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Abstract
In this paper we present a new open-source toolkit for statistical word alignments - Posterior Con-

strained Alignment Toolkit (PostCAT). e toolkit implements three well known word alignment algo-
rithms (IBM M1, IBM M2, HMM) as well as six new models. In addition to the usual Viterbi decoding
scheme, the toolkit provides posterior decoding with several flavors for tuning the threshold. e toolkit
also provides an implementation of alignment symmetrization heuristics and a set of utilities for ana-
lyzing and pretty printing alignments. e new models have already been shown to improve intrinsic
alignment metrics and also to lead to better translations when integrated into a state of the art machine
translation system. e toolkit is developed in Java and available in source at its website ¹. We encourage
other researchers to build on our work by modifying the toolkit and using it for their research.

1. Motivation

Word alignments are a valuable resource for several areas of natural language processing
but especially for statistical machine translation (SMT) as they are a first step in most SMT
pipelines. ere has been a large quantity of research on improving word alignment models,
the impact of differentword alignments on SMTquality, and how to better useword alignments
to extract theminimal units used in SMT systems such as phrases or rules. e vast majority of
this work has unfortunately been done on in-house systems not released publicly with the result
that researchers oen have to re-implement previous work before they can improve upon it.
e notable exception is the widely used GIZA++ toolkit (Och and Ney, 2003). Unfortunately
there have been many improvements since the toolkit’s publication, and the toolkit does not
have many of the components for easy analysis of the alignment results.

We address this gap by introducing a new open-source toolkit - Posterior Constrained
AlignmentToolkit (PostCAT) - that implements improved alignmentmodelswith results proven

¹http://www.seas.upenn.edu/∼strctlrn/CAT/CAT.html
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to boost SMT performance, as well as a set of utilities for the investigation of the effect of word
alignment in overall SMT systems. e new models are trained with a new training procedure,
called Constrained Expectation Maximization (Graça, Ganchev, and Taskar, 2008) that allows
the user to specify prior information such as “alignments should be symmetric” or “each word
should align to at most one word”.

is toolkit has been used by us in three peer-reviewed publications. e procedure was
introduced byGraça et al. (2008) and shown to improve intrinsicmeasures of alignment quality.
Ganchev et al. (2008) show that the new word alignments and posterior decoding improve
overall SMT quality on 6 different language pairs for different training sizes. e new models
lead to an significant improvement (as measured by BLEU (Papineni et al., 2002)) in 16 out
of 18 test cases. Finally the pretty printing and alignment statistics code was used in Graça
et al. (2008) where golden sets of word alignments were produced for all combination of 4
different languages.

is paper is organized as follows. Section 2 gives a brief presentation of the models im-
plemented in the framework. Section 3 describes the code organization, and some easy access
points for improvement. Section 4 describes how to use the code to replicate the results in our
previous papers. Section 5 describes related work and Section 6 concludes the paper.

2. Word Alignments Models

is section briefly describes the models implemented in the PostCAT. More detailed de-
scriptions are available in (Brown et al., 1994), (Vogel, Ney, and Tillmann, 1996) and (Graça,
Ganchev, and Taskar, 2008) along with derivations. Our goal here is to include enough details
to make the next section easier to understand.

2.1. Baseline Models

e “baseline” models are the well know IBM Model 1, IBM Model 2 (Brown et al., 1994)
and the HMM model proposed by (Vogel, Ney, and Tillmann, 1996). e three models can be
expressed as:

p(t, a | s) =
∏

j

pd(aj|j, aj−1)pt(tj|saj
), (1)

with the three differing in their definition of the distortion probability pd(aj|j, aj−1). Model
1 assumes that the positions of the words are not important and assigns uniform distortion
probability. Model 2 allows a dependence on the positions pd(aj|j, aj−1) = pd(aj|j) and the
HMMmodel assumes that the only the distance between the current and previous source word
are important pd(aj|j, aj−1) = pd(aj|aj − aj−1). All the models are augmented by adding
a special “null” word to the source sentence. e likelihood of the corpus, marginalized over
possible alignments is concave for Model 1, but not for the other models (Brown et al., 1994).

All these models we consider are normally trained using the Expectation Maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977). e EM algorithm attempts to maximize
the marginal likelihood of the observed data (s, t pairs) by repeatedly finding a maximal lower
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bound on the likelihood and finding themaximal point of the lower bound. e lower bound is
constructed by using posterior probabilities of the hidden alignments (a) and can be optimized
in closed form from expected sufficient statistics computed from the posteriors. e posteriors
are hardest to compute for the HMM alignment model but can be efficiently calculated by the
forward-backward algorithm.

2.2. NewModels

A well known problem when using the EM algorithm is the potential to be stuck in local
maxima of the likelihood function. More importantly for word alignment, the models are very
gross over-simplifications of the world and the optimal likelihood might not correspond to the
optimal model parameters or optimal alignments. It has been shown that increases in likeli-
hood can actually decrease alignment performance. e obvious solution to this problem is to
bring the model closer to a faithful representation of the real world. is is the approach taken
by IBM models 4+ (Brown et al., 1994) and by (Liang, Taskar, and Klein, 2006) who introduce
an agreement component into the models with an intent similar to the one we address. Un-
fortunately, these changes can make the models intractable, requiring an approximation, oen
without any approximation guarantees. Graça et al. (2008) introduce an augmentation of the
EM algorithm where the model remains unchanged, but the posteriors used during learning
are constrained to be “meaningful.” is has the advantage of allowing tractable inferencewhile
encoding prior knowledge that would be complicated to encode directly in the model.

e PostCAT provides training procedures that augment the baseline models by imposing
constrains on the posteriors that roughly encode the following intuitions: “one word should
not translate to many words” and “translation is approximately symmetric.” We call the for-
mer “substochastic” and the latter “agreement.” e class names in the PostCAT reflect this
terminology. For example “SubstochasticM1” is IBM model one trained with the constraint
that each source word should generate at most one target word in expectation. e original
paper has a more detailed description of the constrained EM framework.

2.3. Decoding

For each sentence pair, the alignment models define a distribution over alignments. For
use in an MT pipeline, we need to extract a single alignment from this distribution. e stan-
dard approach, called Viterbi decoding, is to choose the most probable alignment according
to the model. Another possibility, that sometimes works better (Liang, Taskar, and Klein,
2006, Graça, Ganchev, and Taskar, 2008, Ganchev, Graça, and Taskar, 2008) is to include the
alignment i− j if the posterior probability that word i aligns to word j is above some threshold
θ. is allows the accumulation of probability from several low-scoring alignments that agree
on one point. is accumulated probability is easily extracted from the model posteriors. Note
that this could potentially result in an alignment having zero probability under the model that
generated it. PostCAT implements both decoding strategies with a variety of ways to tune θ,
either by maximing/minimizing some intrinsic alignment metric such as alignment error rate
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(AER (Och and Ney, 2003)) or (balanced) F-1 (Fraser and Marcu, 2007) with respect to a hand
annotated corpus, or using a heuristic when aligned data is not available. One effective heuris-
tic is to tune the threshold to have roughly the same number of points as Viterbi decoding. is
trades less confident points for more confident ones.

2.4. Symmetrization

e word alignment models described above are asymmetric while most most applications
including SMT require a single alignment for each sentence pair. Typically this gap is bridged
by applying a symmetrization heuristic that takes as input two directional alignments and pro-
duces a single “consensus” alignment. e PostCAT implements the 4 most common align-
ment heuristics (Och and Ney, 2003): Intersection, Grow Diag, Grow Diag Final and Union.
Should the user want another heuristic, implementing one in the PostCAT is very straightfor-
ward.

3. Code Organization

e code is organized around 4 main packages: e corpus that contains a representation
of a sentence-aligned bilingual corpus, the alignment package containing a representation of
word alignments, symmetrization heuristics, evaluation code as well as code to output align-
ments in machine-readable or human-readable form as well as collect statistics about align-
ments. e models package which contains the implementation the algorithms for training
and extracting alignments from the models. Finally the programs package contains code to
reproduce experiments from previous work, and example applications such as training and
saving models, decoding with models and producing detailed reports of model performance.
We describe each package in mode detail.

3.1. e alignment package

A word alignment, introduced by (Brown et al., 1994), consists of an object representing
which words in a source language correspond to translations of other words in a target lan-
guage, between two parallel sentences. Figure 1 shows an example of a word alignment repre-
sented as a matrix. An English sentence of length 8 (the rows of the matrix) is the translation
of a Spanish sentence of length 9 (the columns of the matrix). Each entry of the matrix aij

contains information about whether the ith English word is the translation of the jth Spanish
word. e Alignment class stores this information and contains the identity of the respective
sentences in the corpus and only contains the identities of the corresponding words. To save
space, the String representations of the words are stored separately.

In addition to these identities, the Alignment class contains a matrix represent the word
alignment. Each entry in the matrix takes one of several values indicating if the point from the
gold standard, is obtained through decoding or has been added by a symmetrization heuristic.
e Alignment class also stores posterior alignment probability of each word pair. is is
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0 1 2 3 4 5 6 7
0 z p p p p p p p but
1 p x p p p p p p then
2 p p z p p p p p mr.
3 p p p z z z p p baldwin
4 p p p p p p z p said
5 p p p p p p p z:

cependant

, m. baldwin

avait
ensuite

déclaré
:

Figure 1. Example of a word alignment

useful for visualizations to understand how the alignment model works, as well as for more
sophisticated phrase extraction techniques. In our pretty-printer posterior probabilities are
represented by the size of the ball for each alignment entry. e class provides output methods
for themost widely used word alignment formats (NACCLworkshops, Giza++, Moses (Koehn
et al., 2007)). Human readable output is implemented in AlignerOutput for plain text and
AlignerOutputLatex for LATEX. e latter was used to generate Figure 1.

e AlignmentEvaluator class implements the metrics for evaluating an alignment or
group of alignments with respect to a gold standard. Currently implemented are precision,
recall, AER , F-1, balanced F1 as well as methods to compute the number and type of unaligned
points, useful in comparing different models. AlignmentSymetrization implements the
symmetrization heuristics forword alignments: Intersection, Union, GrowDiagonal andGrow
Diagonal Final.

3.2. e corpus package

e major class in the corpus package is BilingualCorpus which represents a parallel
corpus, including any testing and development hand-aligned data. e relevant information
about a corpus, such as file locations, existance of hand-aligned data and sentence length cutoffs
is normally read from a plain-text configuration file. We found this to be much easier to use
than passing this information piecemeal to our executables.

e class creates a dictionary for each language mapping string representations to integers
to reduce thememory footprint of the program. It also collects statistics about individual words
and creates a dictionary of word pairs that occur in the same sentence, also used for improved
efficiency (both time and size) when training the models. ere is also an option to load only
part of the corpus for experiments with part of the training data.

3.3. e model package

e word alignment algorithms in the framework are implemented inside the model pack-
age. We implement IBM Model 1 and IBM Model 2 and the hidden Markov word alignment
model, as well as constrained E-M version of these models. e constraints implemented
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for the constrained E-M versions are “substochastic constraints” and “agreement constraints.”
Substochastic constraints capture the intuition that one word on one language should not align
to many words in the other language (this mitigates the well known garbage collector effect
(Brown et al., 1993)). Agreement constraints capture the intuition that alignment should be a
roughly symmetric process so aligning with one language in source position should give the
same results as aligning with that language in target position. Each of these 9 models is in
a separate class. ere are also some classes that efficiently represent model parameters that
are shared between models. e models can be initialized with default parameters or with pa-
rameters from other models in order to boostrap complicated models from simpler ones. For
example, it is standard practice to initialize the hiddenMarkovmodel with the translation table
from IBM Model 1. e models can use smoothing add-n, specified at creation time.

3.4. e programs package

e programs package contains classes with mainmethods and can be used to reproduce
the results reported in (Graça, Ganchev, and Taskar, 2008) and (Ganchev, Graça, and Taskar,
2008) without programming. Additionally there are illustrative examples of how to use the
framework as a library. Some useful classes in the programs package:

• SaveModels - Trains a given model on a given corpus and save the trained model.
• ComputeAlignmentError - Loads a trained model and evaluates it against hand an-

notated data for a user-specified decoding scheme.
• AlignmentsForMoses - Loads a trained model and saves the alignments for different

symmetrization heuristics in a format usable by the Moses script. To use Moses with our
alignments, call the moses training script with --firstStep 4.

• PrettyPrintAlignments - Pretty prints the test set alignments for a given model and
decoding scheme. We found this very useful for getting an understating of model be-
havior.

4. How to use PostCAT

is section describes how to use the PostCAT as a program to reproduce our results as
well as how to extend it.

4.1. Getting and Installing the toolkit

e toolkit can be downloaded from its website as a gzipped tar file. It is implemented in
Java and uses the GNU Trove library ² which is distributed with the toolkit source code. e
toolkit includes an Apache Ant³ buildfile, so compiling it should just require running ant.

²http://trove4j.sourceforge.net/
³http://ant.apache.org/
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4.2. Included Example

Included with the code is some sample data in the small_data/ sub-directory. We have
written some bash scripts as illustrations of how to use the code. To run these, you will need
some auxiliary programs (e.g. tee, find, tail) that are standard on *NIX systems. If you
don’t have them, it should be easy to change the scripts or just copy the commandline. e
small_data directory contains a corpus parameters file called small_hansards.params. In
addition to the comments, the file has the following entries:

• Source and target language suffixes. For English, French we have ‘en’, ‘fr’.
• A training, word-alignment development and test file bases. e files have ‘.en’ appended

for the English side and ‘.fr’ for the French language.
• A name for the corpus. is is used when creating output directories.
We include scripts that we found useful when running our experiments. One script trains

the hidden Markov alignment models (both baseline and agreement) and saves them. An-
other script computes alignment error metrics for each model. A third included script outputs
alignments in a format accepted by the Moses SMT system. e package README file has more
details on how to run the scripts and how to integrate the output with Moses.

To reproduce the results reported in (Graça, Ganchev, and Taskar, 2008) and (Ganchev,
Graça, and Taskar, 2008) one needs to obtain the corpora separately.

4.3. Extending the toolkit

It is fairly straightforward to extend the toolkit with your own alignment model, or to pro-
duce statistics you might be interested in. In this subsection we will explain how to write the
HMM with substochastic constraints, as an example for how to extend the toolkit with new
models. We wrote a class SubstochasticHMM extends HMM to implement the model. In
the interest of space we do not describe the implementation of the straightforward methods:
the constructors and the methods to load and save the model, since their implementation is
trivial. e main difference between the substochastic HMM and the regular HMM is that
on the E-Step of the training method, we need to project the posteriors to a space where the
sum of the posteriors for each source word is smaller than or equal to one. e mathematical
derivation of the projection step is not central to the explanation of how to extend the toolkit
so we include it as Appendix A. Suffice it to say that we can implement the projection step as
a few iterations of gradient descent.

We created a copy of the public EStepStats eStep()method. Aer the computation
of the posteriors (makePosterior(forward, backward, likelihood)) we project them
onto the constraint set. e projection is implemented as the method
processPosteriors(posteriors, s, f, probCache)
where s, f and probCache are the source sentence, target sentence, and a cache of the trans-
lation probabilities respectively. e MStepmethod and inference methods are the same as in
the original HMM so we do not need to implement them and we are done.

Suppose that having implemented our new model, we decide that we would like to per-
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form a different kind of decoding. In particular, since we could perform the projection by
computing some sentence-specific translation probabilities, we might want to try using these
translation probabilities at decode time. If we want to do this, we would need to override the
posteriorDecodingAlignment method of the HMM class. e new method will be almost
identical to the old, with the exception that we would use the

processPosteriors(posteriors, s, f, probCache)

method that we implemented for eStep() in order to compute the projected posteriors right
aer the call to makePosteriors. To make a similar update to Viterbi decoding we need to
override the viterbiAlignment method. At the start of the method, we would add code
similar to the start of posteriorDecodingAlignment to compute posteriors and project
them to the constraint set. We would then replace the call to _tb.getProbability, which
currently uses the translation table to look up the translation probability and we would instead
look up the translation probability in our probCache array, which has been updated by the
call to processPosteriors.

5. Related Work

In a standard SMT pipeline PostCAT is a plug-in replacement for the GIZA++ toolkit and
serves the same purpose. In fact if the goal is to produce word alignments using the baseline
models we cannot recommend PostCAT over GIZA++ since the GIZA++ implementations
are faster, and GIZA++ is integrated into most MT systems scripts (e.g. Moses ⁴, Syntax Aug-
mented Machine Translation (SAMT) (Zollmann and Venugopal, 2006) ⁵). Having said that,
if the goal is to analyze the alignment results to understand how they impact translation per-
formance, PostCAT provides useful visualization and analysis tools. Additionally, it provides
a set of alignment algorithms, not implemented elsewhere and proven to work well for SMT.
Furthermore, the code is easy to read and modify so if a researcher wants to extend the mod-
els, try different decoding or symmetrization schemes, or fine-tune some aspect of alignment
this should be easy to do in PostCAT. For instance, two recent trends are the use of n-best
alignments, and the use of alignment posterior probabilities when extracting phrases. Both
of these are easily done in PostCAT since the posteriors are available within the Alignment
object. Another open source word aligner, the Berkeley Aligner, available online⁶ contains the
implementation from (Liang, Taskar, and Klein, 2006). eir contribution is a model that has a
similar intuition as our agreement constraints, but with very different realization. ey define
an intractable joint model and use an approximation to optimize model parameters.

⁴http://www.statmt.org/moses/
⁵http://www.cs.cmu.edu/~zollmann/samt/readme.html
⁶http://www.cs.berkeley.edu/~pliang/software/
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6. Conclusions and Future Work

Wehave presented thePosteriorConstrainedAlignmentToolkit (PostCAT), an open-source
toolkit for word alignment. Ongoing work on the toolkit is in three directions. Firstly the
toolkit is being extended to work over the map reduce paradigm for parallelization. Secondly,
new alignment models are being developed in the toolkit’s framework and will be available in
future versions. irdly, we are integrating newmethods for phrase extraction, and rule extrac-
tion from a word aligned corpora, using the full information available in the word alignments.
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A. Derivation of Substochastic Projection

For notational convenience we encode the desired constraints in terms of some feature functions
fi(x, a) for each source word i, where x are the two sentences and a is an alignment. Each feature is as-
sociated with a source word i. e feature is a function from an alignment a to a real number, counting
how many foreign words are aligned to source word i in that particular alignment. We group all fea-
tures fi into a vector f. Note that there are only linearly many such feature functions, even though we
have exponentially many possible alignments a. e projection step is the solution to the optimization
problem:

argmin
q

KL(q(a) || pθ(a|x)) s.t. Eq [f(x, a)] − 1 ≤ 0. (2)

where KL denotes Kullback-Leibler divergence, pθ is the current model (with parameters θ) and Eq

denotes expectation with respect to the probability distribution q. For more details of why we might
want to do this we refer the reader to Graça et al. (2008). e optimization problem in Equation 2 can be
efficiently solved in its dual formulation:

argmax
λ≤0

λ
⊤1 − log

∑
a

pθ(a | x) exp {λ
⊤f(x, a)} (3)

where we have solved for the primal variables q as:

qλ(a) = pθ(a | x) exp{λ
⊤f(x, a)}/Z, (4)

with Z a normalization constant that ensures q sums to one. We have only one dual variable λi per
constraint, and we optimize them by taking a few projected gradient steps. e partial derivative of the
objective in Equation 3 with respect to parameter λi is simply 1 − Eqλ

[fi(x, a)] . So we have reduced the
problem to computing expectations of our features under the model q. For our particular features this
reduces to computing expectations under the normal HMM model. To see this, we have by the definition
of qλ and pθ ,

qλ(a) = −→
p (a | x) exp{λ

⊤f(x, a)}/Z

=
∏

j

−→
p d(aj |aj − aj−1)−→p t(tj |saj

) exp{λ
⊤f(x, a)}/Z

=
∏

j,i=aj

−→
p d(i|i − aj−1)−→p ′

t(tj |si)

Where we have let −→
p ′

t(tj |si) = −→
p t(tj |si)eλi , and retained the same form for the model. So the pro-

jection step just creates some sentence-specific translation probabilites for each word pair. e inference
procedures are other unchanged but use these updated translation probabilites. We enforce the constraint
that λ ≤ 0 by projecting to the negative orthant aer each gradient step.
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