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Abstract
The present paper summarizes our recent results concerning English-Czech Machine Trans-

lation implemented in the TectoMT framework. The system uses tectogrammatical trees as the
transfer medium. A detailed analysis of errors made by the previous version of the system
(considered as the baseline) is presented first. Then several improvements of the system are de-
scribed that led to better translation quality in terms of BLEU and NIST scores. The biggest per-
formance gain comes from applying Hidden Tree Markov Model in the transfer phase, which
is a novel technique in the field of Machine Translation.

1. Introduction

We report on a work in progress on developing English-Czech machine translation
(MT) system called TectoMT.1 This system participated at the Workshop on Statisti-
cal Machine Translation (WMT) in 2008 and 2009 (Žabokrtský et al., 2008; Bojar et al.,
2009). The translation is carried out in three phases: analysis, transfer and synthesis.
Similarly to Bojar et al. (2008a), the transfer phase implemented in TectoMT uses tec-
togrammatical trees and exploits the annotation scheme of the Prague Dependency
Treebank, but (unlike in the cited work) the transfer does not use Synchronous Tree
Substitution Grammars.

In Section 2, we shortly describe our baseline system. In order to identify its most
prominent errors, their types and sources, we have manually annotated a sample of
250 sentences; the resulting error analysis is presented in Section 3. Modifications
of our baseline system and their evaluation are described in Section 4. One of the
most important modifications – the introduction of Hidden Markov Tree Models to
the transfer phase – is explained in Section 5.

1http://ufal.mff.cuni.cz/tectomt/
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2. Baseline system

The TectoMT version which participated in WMT 2009 is used here as the base-
line system. In this version, the translation process consists of about 80 steps imple-
mented in so-called blocks (basic TectoMT processing units). We give here only a brief
overview.

2.1. Analysis

Each sentence is tokenized (roughly according to the Penn Treebank conventions),
tagged by the English version of the Morce tagger (Spoustová et al., 2007), and lem-
matized in order to obtain the morphological layer (m-layer). Maximum Spanning
Tree dependency parser (McDonald et al., 2005) is applied to create analytical trees
(a-trees). These are then converted to the tectogrammatical ones using a sequence of
heuristic blocks: Functional words (such as prepositions, subordinating conjunctions,
articles etc.) are removed. Only morphologically indispensable categories (called
grammatemes) are left with the tectogrammatical nodes (t-nodes). The information
about the original syntactic form is stored in attributes called formemes.2 Several other
attributes are filled (e.g. functors, coreference links, named entity types).

2.2. Transfer

First, the topology of target-side t-trees is copied from source-side t-trees. Prob-
abilistic dictionaries provide n-best lists of lemmas and formemes. In the baseline
scenario, formemes are translated independently for every node as the most probable
variant from the n-best list. Consequently, lemmas are translated as the most probable
variant that is compatible with the already chosen formeme. The compatibility is en-
sured by a set of rules. Additional rule-based blocks are used to translate other t-layer
attributes (grammatemes) and to change topology and word order where needed.

2.3. Synthesis

In this phase Czech analytical trees are created from the tectogrammatical ones
(auxiliary nodes are added), but the process of synthesis continuously goes on (mor-
phological categories are filled, word forms are generated), so that in the last block,
the sentence is generated by simply flattening the tree and concatenating the word
forms.

2Formemes are not used in Prague Dependency Treebank, they were introduced to TectoMT with re-
gards to the needs of MT (Žabokrtský et al., 2008). Formemes cannot be considered as a genuine component
of the tectogrammatical layer of language description, but they facilitate formalizing the relation between
tectogrammatics and surface syntax and morphology. Examples of formemes are: n:subj – semantic noun
in subject position, n:for+X – semantic noun with preposition for, v:because+fin – semantic verb as a head of
subordinating finite clause introduced by because, v:without+ger – semantic verb as a gerund after without,
adj:attr – semantic adjective in attributive position.
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3. Error annotations and analysis

Manual analysis of translation errors is expensive and time-demanding, but it can
identify types and sources of errors. This knowledge is very helpful for developers of
MT systems, that perform transfer on some level of abstraction that is higher than sim-
ple phrase-to-phrase. There are many papers on manual evaluation of MT errors, (e.g.
Koehn and Monz, 2006), but they are mostly limited to scoring fluency and adequacy.
Some papers (Hopkins and Kuhn, 2007) use manual analysis based on some form of
edit distance, i.e. the number of editing steps (of various types) needed to transform
the system output into an acceptable translation. One of the most detailed manual
analysis frameworks is the Error Classification Scheme described in Vilar et al. (2006),
which classifies errors into a hierarchical structure.

Our proposed error analysis framework is similar to that of Vilar et al. (2006), but
instead of three hierarchical properties of errors (type, subtype and sub-subtype) we
have five properties: seriousness, type, subtype, source and circumstances. Errors are
marked in text by error markers which the annotator simply inserts in front of relevant
words. If needed, one word may have more than one error marker. Every error marker
describes all the five properties of an error. Details about the error analysis framework
including several examples of annotated text can be found in Popel (2009).

Source Description #errors

A
na

ly
si

s

tok tokenization errors 16
tagger PoS tagging errors 37
lem lemmatization errors 1
parser errors associated with parsing and related tasks

(building a-layer from m-layer)
300

tecto tecto-analysis errors (building t-layer from a-
layer)

68

Tr
an

sf
er noniso errors caused by the assumption of t-tree isomor-

phism (which is currently required in the Tec-
toMT translation)

109

other other errors associated with the transfer (transla-
tion of lemmas, formemes, grammatemes, noun
gender assignment,...)

845

syn synthesis errors (generation of text from the target
t-layer)

42

? source unknown 45
total 1463

Table 1. Distribution of translation errors with respect to their sources
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Circumstance Description – errors associated with … #errors
ne named entity 104
num numbers (numerals) 40
coord coordination or apposition 117

Table 2. Distribution of translation errors with respect to their circumstances

The first author of this paper annotated 250 sentences. Tables 1 – 3 show num-
bers of occurrences of errors for categories source, circumstances, type and subtype.3 As
expected, most errors lie in the transfer phase. Only 8% of errors are caused by the
unfulfilled presumption of isomorphic t-trees, whereas 56% are other transfer errors
that could be repaired within the node-to-node transfer paradigm.4 Another notable
source of errors is parsing – 21%. We have found that 39% of these parsing errors are
associated with coordinations. Also other observations indicate that the parsing of
coordinations is a significant problem in TectoMT: There were 89 coordinations in the
test data and more than half of them is parsed incorrectly which results in 1.13 serious
errors per coordination on average.

The most common type of error is a wrong choice of lemma (lex = 37%), followed
by a wrong choice of formeme (form = 33%) and grammateme (gram = 10%). Several
subtypes of lex were classified (compound words, errors associated with named en-
tities or reflexivity of lemmas), but most lex errors remain unclassified. We have not
carried out any subclassification of form errors except registering problems with the
Czech formeme v:že+fin. Among subtypes of gram, the most problematic one is the
choice of correct gender5 and number.

3We have also distinguished between serious and minor errors, but for brevity, this last category (se-
riousness) is not shown in the tables. Errors with types punct, order and case were mostly minor, other
types were mostly serious.

4This finding is for us – TectoMT developers – very important. Of course, we are aware of the cases
that cannot be translated within the node-to-node paradigm (e.g. take part → účastnit se, make X public →
zveřejnit X) and we plan to solve them in TectoMT in future. However, those 8% is a relatively small number
and thus we primarily focus on more frequent types of errors.

5It is well known that when translating from English to Czech, gender must be sometimes guessed from
context, since English does not indicate gender for verbs, but Czech does.
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Type Description #
Subtype errors

lex wrong lemma 544
asp wrong aspect of a verb 6
se wrong reflexivity, e.g. t-lemma stát_se instead of stát 15

neT named entity translated, but should remain unchanged 11
neU named entity unchanged, but should be translated, because

the original form is not acceptable in the target language
4

neX assumed named entity unchanged, but should be translated,
because it is not really a named entity (Bill was approved.)

8

com unchanged word due to an unprocessed compound word 13
unk unchanged (possibly missing in the dictionary) word other

than neU, neX and com
6

other default value when no subtype is specified 481
form wrong formeme 481

ze formeme v:že+fin instead of v:rc or v:fin 39
other default value when no subtype is specified 442

gram wrong grammateme and related errors 151
gender wrong grammateme of gender (feminine, neuter, masculine

animate, masculine inanimate)
41

person wrong grammateme of person (first, second, third) 3
number wrong grammateme of number (singular, plural) except

cases classified as numberU (see below)
26

tense wrong grammateme of tense (simultaneous, preceding, sub-
sequent)

5

mod wrong verbal, deontic, dispositional or sentence modality 18
deg degree of comparison (positive, comparative, superlative) 4
neg negation (affirmative, negative) 19
svuj switched m-lemma svůj with jeho, její, … 17

numberU number unchanged, but should be changed e.g. Ministry of
Finance(sg) → Ministerstvo financí(pl)

8

other default value when no subtype is specified 10
phrase phrases, idioms, deep syntactic structures that cannot be

translated node-to-node.
81

miss missing words that are not covered by the types above 19
extra superfluous words that are not covered by the types above 36
punct punctuation errors 64

brack missing, superfluous or displaced brackets 24
other default value when no subtype is specified 40

order wrong word order (except cases classified as punct) 64
case switched upper/lower case 23

Table 3. Distribution of translation errors with respect to their types and subtypes
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4. Modifications and their evaluation

We have implemented several modifications to our system in order to improve the
translation quality. We present here an overview of the most important modifications.

4.1. Analysis

• We have done slight modifications of the tokenization, so for example 3rd is not
split into two tokens anymore.

• We have developed a new implementation of the lemmatization – it fixes some
errors made by the original implementation and it is more than 70 time faster.

• We have improved the parsing in the following two ways without actually chang-
ing the parsing algorithm or its features:
We have implemented rule-based blocks that fix some frequent “mistakes” made
by the parser. Some of these “mistakes” are real errors, but some are caused by
different parsing guidelines concerning for example auxiliary verbs or multi-
word prepositions.
We noticed that in the analysed sample, there are 22 sentences with parentheses
and only 2 of them are parsed correctly. Sometimes the parenthesis is incorrectly
divided and each part attached to another parent. Sometimes there are parsing
errors also in the rest of the sentence, but these errors disappear, when we try
to parse the sentence without the parenthesis. By parsing the parenthesis and
the rest of the sentence independently we ensure that the parenthesis remains
in its own subtree, which is then attached to the main sentence tree.

• Analytical function is the key attribute of the a-layer. It specifies the type of de-
pendency relation of a node to its governing node. The baseline system used an-
alytical functions only to mark coordinations and prepositions. We have added a
block that recognizes also other types of dependencies, e.g. subject, object, pred-
icate, adverbial, attribute, auxiliary verb, article. As there are no guidelines for
English analytical functions yet, we had to decide how to annotate phenomena
without any Czech equivalent (articles, phrasal verb particles, infinitive marker
to, negation not). For details see Popel (2009).

• We have implemented a new procedure that builds the t-layer from the a-layer.
It exploits analytical functions, which makes the procedure more clear. It deals
with special cases that were not solved properly in the baseline implementation.
We have aimed at a robust implementation that can handle also some cases with
inaccurate parsing. Also, we have aimed at a modular implementation – the pro-
cedure is divided into five blocks and three of them are language independent.

4.2. Transfer

Our new design of the transfer phase is more modular. We have created 10 new
blocks which can be combined in various translation scenarios.
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• rule-based blocks that translate some special phenomena, e.g. ordinal numerals
(1st, 32nd, 999th) can be translated by a simple rule (to 1., 32., 999.),

• blocks that save all translation variants proposed by the dictionaries6 to the at-
tributes of nodes,

• blocks that rerank these variants using either more detailed models (e.g. valency
formeme translation dictionary) or rules (e.g. the rule that filters out verbal
lemmas whose aspect is incompatible with the given context),

• a block that selects the optimal combination of lemmas and formemes for every
node using Hidden Tree Markov Model (HMTM). This is discussed in detail in
Section 5.

4.3. Synthesis

• Word forms are generated according to lemmas and morphological categories.
In theory, the word form should be fully specified by the lemma and morpho-
logical tag and there is a deterministic Czech word form generator suited for the
task (Hajič, 2004). In practice, the tags are “underspecified”, because they are
generated from the t-layer that was translated from English. Some categories
are not known and must be guessed.
We have created a module that includes a subroutine for generating all forms of
a given lemma whose tags match a given regular expression. The word forms
are sorted according to their frequency. The model was trained on the corpus
SYN (with 500 million words) of Czech National Corpus.7

• Commas (more precisely, a-nodes corresponding to commas) are added to bound-
aries of finite clauses. We have refined the rules for special cases such as quota-
tions. We have also created a new block that coindexes all nodes belonging to
the same finite clause.

4.4. Evaluation

Aside from evaluating the total difference of BLEU score between the baseline and
our new modified version of TectoMT (see Table 4), we want to evaluate also the effect
of each modification separately. However, many of the modified blocks would not
work with the baseline system, because we have meanwhile added some functionality
also to TectoMT internals. Therefore, we have chosen the opposite way – we take the
new modified system, substitute one or more blocks with their baseline equivalent

6We use a probabilistic dictionary of lemmas (Rouš, 2009) created from the parallel corpus CzEng (Bojar
et al., 2008b) and other sources as a replacement for the older PCEDT dictionary (Cuřín et al., 2004). For
the translation of formemes we use the so-called valency formeme translation dictionary, which models
the probability of target formeme given source formeme and source parent’s lemma, and simple formeme-
to-formeme dictionary as a fallback.

7http://www.korpus.cz
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system BLEU NIST
baseline 0.0659 3.9735
modified 0.0981 4.7157

Table 4. BLEU&NIST evaluation of the new system

(called “original implementation”) and we measure the impairment caused by the
absence of the modification in question. This value can be loosely interpreted as an
improvement caused by the modification, but we must be careful, because there may
be “interferences” between some blocks.

We divided the evaluation data of WMT 2009 Shared Task (news-test2009) into
two parts:

• First 250 sentences were used for the manual annotation of errors of the baseline
implementation (as presented in Section 3).

• The rest (2 777 sentences) is our test set. Tables 4 and 5 are evaluated on this test
set.

Modification diff (BLEU) diff (NIST)
original analysis 0.0078 0.1363
—original tokenization 0.0008 0.0105
—original lemmatization 0.0006 0.0294
—original parsing 0.0072 0.3006
—original building of t-layer 0.0053 0.1024

original transfer 0.0171 0.4189
—without HMTM 0.0130 0.2483

original synthesis 0.0031 0.0621
original quotation marks 0.0085 0.1757
all above together 0.0322 0.7422

Table 5. Modifications of analysis, transfer and synthesis

Note on BLEU&NIST scores reliability
Correct opening and closing quotation marks are in Czech „ and “. These symbols are
produced by TectoMT as a translation of English “ and ”. However, reference trans-
lations in WMT09 training and test data use plain ASCII quotes ("). Statistical MT
systems trained on such data produce of course also ASCII quotes. For the purpose
of a fair comparison with those systems, we have created a simple block Ascii_quotes
that converts correct Czech directional quotes to incorrect ASCII ones. We were sur-
prised how a large “improvement” can be achieved with this block on our test data –
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0.0085 BLEU (0.1757 NIST). This fact only confirms that neither BLEU nor NIST can
be used as the ultimate measure for comparing two MT systems of different types.

5. Hidden Markov Tree Models

5.1. Motivation

Most errors are caused by the transfer of lemmas and formemes
In the manual annotation of translation errors we have discovered that more than
half of all errors are caused by the transfer phase and 92% of these errors are wrong
lemmas and wrong formemes. The choice of correct lemma and formeme is of course
a very difficult task and the quality of translation depends heavily on the quality of the
dictionaries used. However, even with an ideal dictionary many errors will occur if we
just select the most probable variant for each node without considering the context.

Two meanings of the word speaker
For example, word speaker with the sense loudspeaker should be translated as repro-
duktor and according to the lemma dictionary used in our scenario the translation
probability is P(reproduktor | speaker) = 0.45. When the sense is spokesperson, the cor-
rect translation is mluvčí and P(mluvčí | speaker) = 0.26. Perhaps, there were more
texts about loudspeakers than texts about spokespersons in the CzEng parallel cor-
pus upon which the dictionary is based. The baseline system translates every word
speaker as reproduktor, so we encounter errors in phrases like speaker of the Ministry of
Transport.

Linear context and tree context
In phrase-based MT, the context used to select the best translation of a word is linear
– basically, the context is a phrase, i.e. a string of surrounding words. There are some
experiments with “phrases with gaps” (Simard et al., 2005), but in most systems a
phrase is defined as a contiguous string of words (not necessarily forming a phrase in
a linguistic sense).

We believe that it is more appropriate to use a local tree context, i.e. the children
and the parent of a given node. Not only that it is appropriate according to linguistic
intuition, but it should help us to face the data sparseness.

For illustration, consider the before-mentioned example with the phrase speaker of
the Ministry of Transport. Human translators recognize from semantics that the speaker
is a human being (not a loudspeaker) and translate it as mluvčí. Phrase-based MT sys-
tems can learn the whole phrase or possibly just the phrase speaker of the Ministry, but
they must also learn phrases like speaker of the Chinese Ministry, speaker for the Foreign
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Ministry, speaker for the Indian External Affairs Ministry etc. in order to translate them
correctly.8

When using the local tree context, we can for example learn that speaker should
be translated as mluvčí if it has a child node with the lemma ministry. This way we
cover all the before-mentioned phrases including the unseen ones. Another knowl-
edge learned from a parallel dependency treebank may be that speaker should be trans-
lated as mluvčí if its parent node has the lemma name (e.g. in phrases speaker’s name,
name of the next speaker) or that speaker should be translated as reproduktor if its parent
node has the lemma buy (e.g. in a phrase buy an expensive speaker).

How to learn, represent and use tree context?
The obvious question is how can we learn, represent and use such knowledge. The
preceding paragraph formulates the knowledge in a form of rules. Although this
approach could be used in MT (rules can be automatically learned from the treebank),
it is difficult to combine it with probabilistic methods. We have decided to represent
the knowledge in a form of a model that describes the probability of a node given its
parent node. More precisely, we model the probability of a lemma and formeme of
the dependent node given a lemma and formeme of the governing node.

The model can be learned from a treebank using maximum likelihood estimate,
but similarly to traditional (linear) language models it is necessary to smooth the prob-
abilities and there are many possible ways how to perform the smoothing.

Tree context: bilingual or target-language?
The probabilistic model introduced in the previous paragraph is a monolingual tree
model and can be learned from a target-language treebank (Czech in our case). With
the availability of parallel treebanks we can develop also “bilingual tree models”. An
example of bilingual tree model is the valency formeme translation dictionary. It spec-
ifies the probability of formeme of the target-side node given formeme of the source
node and lemma of the source node’s parent.

Ideally, we would like to use more complex bilingual tree model that defines also
target-side lemmas and that is conditioned also by other attributes (lemma of the
source node, lemmas of its children etc.). This complex model would supersede both

8The example if oversimplified. First, in phrase-based MT systems, it is the target-language model that
should cover such long phrases, so it would be more accurate to present Czech translations of the phrases.
Second, we suppose that the hypothetical phrase-based system is trained on the same parallel corpus as
our dictionary, so P(reproduktor |speaker) > P(mluvčí |speaker) and similarly for backward probabilities
P(speaker |reproduktor) > P(speaker |mluvčí). Otherwise, there would be no need for the language model
to cover the phrases, if the translation model itself would choose the correct translation. Third, since the
phrases learned by phrase-based MT systems are usually not constrained to linguistically adequate con-
stituency phrases, it is possible that the system will learn that speaker of the should be translated as mluvčí.
However, there are plenty of more relevant examples of long-distance dependencies that are not covered
even by 6-gram or 7-gram language models.
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formeme and lemma dictionaries as well as the target-language tree model. However,
we do not have enough parallel data to reliably train such a model. Since the amount
of monolingual training data is much larger, we try to exploit it as much as possible.

First attempts at using tree context
In the baseline translation of lemmas and formemes, the only usage of tree context
was in the valency formeme translation dictionary. Moreover, lemmas and formemes
were translated almost independently – there was only a rule to check for compati-
bility of a lemma with a formeme, but no probabilistic model describing their joint or
conditional probability. In other words, the target-language tree model was not used
in the baseline implementation.

One of the first attempts at exploiting the target-language tree model performed a
top-down depth-first traversal through the t-tree translated by the baseline system. Its
main idea was to choose the best lemma and formeme according to a loglinear com-
bination of three models: translation probability of lemma, translation probability of
formeme and target-language tree model created by Václav Novák. The main differ-
ence from HMTM and the tree-modified Viterbi algorithm presented in this paper is
that the top-down traversal allows only local optimization based on the parent node
(but no children nodes), whereas the tree-modified Viterbi algorithm searches for the
global maximum.

Why do we need Hidden Markov Tree Models?
The apparent weak point of the before-mentioned top-down traversal occurs when
the correct lemma or formeme can be determined only from the children rather than
from the parent (e.g. He is a speaker of the ministry versus It is an expensive speaker).
Of course, if we use a similar algorithm with bottom-up traversal, these cases will
be handled correctly, but errors will be introduced in the opposite cases – when the
correct lemma or formeme can be determined only from the parent, but not from
children (e.g. according to the speaker versus buy a speaker).

Not only that both the types of cases (parent/children are important for transla-
tion) are frequent, but sometimes we need to know the parent as well as the children
to choose the correct translation. The child-parent dependencies are chained in the
tree, so we need to find the combination of lemmas and formemes that results in the
maximal global probability of the whole tree. Hidden Markov Tree Models provide a
theoretical background for the tree-modified Viterbi algorithm, which can efficiently
find the global maximum.
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5.2. Description of HMTM

Related work
Hidden Markov Models (HMM, see Chapter 9 in Manning and Schütze (1999))9 be-
long to the most successful techniques in Computational Linguistics. There are many
modifications of HMM: arc-emission versus state-emission, epsilon-emission, HMM
with Gaussian distribution of emission function etc. Hierarchical Hidden Markov
Models, which are used for Information Extraction (Skounakis et al., 2003), make
use of tree structures, but they still primarily work with linearly organized obser-
vations/states.

Hidden Markov Tree Models (HMTM) were introduced by Crouse et al. (1998),
and used in applications such as image segmentation, signal classification, denoising
and image document categorization. More information about HMTM can be found
in Diligenti et al. (2003) and in Durand et al. (2004). The latter article contains also a
detailed explanation of the tree-modified Viterbi algorithm. Parts of this Section are
based on Žabokrtský and Popel (2009), where HMTM are introduced for dependency-
based MT, and on Popel (2009).

Formal definition
Suppose that

• V = {1, . . . , |V |} is a set of tree nodes, r ∈ V is the root node and
ρ : V \ {r} → V is a function determining the parent node of each non-root node.

• X = (X1, . . . , X|V |) is a sequence of random variables taking values from a state
space S. Random variable Xv is understood as a hidden state of the node v and
P(Xv|Xρ(v)) is called transition probability.

• Y = (Y1, . . . , Y|V |) is a sequence of observable symbols taking values from an al-
phabet K. P(Yv|Xv) is called emission probability.

We further introduce the following notation:
• subtree : V → 2V is a function mapping a node v to a set of all nodes of the

subtree rooted in v, i.e.
subtree(v) = {w ∈ V : ∃w = z1, . . . , zn = v,∀i ∈ {1 . . . n − 1} ρ(zi) = zi+1}.

• X(v) is a sequence of hidden states of the subtree rooted in v, i.e.
X(v) = {Xw : w ∈ subtree(v)}.
Hence X = X(r) = {Xr, X(w) : ρ(w) = r}.

• Analogously, Y(v) is a sequence of symbols of the subtree rooted in v.
Similarly to stationary first-order state-emitting HMM, we formulate three inde-

pendence assumptions for HMTM:

9To avoid any terminological confusion, we should note that by HMM we mean only Hidden Markov
Chain Models.
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1. stationary property (analogy to time invariance property of HMM)
∀v,w ∈ V \ {r} : P(Xv|Xρ(v)) = P(Xw|Xρ(w)) &
∀v,w ∈ V : P(Yv|Xv) = P(Yw|Xw),
i.e. transition and emission probabilities are independent of nodes.

2. tree-Markov property (analogy to limited horizon property of HMM)
∀v ∈ V \ {r},∀w ∈ V \ subtree(v) : P(X(v)|Xρ(v), Xw) = P(X(v)|Xρ(v)),
i.e. given Xρ(v), all hidden states of the subtree rooted in v are conditionally
independent of any other nodes.10

3. state-emission property
∀v,w ∈ V : P(Yv|Xv, Xw, Yw) = P(Yv|Xv),
i.e. given Xv, Yv is conditionally independent of any other nodes.

Let v1, . . . , vn be children of the root r, then using the tree-Markov property and
mathematical induction we get:

P(X) = P(Xr, X(v1), . . . ,X(vn))

= P(Xr)P(X(v1), . . . ,X(vn)|Xr)

= P(Xr)P(X(v1)|Xr)P(X(v2), . . . ,X(vn)|Xr, X(v1))

= P(Xr)P(X(v1)|Xr)P(X(v2), . . . ,X(vn)|Xr)

= P(Xr)P(X(v1)|Xr) . . . P(X(vn)|Xr)

= P(Xr)
∏

v∈V\{r}

P(Xv|Xρ(v))

(1)

Using the state-emission property and mathematical induction we get:

P(Y |X) = P(Yr|X)P(Y(v1), . . . ,Y(vn)|X(v1), . . . ,X(vn), Xr, Yr)

= P(Yr|Xr)P(Y(v1), . . . ,Y(vn)|X(v1), . . . ,X(vn))

=
∏
v∈V

P(Yv|Xv)
(2)

From Equations 1 and 2 we can deduce the following factorization formula:

P(Y ,X) = P(Yr|Xr)P(Xr) ·
∏

v∈V\{r}

P(Yv|Xv)P(Xv|Xρ(v)) (3)

10Our formulation of the tree-Markov property differs from the one used in Diligenti et al. (2003), which
could be rewritten as
∀v, w, z∈ V, ρ(w) =ρ(z) =v =⇒ P(X(w)|X(v),X(z)) =P(X(w)|X(v)),
i.e. given Xρ(w) , the subtree of w is conditionally independent of its sibling subtrees.
Such assumption is too weak to be used in the last two lines of Equation 1, where we need
P(Xv |Xρ(v), Xρ(ρ(v)) ) =P(Xv |Xρ(v)).
On the other hand, the formulation used in Žabokrtský and Popel (2009) is unnecessarily strong:
∀v ∈ V \ {r},∀w∈ V : P(Xv |Xρ(v), Xw) =P(Xv |Xρ(v)),
i.e. given Xρ(v) , Xv is conditionally independent of any other nodes.
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Figure 1. Scheme of the tectogrammatical transfer as a task for HMTM.

We see that HMTM (analogously to HMM, again) is defined by the following pa-
rameters:11

• P(Xv|Xρ(v)) – transition probabilities between the hidden states of two tree-adjacent
nodes,12

• P(Yv|Xv) – emission probabilities.

5.3. Application of HMTM in MT

How to estimate emission and translation probabilities?
When using HMTM in MT, labels of the source-language nodes can be interpreted
as observable symbols and labels of the target-language nodes can be interpreted as
hidden states (see Figure 1). In the case of TectoMT transfer, a label of a node is a
pair of lemma and formeme. Therefore, the hidden states space (S) is the Cartesian
product of lemmas and formemes possible for the target language and the alphabet
of observable symbols (K) is the Cartesian product of lemmas and formemes possible
for the source language.

HMTM emission probabilities can be estimated from the “backward” (source given
target) node-to-node translation model. This node-to-node translation model can be

11As follows from the stationary property, the parameters are independent on the node v.
12The need for parametrizing also P(Xr) (prior probabilities of hidden states in the root node) can be

avoided by adding an artificial root whose state is fixed.
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further estimated by factorization to the lemma translation dictionary and formeme
translation dictionary.

HMTM transition probabilities can be estimated from the target-language tree
model.

The decomposition into translation model and language model proved to be extremely
useful in Statistical Machine Translation since Brown et al. (1993). It allows to com-
pensate for the lack of parallel resources by the relative abundance of monolingual
resources.

Limitations of HMTM
There are several limitations implied by the definition of HMTM, which we have to
consider before applying it to MT.

The first limitation is merely a technical detail. The set of hidden states and the al-
phabet of observable symbols are supposed to be finite. This assumption can be easily
fulfilled by introducing an artificial symbol/state for unknown tokens. However, in
practice we are able to consider only a limited number of possible hidden states for
each node, so the trick with an artificial symbol is not actually needed.

More serious limitations are induced by the three independence assumptions:
• stationary property

We assume that the position of a node in a tree cannot influence its transla-
tion and emission probabilities. For example, this property would be violated
if some words should be translated differently when being children of the main
clause verb (i.e. grandchildren of the technical root).13 According to our obser-
vations, such a dependence on the level of a node (i.e. distance from the root) is
not a substantial issue.
Another violation of the stationary property can be a dependency on word or-
der. For example, some words should be translated differently when being at
the beginning of the sentence.13 These cases are also not a substantial problem.14

• tree-Markov property
This assumption concerns only the target-language tree model. The conditional
dependency (in the probabilistic sense) of a node on its parent corresponds well
to the intuition behind dependency relations (in the linguistic sense) in depen-
dency trees. However, there are special linguistic phenomena that violate this
assumption. These phenomena are addressed in the manual for English tec-

13…and this difference could be determined neither from the source node nor from the target-side parent
node.

14PDT-style tectogrammatical nodes have an attribute deepord, which specifies the so-called deep word
order for the purpose of communicative dynamism. TectoMT tectogrammatical trees use this attribute for
surface word order. Nevertheless, if there were a reason, the attribute could be incorporated to the source
node’s label to circumvent the violation of the stationary property.
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togrammatical annotation (Cinková et al., 2006) in Sections: Non-dependency
edges, Dual dependency and Ambiguous dependency.
Predicative complements have the so-called dual dependency – on a verb and
on a semantic noun, but only the former is represented by a tree edge.15 In the
following examples16 we mark the predicative complement with an underline;
its second dependency is always the subject (He). He spoke of him as of his father.
He left whistling. He lives alone.
Although not considered a dual dependency, copula constructions also violate
the assumption. For example, in sentences He is a speaker. and It is a speaker. we
can disambiguate the sense of the object (speaker) based on the subject (He or
It), but these nodes are siblings, so that the probabilistic dependency cannot be
directly used in HMTM.
A possible solution to circumvent these violations and hopefully improve the
translation quality is to incorporate the secondary dependencies into the labels
of source nodes to be handled by the translation model.

• state-emission property
This property can be weakened to “arc-emission property”:
given Xv and Xρ(v), Yv is conditionally independent of any other nodes, i.e.
∀v, w ∈ V : P(Yv|Xv, Xρ(v), Xw, Yw) = P(Yv|Xv, Xρ(v))
A factorization formula, analogical to Equation 3, can be then proved:

P(Y , X) = P(Yr|Xr)P(Xr) ·
∏

v∈V\{r}

P(Yv|Xv, Xρ(v))P(Xv|Xρ(v)) (4)

With this generalization we can condition emission probabilities (i.e. transla-
tion model) on the parent node. Another (actually equivalent) method how
to use a richer translation model, without the need of weakening the state-
emission property, is to incorporate the needed attributes to the labels of target-
side nodes.

The most limiting assumption from the MT viewpoint was not expressed explicitly
yet:

• isomorphism presumption
The source-language tree and the target-language tree are required to be isomor-
phic. In other words, only node labeling can be changed in the HMTM transfer
step. This assumption concerning the tree isomorphism is problematic. As we
have shown in Section 3, there are cases when it is not possible to translate a sen-
tence correctly without violating the isomorphism presumption. On the other
hand, only 8% of all translation errors in our annotation experiment were caused

15The latter dependency relation is indicated by the attribute compl.rf.
16We present English examples, but since the violations concern the target-language tree model, it would

be more accurate to present Czech equivalents.
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by such cases. Possible solutions to the problem are discussed in Popel (2009,
p. 65).

5.4. Tree-modified Viterbi algorithm

  

machine engine

translation arcade

be have

easy simple
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Source sentence:
Strojový překlad by měl být snadný.

Target sentence:
Machine translation should be easy.

PE(source | target) … emission probabilities … translation model

   PT(dependent | governing) … transition probabilities … target-language tree model

P(optimal_tree) =  PE(strojový | machine) · PT(machine | translation)·
                  PE(překlad | translation) · PT(translation | be)·

                  PE(snadný | easy) · PT(easy | be)·
                              PE(být | be) · PT(be | ROOT)

Figure 2. A simplified example of the tectogrammatical transfer as a task for HMTM.
The actual translation direction is English-to-Czech, but for better illustration of the

target-side t-tree, we display the Czech-to-English direction in the figure.

Naturally the question arises how to restore the most probable hidden tree labeling
X̂ given the observed tree labeling Y (and given the tree topology, of course). Using
the factorization formula from Equation 3, we can write:

X̂ = arg max
X

P(X|Y)

= arg max
X

P(X, Y)

= arg max
X

P(Yr|Xr)P(Xr) ·
∏

v∈V\{r}

P(Yv|Xv)P(Xv|Xρ(v))

(5)
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Similarly to the classical Viterbi algorithm, we can use dynamic programming to
achieve an efficient implementation – O(|V | ·K2) for |V | nodes and K states considered
for every node.

However, we cannot start at the root node and perform top-down traversal, which
would be the most straightforward analogy to the classical Viterbi algorithm. Instead,
the tree-modified Viterbi algorithm starts at leaf nodes and continues upwards, stor-
ing in each node for each state and each its child the optimal downward pointer to the
hidden state of the child. When the root is reached, the optimal state tree is retrieved
by downward recursion along the pointers from the optimal root state. Downward
pointers are marked by bold edges in Figure 2.

In practice, HMTM serves us as an inspiration, though for pragmatic reasons the
implementation differs in some aspects from the theory. Apart from usual practices
like computing probabilities in logarithmic space and smoothing transition probabil-
ities, we use a factorization of the translation model into two channels: lemmas and
formemes. Moreover, we use a forward translation model (target given source) in ad-
dition to the backward translation model (source given target), because it proved to
have a positive effect on the translation quality. The emission probability is computed
as a weighted average of the models.

6. Conclusions

We have implemented several improvements of English-Czech translation system
TectoMT. In order to do so, we annotated 250 sentences produced by the baseline
system and identified the most prominent errors and their sources. According to the
error analysis, the assumption of isomorphism between the source and target tec-
togrammatical trees causes only 8% of errors. This facilitates the utilization of Hidden
Tree Markov Model based transfer phase, which proved to be one of the most helpful
modifications we have done.

We have achieved an improvement over the baseline 0.0659 BLEU (3.9735 NIST).
Our new version of TectoMT reaches 0.0981 BLEU (4.7157 NIST). Although these re-
sults are still lower than those of the state-of-the-art English-Czech MT systems, our
system is rapidly evolving and we see a great potential for further improvements.
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