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Abstract
Wedescribe an open-source soware forminimum error rate training (MERT) for statistical machine

translation (SMT). is was implemented within the Moses toolkit, although it is essentially standsalone,
with the aim of replacing the existing implementation with a cleaner, more flexible design, in order to
facilitate further research in weight optimisation. A description of the design is given, as well as experi-
ments to compare performance with the previous implementation and to demonstrate extensibility.

1. Introduction

1.1. Background

In StatisticalMachine Translation (SMT), probabilisticmodels are used to find the best pos-
sible target translation e∗ of a given source sentence f, amongst all possible translations e. e
search for the best translation is known as decoding. e probabilistic models are estimated
from bilingual and monolingual training data, and may include translation models, language
models, reordering models, etc. In order to combine evidence from different models, it is stan-
dard practice to use a discriminative linear model, with the log probabilities as features. If the
features of themodel areh1, . . . , hr, which depend on e and f, then the best translation is given
by

e∗(λ) = argmax
e

r∑
i=1

λihi(e, f)

and depends on the feature weights λ1, . . . , λr.
e advantage of combining log probabilities in such a linear model is that the features can

be arbitrary functions of the source and target sentences, and are not limited to just being log
probabilities. For instance, a word count feature can be added which will penalize long or short
sentences depending on the sign of the corresponding weight.
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e problem then arises of how to optimize the feature weights, in other words how to find
a set of weights which will offer the best translation quality. e standard solution is to use
minimum error rate training (MERT), a procedure introduced by Och (2003), which searches
for weights minimizing a given error measure, or, equivalently, maximizing a given translation
metric. is algorithm enables the weights to be optimized so that the decoder produces the
best translations (according to some automatic metric Err and one or more references ref) on
a development set of parallel sentences.

λ∗ = argmin
λ

Err(e∗(λ); ref)

emain feature of Och’s approach is the exploitation of n-best translation alternatives (for
each input sentence), that allows for fast convergence of the optimization process. e trans-
lation metric most commonly employed as the objective in MERT is the  score (Papineni
et al., 2001), although any automatic metric could in principle be used.

e weight optimization algorithm introduced in Och (2003) (and more fully described
in Koehn (forthcoming)) is a form of coordinate ascent, where the search updates the feature
weight which appears most likely to offer improvements, then iterates. Since calculation of the
objective (in other words, the translation metric) is quite expensive, as much of it as possible
is pre-calculated before running the optimization. Because the error surface is highly non-
convex, MERT is always at risk of being trapped at local maxima; and because it uses n-best
lists as an approximation for the decoder output, it cannot explore the actual parameter space.
However, despite its limitations, MERT tends to produce good results.

MERT is the subject of ongoing research, for example to reduce the local maxima problem
using regularization and stochastic search (Cer et al., 2008), to make convergence faster and
more robust by selecting starting points by random walks (Moore and Quirk, 2008), and to
replace the n-best lists by lattices (Macherey et al., 2008) and thereby improve the estimates of
the expected translation score.

e MERT implementation discussed in this article is a subproject of Moses (Koehn et al.,
2007), one of the leading open source implementations of phrase-based machine translation
(Koehn et al., 2003). Having a state-of-the art SMT system available as open source has been
proved to be a successful way of enabling and stimulating research in the area, as researchers
do not have to invest large amounts of effort in reimplementing the work of others. In order to
improve on the current best systems, they can take Moses as starting point, learn from its open
code, and implement their own proposed improvements on top of it.

1.2. Motivations for New Soware

As stated in the previous Section, MERT is a crucial step for optimally tuning any SMT
system based on a discriminative linear model. Consequently, any possible enhancement of
MERT could improve the overall performance of an SMT system.

Moreover, an effective and efficient implementation of MERT is fundamental per se, and
essentially independent from the MT engine. In fact, weight optimization is still an open issue
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which theMT community continues researching on, especially in regard to convergence issues.
e availability of a flexible and modular open source soware could help this research.

Finally, the original implementation ofMERT provided withMoses is a collection of scripts
written in several programming language and in different periods. e interaction of the mod-
ules is not optimal, and consequently its efficiency is quite limited. e old version of MERT
strongly relies on  (Papineni et al., 2001) as an automatic MT measure, and on the weight
optimization criterion proposed by (Och, 2003); adding new automatic MT measures or new
optimization algorithms would have been hard.

For these reasons, during the Second MT Marathon¹ held in Berlin in 2008, it was decided
to implement MERT in a new standalone open-source soware and to isolate it from Moses as
much as possible. e new implementation was defined from scratch aiming at i) improving
efficiency in terms of computation time, runtime memory consumption, storage disk space,
etc.; ii) increasing modularity and flexibility to easily allow for new scoring measures and new
optimization criteria; iii) parallelizing some steps of the optimization process. e core of the
soware was written in C++. e new MERT soware is licensed under the LGPL².

A detail documentation how to use the soware can be found online³.

2. Design and Implementation

2.1. System Outline

Using a small (typically 500-1000) set of parallel sentences (the tuning set) MERT attempts
to find a set of feature weights which maximize the decoder performance on this set. e
full MERT algorithm consists of an outer loop and an inner loop (as illustrated in Figure 1).
e outer loop runs the decoder over the source sentences in the tuning set with a given set of
feature weights, generatingn-best lists of translations, and then calls the inner loop to optimize
the weights based on those n-best lists, repeating until the weights no longer change. In the
inner loop, an iterative line optimization algorithm (Och, 2003, Koehn, forthcoming) is applied
to search for the highest scoring feature weights using estimates of the decoder score derived
using the n-best lists.

To ensure that the n-best lists are as diverse as possible, the n-best lists produced by each
run of the decoder are merged with those produced by the previous runs. e number of
previous n-best lists can be chosen at runtime.

Within Moses, the outer loop was implemented using a perl script (mert-moses.pl) and
the original implementation of the inner loop (score-nbest.py and cmert) consisted of
perl, python and C programs. e main focus of the improved MERT was the inner loop,
which was completely rewritten from scratch, although a new version of the outer loop script
(mert-moses-new.pl) was also created as it was necessary to change the interface between
the inner and outer loops.

¹http://www.statmt.org/mtm2/
²http://www.gnu.org/licenses/lgpl.html
³http://www.statmt.org/moses/?n=FactoredTraining.Tuning
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Figure 1. Outer and inner loops of MERT

Conceptually the inner loop consists of two components — the scorer and the optimizer —
which are made explicit by the object-oriented design of the new MERT. e job of the scorer
is to use an automatic metric (e.g. , , ) to score a given ranking of the n-best
lists, whilst the optimizer performs the actual parameter optimization. For efficiency purposes,
as much of the metric calculation as possible is performed prior to running the optimization,
because the optimizer will have to score a large number of translation hypothesis. For the 
scorer, for example, all the n-gram statistics are precalculated. e newMERT implementation
is currently split into two processes; extractor, which does the scoring precalculations, and
mert, which does the optimization. e extractor also has the job of extracting the feature
values corresponding to each hypothesis in the n-best list, and making them available to the
optimizer mert.

ere is also a regression testing framework for the new MERT, which simulates the outer
loop with pre-prepared data and makes it possible to check that the optimized weights agrees
with the expected. e testing framework produces timing information to enable the monitor-
ing of MERT runtime performance.

2.2. Object Model

In Figure 2 the main classes in the new MERT implementation are shown, using UML⁴.
e Scorer class is the abstract base class of all scorers, and currently has two concrete sub-
classes; BleuScorer, which implements , and PerScorer, which implements position-
independent recognition rate. e main work of the Scorer is done in the two statistics pre-
calculation methods (setReferenceFiles() and prepareStats()) and the main scoring
method (score()), which is used by the optimizer. In the scoring class hierarchy there is also
another abstract class (StatisticsBasedScorer). is is used to abstract out common
features of automatic translation metrics that are calculated by adding some statistics across all
examples in the test set and then performing a calculation on the totals.

e optimization strategy is also encapsulated in a class, the Optimizer, which
currently has one concrete subclass which implements the line optimization algorithm

⁴Unified Modelling Language - see www.uml.org for more information.
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Figure 2. Class diagram for the MERT implementation

(SimpleOptimizer) and another which merely performs a baseline random optimization.
Another optimization strategy could easily be added by subclassing Optimizer and overrid-
ing theTrueRun()method. Both the scoring strategy classes and the optimizer strategy classes
have corresponding factories which are used to construct an instance of the appropriate type.

In addition to scoring and optimization, the other important set of classes are those that
concern input/output, and these are the Score* and Feature* classes found at the top of
Figure 2. Recall that at the start of the inner loop, the extractor processes the n-best lists,
extracting scoring statistics and feature values, and passes them to the mert process. e file
system is used to interface between these two processes, and the input/output classes are used
to load and save the data in either textual or binary format. e former is easier to debug,
whilst the latter offers better performance. extractor also transforms data from/to textual
and binary formats.

3. Evaluation
In this Section we compare the old and new implementations of MERT. First, we check that

they are similarly effective, i.e. that they provide similar optimized weights, and consequently
achieve similar translation performance. en, we measure the efficiency of the two versions
in terms of disk occupancy and computation time. Finally, we present an add-on of MERT
confirming the ease of extensibility of the new implementation.

3.1. Translation Performance
In order to verify that the new MERT works correctly, it was tested on two French-English

translation tasks using data provided for the ird Workshop on Statistical Machine Transla-
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tion (WMT08) (Callison-Burch et al., 2008), and the results compared to those achieved by
the old MERT implementation. In the first experiment, Moses was trained on the 2007 release
of the news-commentary (nc) parallel training set, using the target side of this for language
modelling. e nc-dev07 set was used for tuning on 100-best lists and the decoder was tested
on nc-devtest07, nc-test07 and newstest08. e  scores for the old and new MERT imple-
mentations are shown in Table 1.

nc-devtest07 nc-test07 newstest08
old mert 24.42 25.55 15.50
new mert 24.87 25.70 15.54

Table 1. Comparison of performance (bleu) of old and new MERT implementations,
using the news commentary training and test data.

e second experiment also used French-English data from the WMT08 workshop, but
this time Moses was trained, tuned and tested on europarl extracts. e training data was the
europarl v3 release, the tuning set was dev06 and the test sets were devtest06, test06 and test07.
Again both the new and old MERT implementations were used for tuning with 100-best lists.
e  scores are shown in Table 2. From the results of these two experiments, it can be

devtest06 test06 test07
old mert 32.75 32.67 33.23
new mert 32.86 32.79 33.19

Table 2. Comparison of performance (bleu) of old and new MERT implementations,
using the europarl training and test data.

seen that the weights learnt by the old MERT and new MERT lead to translation performances
which are virtually indistinguishable.

3.2. Space and Time Performance
We also compared the efficiency of the old and new MERT implementations in terms of

disk occupancy and computation time, we ran the two versions on a development data (dev06)
of the Spanish-English translation tasks ofWMT08workshop. Moses was trained in a standard
way on the data provided for this task. At each iteration we generated 200-best alternatives for
each of the 2000 input sentences in the tuning set. Extraction of score statistics and weight
optimization were performed on one 64bit Intel Xeon CPU 3.20GHz machine.

e number of n-best lists used by the new MERT soware to optimize weights, is con-
figurable at runtime: in addition to the last generated list, it can exploit from 0 to all previous
ones. We ran the new MERT soware in three different conditions, namely using 1, 3, and all
previous n-best lists. Each iteration of the optimization process of the four MERT configura-
tions, namely old, new-all, new-3, new-1, produces a set of weights, and hence a specific
system. ese systems are evaluated both on the dev06 and the test08; BLEU scores are shown
in Figure 3, respectively.
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For some reason to investigatemore deeply, the second iteration of the newMERTproduces
very bad weights, which gives performance close to 0. In any case, this behavior was already
observed byMacherey et al. (2008), who attribute the performance drop to an overfitting issue.
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Figure 3. bleu score of different versions of MERT on dev06 (left) and test08 (right).

Both MERT implementations converges aer 5/6 iterations, when using all the previous
n-best lists; while convergence is slower and less stable if new MERT uses fewer.
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Figure 4. Global size (in Mbytes) of the files needed to the MERT implementations
at each iterations.

Figure 4 reports the total size (in Mbytes) of files needed to store all the required statistics
for the weight optimization at a given iteration. Figures are given for compressed⁵ files for
the old versions and for the binary files of the new one. New implementation requires twice a
bigger disk occupancy; but limiting the number of previous n-best lists taken in consideration
for optimization allows to maintain the disk usage constant.

e plot on the le of Figure 5 shows time (in seconds) to perform a single iteration, ex-
cluding time for decoding and generating the actual n-best list because independent from the

⁵Compression is performed by the gzip command of Linux with its default compression level (6).
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Figure 5. Time for performing a single iteration (left). Time for extracting features
and computing score statistics (phase 1), and for optimizing weights (phase 2)

(right).

inner loop of any MERT implementations. e plot on the right reports separately the time
of the two phases which the inner loop is divided in: 1) extracting feature scores, computing
score statistics and saving on the disk, and 2) optimizing weights.

In phase 1 the old MERT implementation sorts actual translation candidates and removes
duplicates of those already observed in previous iterations; instead, the new one computes and
stores information for all candidates of the actual n-best list. Consequently, in phase 2 the old
version searches the best weights over a smaller set of candidates than the new one. Hence,
the former takes a time proportional to the stored candidates in both phases; while the latter
requires a constant time for the first phase and a larger time for the second one. e gap slightly
expands as the number of iterations (and candidates) increases. Again, the new MERT imple-
mentation easily allows to bound computation time by taking into account fewer iterations.

It is worth noticing that new MERT soware is still under development, and the removal
of duplicates has the highest priority in the agenda of enhancements.

3.3. Extensibility

Since one of the aims of the re-implementation of MERT was to provide a cleaner design
and so improve the extensibility of the codebase, a useful opportunity to test this extensibility
was presented by some recently published improvements to theMERT algorithm. It was shown
by Cer et al. (2008) that by using a form of “regularization”, the risk of MERT being misled by
spurious maxima (i.e. spikes in the error surface) could be reduced, leading to improvements
in translation performance. e central idea is that, when performing a line search for the best
 score, instead of taking the  scores at each point, the  scores are “smoothed
out” across a neighborhood of the point. is smoothing out is accomplished by one of two
strategies; taking the minimum or taking the average.

When implementing the regularization method (Cer et al., 2008), it was clear that it was
not just applicable to , and so was implemented higher up the class hierarchy (in Statis-
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ticsBasedScorer - see Figure 2) so that it could be used with other scoring schemes. e
implementation was a straightforward addition to the score()method.

To test the effect of the regularization on translation performance, experiments were per-
formed using the WMT08 data for the language pairs French-English and German-English.
e europarl parallel training set was used for training, with the europarl monolingual for lan-
guage modelling, dev06 for tuning, and the resulting system tested on devtest06, test06 and
test07. e translation scores are shown in Table 3. Unfortunately no clear pattern is visible in

en-fr en-de
Method Window devtest06 test06 test07 devtest06 test06 test07
none n/a 32.86 32.79 33.19 27.54 27.67 28.07
minimum ±1 32.70 32.65 33.20 27.51 27.79 28.00

±2 32.81 32.75 33.21 27.75 27.85 28.10
±3 32.83 32.76 32.93 27.70 27.92 27.96
±4 32.88 32.77 33.24 27.70 27.87 28.02

average ±1 32.79 32.77 33.29 27.44 27.81 28.00
±2 32.89 32.83 33.28 27.63 27.73 27.98
±3 32.78 32.67 33.19 27.53 27.67 27.87
±4 32.81 32.79 33.25 27.81 28.01 28.22

Table 3. Experiments with mert regularization

the results in Table 3. Examination of the error surfaces explored by MERT suggests that they
are fairly smooth and not prone to the sort of sudden spikes that this regularisation is designed
to smooth out. It is hypothesised that for unrelated language pairs (such as Chinese-English)
these kind of irregularities in the error surface are more common than for related (and there-
fore easier) language pairs such as German-English and French-English. Further investigation
would be required to confirm this hypothesis.

Developers have already added Position Independent Error Rate () as an alternative
automatic translation score. Results are not reported, because they essentially confirm those
achieved by exploiting .

4. Conclusion and Future Work

In this paper we presented a new open-source soware implementing MERT. Although it
is still distributed under Moses toolkit, it is essentially a standalone piece of soware. e most
important characteristic of the distribution is its modularity which allows an easy extensibility
to new error measures and enhanced optimization algorithms. At the moment,  score
and  are implemented and two optimization criteria can be chosen: a (possibly smoothed)
line-wise optimization, and a dummy random optimization.

New version of MERT actually requires more disk usage and is slightly slower than the
previous one, because it does not remove duplicate translations from the n-best lists. is
issue will be addressed very soon. e parallelization of portions of the algorithm is also in the
close-term agenda, to reduce computational time.
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In the close future, developers will also work on i) adding new automatic measures, like
WER and NIST score, and combination of them, ii) constraining the space of the feature
weights, iii) adding priors to weights and iv) implementing the lattice optimization as proposed
by Macherey et al. (2008).
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