pronouncing Dictionary.

v0.6. The Carnegie Mellon Speech Group.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

Cohen, W. Ravikumar, P. Fienberg, S. (2003) “A

Comparison of String Distance Metrics for Name-

159

Matching Tasks.” Proceedings of the IJCAI-03

Workshop on Information Integration on the Web.

Eds. Kambhampati, S. Knoblock, C. 73-78.

Condon, Sherri. Aberdeen, John. Albin, Matthew.

Freeman, Andy. Mani, Inderjeet. Rubenstein, Alan.

Sarver, Keri. Sexton, Mike. Yeh, Alex. (2006)

“Multilingual Name Matching Mid-Year Status

Report.”

Condon, S. Freeman, A. Rubenstein, A. Yeh, A.

(2006) “Strategies for Chinese Name Matching.”

Freeman, A. Condon, S. Ackermann, C. (2006)

"Cross Linguistic Name Matching in English and

Arabic: A „One to Many Mapping‟ Extension of

the Levenshtein Edit Distance Algorithm." Pro-

ceedings of NAACL/HLT.

Gao, W. Wong, K. Lam, W. (2004) “Phoneme-Based

Transliteration of Foreign Names for OOV Prob-

lem.” Proceedings of the First International Joint

Conference on Natural Language Processing.

Goto, I. Kato, N. Uratani, N. Ehara, T. (2003) “Trans-

literation Considering Context Information Based

on the Maximum Entropy Method.” Proceedings

of MT-Summit IX.

Huang, Shudong. (2005) “LDC2005T34: Chinese <->

English Named Entity Lists v 1.0.” Linguistics Da-

ta Consortium. Philadelphia, Pennsylvania. ISBN

#1-58563-368-2. http://www.ldc.upenn.edu/Cata

log/CatalogEntry.jsp?catalogId=LDC2005T34.

International Phonetic Association. (1999) Handbook

of the International Phonetic Association : A Guide

to the Use of the International Phonetic Alphabet.

Cambridge University Press, UK. ISBN

0521652367. http://www.cambridge.org/uk/cata

logue/catalogue.asp?isbn=0521652367.

Jung, S. Hong, S. Paek, E. (2000) “An English to Ko-

rean Transliteration Model of Extended Markov

Window.” Proceedings of COLING.

Kang, B.J. Choi, K.S. (2000) “Automatic Translitera-

tion and Back-Transliteration by Decision Tree

Learning.” Proceedings of the 2
nd

 International

Conference on Language Resources and Evalua-

tion.

Klatt, D.H. (1990) “Review of the ARPA Speech Un-

derstanding Project.” Readings in Speech Recogni-

tion. Morgan Kaufmann Publishers Inc. San Fran-

cisco, CA. ISBN 1-55860-124-4. 554-575.

Knight, K. Graehl, J. (1997) “Machine Translitera-

tion.” Proceedings of the Conference of the Asso-

ciation for Computational Linguistics (ACL).

Kondrak, G. (2000) “A New Algorithm for the

Alignment of Phonetic Sequences.” Proceedings of

the First Meeting of the North American Chapter

of the Association for Computational Linguistics

(NAACL). Seattle, Washington. 288-295.

Kondrak, G. Dorr, B. (2004) “Identification of Con-

fusable Drug Names: A New Approach and Evalu-

ation Methodology.” Proceedings of the Twentieth

International Conference on Computational Lin-

guistics (COLING). 952-958.

 Levenshtein, V.I. (1966) “Binary Codes Capable of

Correcting Deletions, Insertions and Reversals.”

Sov. Phys. Dokl. 6. 707-710.

Li, H. Zhang, M. Su, J. (2004) “A Joint Source-

Channel Model for Machine Transliteration.” Pro-

ceedings of ACL 2004.

Mani, Inderjeet. Yeh, Alexander. Condon, Sherri.

(2006) "Machine Learning from String Edit Dis-

tance and Phonological Similarity."

Meng, H. Lo, W. Chen, B. Tang, T. (2001) “Generat-

ing Phonetic Cognates to Handle Named Entities in

English-Chinese Cross-Language Spoken Docu-

ment Retrieval.” Proceedings of ASRU.

Oh, Jong-Hoon. Choi, Key-Sun. (2006) “An Ensem-

ble of Transliteration Models for Information Re-

trieval.” Information Processing & Management.

42(4). 980-1002.

 “Student‟s t Test.” (2009) Wikipedia: The Free En-

cyclopedia. http://en.wikipedia.org/wiki/T_test#

Equal_sample_sizes.2C_equal_variance.

Van Halteren, H., Zavrel, J. Daelemans, W. (1998)

”Improving Data Driven Word-Class Tagging by

System Combination.” Proceedings of the 36th

Annual Meeting of the Association for Computa-

tional Linguistics and the 17th International Con-

ference on Computational Linguistics. Montréal,

Québec, Canada. 491-497.

Virga, P. Khudanpur, S. (2003) “Transliteration of

Proper Names in Cross-Lingual Information Re-

trieval.” Proceedings of the ACL Workshop on

Multi-lingual Named Entity Recognition.

Wan, Stephen. Verspoor, Cornelia Maria. (1998).

"Automatic English-Chinese Name Transliteration

for Development of Multilingual Resources." Pro-

ceedings of the 36th Annual Meeting of the Associ-

ation for Computational Linguistics. Montréal,

Québec, Canada.

Wellner, B. Castano, J. Pustejovsky, J. (2005) “Adap-

tive String Similarity Metrics for Biomedical Ref-

erence Resolution.” Proceedings of the ACL-ISMB

Workshop on Linking Biological Literature, Ontol-

ogies, and Databases: Mining Biological Seman-

tics. 9-16. http://www.cs.brandeis.edu/~wellner/

pubs/Wellner-StringSim-BioLINK.pdf.

Winkler, W. “Methods for Record Linkage and Baye-

sian Networks.” (2002) Proceedings of the Section

on Survey Research Methods, American Statistical

Association. http://www.census.gov/srd/www/

byyear.html.

160

