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Abstract
We present experiments on multi-task learning for discriminative training in statistical ma-

chine translation (SMT), extending standard minimum-error-rate training (MERT) by techniques
that take advantage of the similarity of related tasks. We apply our techniques to German-to-
English translation of patents from 8 tasks according to the International Patent Classification
(IPC) system. Our experiments show statistically significant gains over task-specific training
by techniques that model commonalities through shared parameters. However, more fine-
grained combinations of shared parameters with task-specific ones could not be brought to
bear on models with a small number of dense features. The software used in the experiments
is released as open-source tool.

1. Introduction

Multi-task learning aims at learning several different tasks simultaneously, ad-
dressing commonalities through shared parameters and modeling differences through
task-specific parameters. This learning framework is advantageous if the tasks are
not completely independent of each other, which would advocate to train a separate
model for each task. Instead, they should be related and share some commonalities,
yet be different enough to counter a simple pooling of training data.

A predestined application for multi-task learning in the area of statistical machine
translation (SMT) is patent translation over several different classes of patents accord-
ing to the International Patent Classification (IPC)1. Table 1 shows the eight top level

1 http://www.wipo.int/classifications/ipc/en/
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sections of the IPC categorization. They aim at a distinction of main technological
fields, each of which is characterized by its own technological terminology.

A Human Necessities
B Performing Operations; Transporting
C Chemistry; Metallurgy
D Textiles; Paper
E Fixed Constructions
F Mechanical Engineering; Lighting; Heating; Weapons; Blasting
G Physics
H Electricity

Table 1. Patent sections according to the IPC classification.

On the other hand, patents exhibit strong commonalities across IPC sections in
sharing a highly specialized vocabulary, consisting of a legal jargon not found in ev-
eryday language, and a rigid textual structure including highly formulaic language.
The goal of multi-task learning for SMT is thus to learn a translation system that per-
forms well across several different patent sections, thus benefits from shared infor-
mation, and yet is able to address the specifics of each patent section.

The machine learning community has developed several different formalizations
of the central idea of trading off optimality of parameter vectors for each task-specific
model and closeness of these model parameters to the average parameter vector across
models. For example, Evgeniou and Pontil (2004) develop this idea in the framework
of support vector machines (SVM) as finding a tradeoff between each task-specific
SVM having a large margin and having each SVM close to the average SVM. They
formalize this tradeoff via regularization of the task-specific parameter vectors and of
the distance to the average parameter vector. The starting point of all this and related
algorithms is a linear classifier (or a non-linear kernelized variant) with a fixed feature
vector (or kernel) whose associated parameters are adjusted in multi-task learning.

(Multi-)domain adaptation2 for SMT has so far been seen as a challenge of out-
of-vocabulary (OOV) terms. Adaptation techniques thus have focused on gathering
OOV information from various sources in order to feed the standard generative SMT
pipeline of translation and language model with it. A recent approach is Daumé and
Jagarlamudi (2011) who mine translations for OOV terms from comparable corpora.

Patent translation exhibits an even more severe OOV problem because of very spe-
cialized terminology in different IPC patent sections. Multi-task learning or domain

2We consider domain adaptation as a special case of multi-task learning for two tasks, and multi-domain
adaptation as equivalent to multi-task learning. Other definitions are possible (see, e.g., Dredze et al.
(2010)).
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adaptation efforts in patent translation have so far been restricted to experimental
combinations of translation and language models from different sets of IPC sections
(Utiyama and Isahara, 2007; Tinsley et al., 2010; Ceauşu et al., 2011).

In this paper, we consider the specific setting in which the generative SMT pipeline
is not adaptable. Such situations arise if there are not enough parallel data to train
generative models on the new tasks. However, we assume that there are enough par-
allel data available to perform discriminative training (Och, 2003) for each specific
task. Our goal is to investigate how state-of-the-art multi-task learning techniques for
linear classifiers can be applied to standard discriminative training for SMT. In other
words, we would like to know how much gain there is in extending the standard tun-
ing technique of minimum error rate training (MERT) to multi-task MERT for SMT.
To this aim, we present a generic new algorithm to model commonalities by regu-
larized parameter averaging, building upon Evgeniou and Pontil (2004), and apply
it to multi-task MERT for SMT . Furthermore, we present a distributed implemen-
tation of MERT for multiple tasks that allows us to apply techniques for parameter
averaging from distributed learning (Zinkevich et al., 2010) to a version of averaged
MERT. Our experimental results show that averaged and multi-task MERT achieve
statistically significant gains over training separate task-specific models. However,
multi-task MERT’s fine-grained combination of shared parameters with task-specific
ones did not improve upon parameter averaging in our experiments on models with
a small number of dense features.

2. Related Work

A central idea to learn common behaviors across related task is to learn task-specific
models and to minimize their deviation from an average model. Starting from a sep-
arate SVM for each task, Evgeniou and Pontil (2004) present a regularization method
that trades off optimization of the task-specific parameter vectors and the distance of
each SVM to the average SVM. Equivalent formalizations replace parameter regular-
ization by Bayesian prior distributions on the parameters (Finkel and Manning, 2009)
or by augmentation of the feature space with domain independent features (Daumé,
2007). Besides SVMs, several learning algorithms have been extended to the multi-
task scenario in a parameter regularization setting, e.g., perceptron-type algorithms
(Dredze et al., 2010) or boosting (Chapelle et al., 2011). Further variants include dif-
ferent formalizations of norms for parameter regularization, e.g., ℓ1,2 regularization
(Obozinski et al., 2010) or ℓ1,∞ regularization (Quattoni et al., 2009), where only the
features that are most important across all tasks are kept in the model.

While the standard machine learning approaches to multi-task learning are based
on linear classifiers (or non-linear kernelized versions), SMT approaches to multi-task
learning have concentrated on adapting unsupervised generative modules such as
translation models or language models to new tasks. For example, transductive ap-
proaches have used automatic translations of monolingual corpora for self-training
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modules of the generative SMT pipeline (Ueffing et al., 2007; Schwenk, 2008; Bertoldi
and Federico, 2009). Other approaches have extracted parallel data from similar or
comparable corpora (Zhao et al., 2004; Snover et al., 2008). Several approaches have
been presented to train separate translation and language models on task-specific sub-
sets of the data and combine them in different mixture models (Foster and Kuhn, 2007;
Koehn and Schroeder, 2007).

Multi-task learning efforts in patent translation have so far been restricted to ex-
perimental combinations of translation and language models from different sets of
IPC sections. For example, Utiyama and Isahara (2007) and Tinsley et al. (2010) in-
vestigate translation and language models trained on different sets of patent sections,
with larger pools of parallel data improving results. Ceauşu et al. (2011) find that lan-
guage models always and translation model mostly benefit from larger pools of data
from different sections.3

3. Parallel Data from Patent Classes for Patent Translation
Our work on patent translation is based on the MAREC4 patent data corpus. MA-

REC contains over 19 million patent applications and granted patents in a standard-
ized format from four patent organizations (European Patent Office (EP), World Intel-
lectual Property Organisation (WO), United States Patent and Trademark Office (US),
Japan Patent Office (JP)), from 1976 to 2008.

Patent text is organized in 4 document sections, the patent title, abstract, descrip-
tion and claims. The patent title is usually a short noun phrase. The abstract contains
a short summary of the invention. The description is a detailed explanation of the
patent. The claims are a list of sentences that define the scope of protection granted
by the patent with a standardized sentence structure. MAREC contains comparable
text sections, mainly in English, French, and German. Patent titles are automatically
parallel, since they only consist of one sentence and there is one title per document.
Text in abstracts and claims must be split into sentences and aligned. There are no
parallel descriptions.

For our experiments, we extracted bilingual abstract and claims sections from the
EP and WO parts for German-to-English translation. The distribution over the sec-
tions mirrors the overall distribution of IPC sections in the corpus (see Table 2). For
sentence splitting and tokenizing we used the Europarl tools5. Sentence alignment
was done with Gargantua 1.0b6. The training data for the de-en language pair con-
tains 1,000,000 sentences extracted from all top-level IPC sections from abstracts (5%)

3Ceauşu et al. (2011) report that including data from IPC section C (chemistry) in pooled training data
is detrimental for translation models.

4http://www.ir-facility.org/prototypes/marec
5http://www.statmt.org/europarl/
6http://sourceforge.net/projects/gargantua/
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A 266,521 21.81%
B 384,517 31.47%
C 372,903 30.52%
D 50,579 4.14%

E 54,396 4.45%
F 149,370 12.22%
G 291,671 23.87%
H 228,147 18.67%

Table 2. Distribution of IPC sections for comparable de-en abstracts and claims.

and claims (95%) from 1993 to 1995. Furthermore, we extracted for each top-level IPC
section 2,000 randomly sampled sentences from abstracts (5%) and claims (95%) from
2007 (development) and 2008 (development-testing and final-testing). Table 3 gives
an overview over the processed data.

train dev devtest test
# parallel sents 1M 2K 2K 2K
avg. # tokens de 32,329,745 59,376 60,061 59,930
avg. # tokens en 36,005,763 69,584 70,700 70,331
year 1993-1995 2007 2008 2008

Table 3. Statistics on parallel de-en data extracted from MAREC patent corpus.

4. Distributed Multi-Task Parameter Regularization

Multi-task learning assumes learning tasks or domains d = 1, . . . ,D, each coming
with a separate sample of n(d) training points from the same space. Evgeniou and
Pontil (2004)’s idea of trading off optimal parameter weights for each task-specific
model and closeness to an average parameter vector can be stated in a more general
form as follows. We aim at minimization of task-specific loss functions ld under a
regularization of task-specific parameter vectors wd towards an average parameter
vector wavg.

min
w1,...,wD

D∑
d=1

ld(wd) + λ

D∑
d=1

||wd −wavg||pp (1)

For prediction, one can use task-specific weight vectors wd ∈ {w1, . . . , wD} that
have been adjusted to trade off task-specificity (small λ) and commonality (large λ),
or the average weight vector wavg as a global model.

An average or global model can be estimated directly by applying ideas from dis-
tributed learning (Zinkevich et al., 2010). The idea is to base the distribution strategy
on task-specific partitions of data. An algorithm for distributed average learning will

103



PBML 96 OCTOBER 2011

take a loss function cd(wd) for data and weights specific to taskd, parameter initializa-
tions w(0), and return an averaged weight vector wavg, for D tasks. An instantiation
of such an algorithm to our problem, called AvgMERT, calls one iteration of a MERT
implementation, denoted by MERT, that continues from parameter vector w(t−1)

d and
optimizes translation loss cd(wd) on the data from task d.

AvgMERT(w(0), D, {cd}
D
d=1):

for d = 1, . . . , D parallel do
for t = 1, . . . , T do
w

(t)
d = MERT(w(t−1)

d , cd(wd))
end for

end for
return wavg = 1

D

∑D
d=1 w

(T)
d

For multi-task learning, we set p=1 to obtain an ℓ1 regularizer, and apply the
penalty term λ to the parameter weights the extent that they do not cross the average
weights. That is, the weight vector wd is moved towards the average weight vector
wavg by adding or subtracting the penalty λ for each weight component wd[k], and
clipped when it crosses the average. This strategy can be motivated in a stochastic
gradient descent framework (Tsuruoka et al., 2009), however, we apply it to regular-
ized loss minimization in general, and to regularized MERT in specific. As stopping
criterion we used a threshold on the maximal change in the average parameter vector.

MMERT(w(0), D, {cd}
D
d=1):

for t = 1, . . . , T do
w

(t)
avg = 1

D

∑D
d=1 w

(t−1)
d

for d = 1, . . . ,D parallel do
w

(t)
d = MERT(w(t−1)

d , cd(wd))
for k = 1, . . . , K do

if w[k]
(t)
d −w

(t)
avg[k] > 0 then

w
(t)
d [k] = max(w(t)

avg[k], w
(t)
d [k] − λ)

else if w(t)
d [k] −w

(t)
avg[k] < 0 then

w
(t)
d [k] = min(w(t)

avg[k], w
(t)
d [k] + λ)

end if
end for

end for
end for
return w

(T)
1 , . . . , w

(T)
D , w

(T)
avg
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The code described in this section is written as script wrapper around the MERT
implementation of Bertoldi et al. (2009). The code is licensed unter the LGPL and can
be found online7.

5. Experiments

For training a German-to-English baseline model on the 1 million parallel patent
data described in Section 3, we used the open-source Moses8 SMT system. Parallel
sentences were filtered to sentences of at most 80 tokens. For development, develop-
ment-testing and final-testing data we additionally ensured that the random sample
contained no duplicates.

BLEU scores on test set are shown on Table 4. Columns show an evaluation on
test sets consisting of 2,000 parallel sentences from each of IPC sections A-H. All sys-
tems use the same phrase-table and language model trained on 1 million parallel data
from all IPC sections. Different rows show results for systems that differ only in the
approaches to discriminative optimization of the BLEU metric (Papineni et al., 2001).
All models use the MERT implementation of (Bertoldi et al., 2009) for the 14 standard
features of the Moses system. Best results are indicated by bold face type.

The baseline systems perform individual tuning for each IPC section, and tun-
ing on a development set pooled from all sections. All MERT runs start from default
hand-tuned weight vectors for each model. The first column (ind.) shows results for
a system that is tuned on each individual IPC section separately, i.e., each system is
tuned on a development set of 2,000 sentences from section X and evaluated on a test
set of 2,000 sentences from the same section X. BLEU scores for this baseline system
are already quite high, due to the repetitive nature of patents where many long and
specific sub-sentential expressions are reused. The second column(pooled) shows a
system that is tuned on a development set consisting of 2,000 sentences pooled from
250 sentences from each patent section. Result differences to ind. are not statistically
significant.9

The distributed average learner AvgMERT produces some small, but statistically sig-
nificant improvements over ind. (indicated by ∗) and pooled (indicated by +). The
multi-task learner MMERT and the global modelwavg produced as by-product in multi-
task learning show some improvements over ind. and AvgMERT (indicated by #). Meta-
parameters for multi-task learning were set to a regularization parameter of λ=0.0001
and a convergence threshold of 0.001, resulting in convergence after 13 MERT iterations.
The average weight vector wavg was initialized to the zero vector.

7http://www.cl.uni-heidelberg.de/statnlpgroup/mmert/
8http://www.statmt.org/moses/
9Statistical significance of pairwise result differences is assessed by p-values smaller than 0.05 using an

Approximate Randomization test (Riezler and Maxwell, 2005).
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section ind. pooled AvgMERT MMERT wavg
A 0.5187 0.5199 0.5213∗ 0.5195# 0.5196#

B 0.4877 0.4885 0.4908∗+ 0.4911∗ 0.4921∗#

C 0.5214 0.5175 0.5199∗+ 0.5218# 0.5162∗#

D 0.4724 0.4730 0.4733 0.4736 0.4734
E 0.4666 0.4661 0.4679∗+ 0.4669 0.4685∗

F 0.4794 0.4801 0.4811∗ 0.4821∗ 0.4830∗#

G 0.4596 0.4576 0.4607+ 0.4606 0.4610∗

H 0.4573 0.4560 0.4578 0.4581 0.4581

Table 4. BLEU scores on 2K parallel sentences for each of 8 patent sections.

6. Discussion

An interpretation of the results presented in Section 5 can be given as follows. The
distributed average learner AvgMERT shows small, but statistically significant improve-
ments over individual tuning for most IPC sections. This is consistent with theoreti-
cal and empirical results on distributed weight averaging for linear models (see, e.g.,
Zinkevich et al. (2010)). The evaluation on section C (“chemistry”) shows a signifi-
cant degradation. This confirms the intuition that averaging parameter weights over
sections with commonalities is helpful, but not so for exceptional domains containing
complex chemical formulae and compound names. Furthermore, this result is consis-
tent with Ceauşu et al. (2011) who find that section C is best omitted when extracting
a phrase table pooled across sections.

Similar results are found for the global model wavg produced as by-product of
multi-task learning. The multi-task learner MMERT is the only system that is able to
improve results for section C over the results of individual tuning.

Clearly, all presented results have to be interpreted with a grain of salt because of
the small, even if statistically significant, result differences. We conjecture that this is
due to the small number of features deployed in MERT training, and can be overcome by
moving to discriminative training with millions of sparse, lexicalized features. We be-
lieve that especially the fine-tuning between task-specific and average feature weights
addressed by multi-task learning can be brought to bear on large-scale lexicalized
models. This is due to future work.
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