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Abstract
Data availability and distributed computing techniques have allowed statistical machine

translation (SMT) researchers to build larger models. However, decoders need to be able to
retrieve information efficiently from these models to be able to translate an input sentence or
a set of input sentences. We introduce an easy to implement and general purpose solution to
tackle this problem: we store SMT models as a set of key-value pairs in an HFile. We apply
this strategy to two specific tasks: test set hierarchical phrase-based rule filtering and n-gram
count filtering for language model lattice rescoring. We compare our approach to alternative
strategies and show that its trade offs in terms of speed, memory and simplicity are competitive.

1. Introduction

Current machine translation research is characterised by ever increasing amounts
of data available for research. For example, Figure 1 shows that for the WMT ma-
chine translation workshop (Callison-Burch et al., 2012) French-English constrained
track translation task, the English side of parallel data has increased from 13.8M to-
kens in 2006 to 945.1M tokens in 2012 and that available English monolingual data
has increased from 27.5M tokens to 6841.1M tokens. Along with growing amounts of
data, the use of more powerful computers and distributed computing models such
as MapReduce (Dean and Ghemawat, 2008; Lin and Dyer, 2010) has enabled machine
translation researchers to build larger statistical machine translation (SMT) models.
Examples include language modelling (Brants et al., 2007), translation rule extraction
(Dyer et al., 2008; Weese et al., 2011), word alignment (Dyer et al., 2008; Lin and Dyer,
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Figure 1. Number of English tokens (in millions) in parallel and monolingual data
available for the WMT translation shared task constrained track for the years 2006 to

2012.

2010) as well as end-to-end toolkits for building entire phrase-based (Gao and Vo-
gel, 2010) or hierarchical phrase-based models (Venugopal and Zollmann, 2009) using
MapReduce.

Once SMT models are built, specifically the language model and the translation
model, decoders or rescorers only need a fraction of the information contained in
those models to be able to translate an input source sentence or a set of input source
sentences. For example, in translation from French to English, given an input sentence
”Salut toi”, we don’t need to know what translation probability the model assigns to
other words than ”Salut” and ”toi” or what probability the English language model
assigns to their possible English translation. With larger models, simply retrieving
relevant translation or language model probabilities becomes a challenge. We use the
HiFST system (Iglesias et al., 2009b; de Gispert et al., 2010), which involves a first-pass
decoding followed by a 5-gram language model lattice rescoring step (Blackwood,
2010). Given a test set, the decoder only needs the rules whose source side matches
part of one of the source sentences in the test set to be able to generate hypotheses.
In the system described by Iglesias et al. (2009b), for each new test set, rules are re-
extracted and filtered at extraction time. Similarly, for the task of 5-gram language
model lattice rescoring (Blackwood, 2010), the rescorer only needs to retrieve counts
for n-grams present in the lattice produced by the first-pass decoder to be able to
assign a score to a hypothesis. As described by Blackwood (2010), obtaining relevant
n-grams with their counts involves scanning a very large text file containing n-grams
and counts and keeping the relevant records.

These two methods become progressively slower with larger amounts of data and
we would like to improve on them for more rapid experimentation. We also would
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like to use as lightweight a computing infrastructure as possible. For example, HBase
has been applied to the use of distributed language models (Yu, 2008). However,
we wish to address the question whether we can adapt this heavy infrastructure to
our purposes with minimal effort. N-gram count filtering and rule filtering are two
essential steps in our pipeline that can be a bottleneck. Our goal is to reduce their
processing time from several hours to a few minutes.

This paper addresses the problem of retrieving relevant translation and language
model probabilities by storing models in the HFile data structure.1 To our knowledge,
this is the first detailed proposed implementation of translation and language model
storage and filtering using HFile data structures. We believe it offers a good compro-
mise between speed, performance and ease of implementation. Although the HFile
construction is done via MapReduce and a cluster of machines, the infrastructure for
filtering is lightweight and requires the use of only one machine. We will apply this
approach for two specific tasks, namely test set rule filtering prior to decoding and
n-gram count filtering to build a stupid backoff model (Brants et al., 2007) for lattice
rescoring (Blackwood, 2010). We will discuss alternative strategies as well as their
strengths and weaknesses in terms of speed and memory usage. In Section 2, we will
review approaches that have been used for model filtering. The HFile data structure
that is used to store models will be presented in Section 3. Our method and alternative
strategies will be compared empirically in Sections 4 and 5. We will finally conclude
in Section 6.

2. Related Work

We now review techniques appearing in the literature that have been used to store
SMT models and to retrieve the information needed in translation from these mod-
els. SMT models are usually discrete probabilistic models and can therefore be repre-
sented as a set of key-value pairs. To obtain relevant information from a model stored
in a data structure, a set of keys called a query set is formed, then each key in this
query set is looked up in the model. Strategies include storing the model as a simple
data structure in memory, in a plain text file, in more complicated data structures in
memory, storing fractions of the entire model, simply storing data as opposed to a
precomputed model or storing models in a distributed fashion.

If small enough, it may be possible to fit the model into physical memory. In this
case the model can be stored as a memory associative array, such as a hash table, for
rapid query retrieval. In-memory storage has been used to store model parameters
between iterations of expectation-maximisation for word alignment (Dyer et al., 2008;
Lin and Dyer, 2010).

For larger models, the set of key-value pairs can be stored as a table in a single text
file on local disk. Values for keys in the query set are retrieved by scanning through

1http://hbase.apache.org
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the entire file. For each key in the file, its membership is tested in the query set. This
is the approach adopted in the Joshua 3.0 decoder (Weese et al., 2011), which uses reg-
ular expressions or n-grams to test membership. Venugopal and Zollmann (2009) use
MapReduce to scan a file concurrently: a mapper is defined that tests if the vocabu-
lary of a rule matches the vocabulary of a test set. The MapReduce framework then
splits the grammar file into subsections for the mappers to scan over in parallel.

The model can also be stored using a trie associative array (Fredkin, 1960). A trie
is a type of tree where each node represents a shared prefix of a set of keys repre-
sented by the child nodes. Each node only stores the prefix it represents. The keys
are therefore compactly encoded in the structure of the trie itself. Querying the trie
is a O(log(n)) operation, where n is the number of keys in the dataset. The trie may
also be small enough to fit in physical memory to further reduce querying time. Tries
have been used for storing phrase tables (Zens and Ney, 2007) and hierarchical phrase-
based grammars (Ganitkevitch et al., 2012) as well as language models (Pauls and
Klein, 2011; Heafield, 2011).

It is also possible to create a much smaller approximate version of the model.
Randomised language models (Talbot and Osborne, 2007b,a; Talbot and Brants, 2008)
store parameters or counts associated with n-grams in a structure similar to a Bloom
filter (Bloom, 1970). This structure is small in comparison to the original language
model, although the reduction in size comes at the cost of randomly corrupting model
parameters or assigning model parameters to unseen n-grams. Guthrie and Hepple
(2010) propose an extension which prevents the random corruption of model param-
eters but does not stop the random assignment of parameters to unseen n-grams.
Levenberg and Osborne (2009) extend randomised language models to stream-based
language models. Another way of building a smaller approximate version of a model
is to retain items with high frequency counts from a stream of data (Manku and Mot-
wani, 2002). This technique has been applied to language modelling (Goyal et al.,
2009) and translation rule extraction (Przywara and Bojar, 2011).

Instead of pre-computing the dataset it is possible to compute the sufficient statis-
tics at query time using a suffix array (Manber and Myers, 1990), so that the model
can be estimated on the fly. A suffix array is a sequence of pointers to each suffix in a
training corpus. The sequence is sorted with respect to the lexicographic order of the
referenced suffixes. Suffix arrays have been used for computing statistics for language
models (Zhang and Vogel, 2006), phrase-based systems (Callison-Burch et al., 2005;
Zhang and Vogel, 2005), and hierarchical phrase-based systems (Lopez, 2007).

Finally, some approaches store language models in a distributed fashion. Brants
et al. (2007) describe a distributed, fast, low-latency infrastructure for storing very
large language models. Zhang et al. (2006) propose a distributed large language
model backed by suffix arrays. HBase has also been used to build a distributed lan-
guage infrastructure (Yu, 2008). The method we propose to use is closely related to
the latter but we use a more lightweight infrastructure than HBase and we apply it to
two different tasks, demonstrating the flexibility of the infrastructure.
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Figure 2. HFile internal structure 2

3. HFile Description

We now describe the data structure we use to store models and we review rele-
vant features to the design of our system. To store a model represented as key-value
pairs, we use the HFile file format,3 which is a reimplementation of the SSTable file
format (Chang et al., 2008). The HFile is used at a lower level in the HBase infras-
tructure. In this work, we reuse the HFile format directly without having to install
an HBase system. The HFile format is a lookup table with key and value columns.
The entries are free to be an arbitrary string of bytes of any length. The table is sorted
lexicographically by the key byte string for efficient record retrieval by key.

3.1. Internal structure

As can be seen in Figure 2, the data contained in an HFile is internally organised
into blocks called data blocks. The block size is configurable, with a default size of
64KB. Note that HFile blocks are not to be confused with Hadoop Distributed File
System (HDFS) blocks whose default size is 64MB. If an HFile is stored on HDFS,
several HFile blocks will be contained in an HDFS block. A block index is constructed
which maps the first key of an HFile block to the location of the block in the file. For
large HFiles the block index can be very large. Therefore the block index is itself
organised into blocks, which are called leaf index blocks. These leaf index blocks

2after http://hbase.apache.org/book/book.html (simplified)
3http://hbase.apache.org
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are interspersed with the data blocks in the HFile. In turn, the leaf index blocks are
indexed by intermediate level data index blocks. The intermediate blocks are then
indexed by a root data index. The root data index and optionally the Bloom filter
metadata, described next, are stored at the end of the HFile. In order to distinguish
block types (data block, index block, etc.), the first 8 bytes of a block will indicate the
type of block being read. The HFile format allows for the blocks to be compressed.
The choice of compression codec is selected when the file is created. We choose the
GZip compression codec for all our experiments. Block compression is also used in
other related software (Pauls and Klein, 2011). For more details, the interested reader
can refer to the HBase documentation.4

3.2. Record retrieval

When the HFile is opened for reading, the root data index is loaded into memory.
To retrieve a value from the HFile given a key, the appropriate intermediate index
block is located by a binary search through the root data index. Binary searches are
conducted on the intermediate and leaf index blocks to identify the data block that
contains the key. The data block is then loaded off the disk into memory and the
key-value record is retrieved by scanning the data block sequentially.

3.3. Bloom filter optimization

It is possible to query for a key that is not contained in the HFile. This very fre-
quently happens in translation because of language data sparsity. Querying the ex-
istence of a key is expensive as three blocks have to be loaded from disk and binary
searched. For fast existence check queries, the HFile format allows the inclusion of an
optional Bloom filter (Bloom, 1970). A Bloom filter provides a probabilistic, memory
efficient representation of the key set with an O(1) membership test operation. The
Bloom filter may provide a false positive, but never a false negative for existence of a
key in the HFile. For a large HFile, the Bloom filter may also be very large. Therefore
the Bloom filter is also organised into blocks called Bloom blocks. Each block contains
a smaller Bloom filter that covers a range of keys in the HFile. Similar to the root data
index, a Bloom filter metadata or Bloom index is constructed. To check for the exis-
tence of a key, a binary search is conducted on the Bloom index, the relevant Bloom
block is loaded, and the membership test performed. Contrary to work on Bloom fil-
ter language model (Talbot and Osborne, 2007a,b), this filter only tests the existence
of a key and does not return any statistics from the value. If a membership test is pos-
itive, the HFile data structure still requires to do a usual search. During the execution
of a query, two keys may reference the same index or Bloom blocks. To prevent these
blocks from being repeatedly loaded from disk, they are cached after reading.

4http://hbase.apache.org/book/book.html
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3.4. Local disk optimization

The HFile format is designed to be used with HDFS, a distributed file system based
on the Google File System (Ghemawat et al., 2003). Large files are split into HDFS
blocks that are stored on many nodes in a cluster. However, the HFile format can also
be used completely independently of HDFS. If its size is smaller than disk space, the
entire HFile can be stored on the local disk of one machine and accessed through the
machine’s local file system. We find in Sections 4 and 5 that using local disk is faster
than using HDFS.

3.5. Query sorting optimization

Prior to HFile lookup, we sort keys in the query set lexicographically. If two keys in
the set of queries are contained in the same block, then the block is only loaded once.
In addition, the computer hardware and operating system allow further automatic
improvements to the query execution. Examples of these automatic improvements
include reduced disk seek time, the operating system caching data from disk,5 or CPU
caching data from main memory (Patterson and Hennessy, 2009).

4. Hierarchical Rule Filtering for Translation

In this section, we describe how the HFile data structure can be used to store a
hierarchical phrase-based translation model (Chiang, 2007) and to retrieve rules from
a given test set. We describe our system called ruleXtract, and compare it to other
methods through time and memory measurements.

4.1. Task Description

Given a test set and a hierarchical phrase-based translation model, we would like
to retrieve all the relevant rules from the model. A phrase-based rule is relevant if
its source is a substring of a sentence in the test set. A hierarchical rule is relevant if,
after instantiation of its nonterminals, it is a substring of a sentence in the test set. For
example, with a test set containing one sentence ”Salut toi”, the phrase-based rules
with sources ”Salut”, ”toi”, ”Salut toi” are relevant and the hierarchical rules with
sources ”Salut X” and ”X toi” are relevant.

4.2. HFile for Hierarchical Phrase-Based Grammars

The input to our system ruleXtract is a word aligned parallel corpus. First, hi-
erarchical phrase-based rules are extracted using a MapReduce job with no reducer.

5The Linux Documentation Project, The File System, http://tldp.org

11



PBML 98 OCTOBER 2012

Then, features that require a pass over the whole training material, such as the source-
to-target probability, are computed in parallel using MapReduce jobs. We call these
features MapReduce features. We follow Method 3 described by Dyer et al. (2008) to
compute translation probabilities. Finally, the outputs of the feature jobs are merged
in sorted order and the merged output is converted to an HFile. This step is preferably
run on a cluster of machines.

Given a test set and an HFile storing a hierarchical phrase-based grammar, we
first generate queries from the test set, then retrieve relevant rules along with their
MapReduce features from the HFile. To generate queries, we have a set of allowed
source patterns and instantiate these patterns against the test set. A source pattern is
simply a regular expression. For example, the pattern Σ+X represents a rule source
side containing a sequence of terminals followed by the nonterminal X. If the input
sentence is ”Salut à toi”, the pattern will be instantiated as ”Salut X” and ”Salut à
X”. We impose the following constraints on source pattern instantiation where the
first three relate to constraints in extraction and the last one relates to a decoding
constraint:

• max_source_phrase: maximum number of terminals for phrase-based rules,
• max_source_elements: maximum number of terminals and nonterminals,
• max_terminal_length: maximum number of consecutive terminals for hierarchi-

cal rules,
• max_nonterminal_span: maximum nonterminal span in a hierarchical rule.

The source pattern instances are then sorted for more efficient HFile lookup (see Sec-
tion 3). Each query is then looked up in the HFile and if present, an HFile record is
retrieved. We typically run this retrieval step on one machine only.

We now compare our approach to similar approaches whose aim is to obtain rules
for a test set.

4.3. Suffix Array for Hierarchical Phrase-Based Grammars

We use the cdec software (Dyer et al., 2010) for hierarchical phrase-based rule ex-
traction. The implementation is based on earlier work (Lopez, 2007) which extends
suffix array based rule retrieval from phrase-based systems to hierarchical phrase-
based systems.

Given a test set, a set of source pattern instances is generated similarly to what is
done for ruleXtract. Then these source pattern instances are looked up in a suffix array
compiled from the source side of a parallel corpus. Rules are then extracted using the
word alignment and source-to-target probabilities are then computed on the fly.

4.4. Text File Representation of Hierarchical Phrase-Based Grammars

We now describe an implementation for storing and retrieving from a translation
model by the Joshua decoder (Weese et al., 2011). The first implementation variant,
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which we call Joshua, stores the translation model in a text file. Given a test set, each
word in the test set vocabulary is mapped to the list of sentences in which it appears.
Then, each rule in the translation model is compiled to a regular expression, and each
sentence that contains at least a vocabulary word of the rule is matched against this
regular expression. If at least one match is successful, the rule is retained. A faster
version is provided that matches consecutive terminals in the source side of a rule
to the set of n-grams extracted from the test set. We call this version Joshua Fast. A
parallel version also exists that chunks the grammar file and distributes each chunk
processing as a separate process on a cluster running Sun Grid Engine (Gentzsch,
2001). We call this version Joshua Parallel. The parallel version using the faster match-
ing algorithm is called Joshua Fast Parallel.

4.5. Experimental Setup

We use the following setup:
• Data: we use a small parallel corpus of 750,950 word-aligned sentence pairs

and a larger corpus of 9,221,421 word-aligned sentence pairs from the NIST’12
Chinese-English evaluation, to show how systems scale up with more data.

• Grammar extraction: from the parallel corpora, we extract hierarchical gram-
mars with the source-to-target probability feature only, because we do not want
feature computation to introduce noise in timing results when comparing dif-
ferent strategies and software implementations. In addition, the suffix array
implementation of rule extraction does not generate target-to-source probabili-
ties. Note that in practice, given a vector of parameters, we could simply replace
multiple features in the translation model by a single value representing the dot
product of the features with the parameter vector. The extraction constraints
are

– max_source_phrase = 9,
– max_source_elements = 5,
– max_terminal_length = 5 (redundant with max_source_elements),
– max_nonterminal_span = 10.

The small grammars contains approximately 60M rules while the larger gram-
mar contains approximately 726M rules. The grammar we obtain is converted
to the Joshua format.

• Grammar filtering: for ruleXtract, we use these constraints for source pattern
instantiation:

– max_source_phrase = 9,
– max_source_elements = 5,
– max_terminal_length = 5 (redundant with max_source_elements),
– max_nonterminal_span = ∞,

so that the number of rules obtained after filtering is identical between ruleXtract
and Joshua. For the Joshua Parallel configurations, we use 110 jobs for the larger

13



PBML 98 OCTOBER 2012

grammar on a cluster of 9 machines. For this latter configuration, we report the
maximum time spent on a job (not the sum) and the maximum memory usage
by a job.

• Measurements: we report time measurements for query processing and query
retrieval and the total time used to obtain a set specific rule file for a test set of
1755 Chinese sentences and 51008 tokens. We also report peak memory usage.
For ruleXtract, query processing involves generating source pattern instances
and sort them according to the HFile sorting order. If we use a Bloom filter,
it also involves pre-filtering the queries with the Bloom filter. Query retrieval
involves HFile lookup. For the Joshua configurations, query processing involves
indexing the test set and generating test set ngrams and query retrieval involves
regular expression matching.

• Hardware configuration: the machine used for the query has 94GB of memory
and an Intel Xeon X5650 CPU. The distributed file system is hosted on the query-
ing machine and other machines with the same specification, which are used to
generate the HFile.

The setup was designed for accurate comparisons between strategies, however
these strategies are not necessarily used with this setup in an end-to-end translation
system. For example the grammar extracted by Joshua is smaller than the grammar ex-
tracted by ruleXtract because of target side constraints but ruleXtract uses filter criteria
(Iglesias et al., 2009a) to reduce the test set specific grammar.

4.6. Results and Discussion

Results are summarized in Table 1, from which we can draw the following obser-
vations:

• Speed: column Total Time shows that ruleXtract is competitive with alternative
strategies in terms of speed.

• Memory: column Peak Memory shows that both ruleXtract and Joshua memory
usage is important. In the case of ruleXtract, this is because we keep all source
pattern instances in memory. In the case of Joshua, this is due to a caching opti-
mization.

• HFile optimization: comparing HDFS and Local rows, we can see that using the
local filesystem as opposed to HDFS gives a small decrease in query retrieval
time, more important for the larger grammar. This is due to the fact that HDFS
blocks are located on different data nodes. Since the HFile size is smaller than
the disk space, it is preferable to work locally, although it requires copying the
HFile from HDFS to the hard disk. Comparing rows with and without Bloom,
we can see that the use of a Bloom filter gives an important decrease in query
retrieval time. This is due to the fact that the number of source pattern instances
queries is 31,552,746 and after Bloom filtering, the number of queries is 1,146,554
for the small grammar and 2,309,680 for the larger grammar, reducing the num-
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Small Grammar
System Query Query Total Peak # Rules

Processing Retrieval Time Memory
ruleXtract 9m1s 7m36s 16m40s 40.8G 6435124
HDFS
ruleXtract 8m57s 2m16s 11m15s 39.9G 6435124
Bloom, HDFS
ruleXtract 8m54s 7m33s 16m30s 40.4G 6435124
Local
ruleXtract 8m50s 2m19s 11m11s 38.8G 6435124
Bloom, Local
Joshua 0.9s 29m51s 29m54s 42.2G 6435124
Joshua 0.9s 7m25s 7m28s 40.1G 7493178
Fast

Large Grammar
System Query Query Total Peak # Rules

Processing Retrieval Time Memory
ruleXtract 8m56s 22m18s 31m17s 42.2G 47978228
HDFS
ruleXtract 9m12 15m33s 24m49s 40.7G 47978228
Bloom, HDFS
ruleXtract 8m55s 21m3s 30m1s 41.6G 47978228
Local
ruleXtract 9m0s 14m43s 23m46s 40.6G 47978228
Bloom, Local
Joshua 0.9s out of out of out of out of

memory memory memory memory
Joshua 0.9s out of out of out of out of

memory memory memory memory
Fast
Joshua 0.9s 537m10s 537m11s 10.1G 47978228
No Cache
Joshua 0.9s 78m53s 78m54s 10.1G 83339443
Fast No Cache
Joshua total time (not sum): 43m36s 4G 47978228
Parallel
Joshua total time (not sum): 44m29s 4G 83339443
Fast Parallel

Table 1. Time and memory measurements for rule filtering with different strategies for
a small and a large grammar.
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ber of time consuming HFile lookups respectively by 96% and 93%. Note that
Bloom filters increase query processing time only in the case of a large grammar
and more so when using HDFS.

• Parallelization: in order to run Joshua on the larger grammar and avoid memory
problems, we needed to use parallelization, which provided competitive speeds
and a low memory footprint (maximum 4G per job). We are currently looking
into making a parallel version of ruleXtract by parallelizing the query.

For information, cdec’s total processing time is 57m40s for the small grammar,
which is significantly slower than the other methods. However, we do not include
a direct comparison to cdec in Table 1 because the suffix array method involves much
on-the-fly computation that has been precomputed in the case of Joshua and ruleXtract.
Despite this apparent slowness, the use of suffix array methods for rule extraction fa-
vors rapid experimentation because no precomputation is required. But we note that
the HFile generation from the larger parallel corpus took 5 hours and from this HFile
it is possible to run multiple experiments by varying test sets and/or filtering param-
eters.

The ruleXtract system works in batch mode and dividing the number of words in
the test set by the total time in the best configuration (ruleXtract, Bloom, Local) for the
large grammar yields a speed of 35.8 words per second which is a real time system
speed for batch processing tasks in which latency has little effect. However, running
the system in that configuration gives a speed of 2.5 words per second for the longest
sentence in the test set (135 words) and 1.3 words per second for a sentence of length
20. Future work will be dedicated to reduce latency and obtain an actual real time
system.

5. N-Gram Count Filtering for Language Model Lattice Rescoring

In this section, we describe an HFile based infrastructure that supports a stupid
backoff (Brants et al., 2007) n-gram language model. We conduct timed queries with
comparison to a suffix array baseline.

5.1. Task Description

Blackwood (2010) motivates the use of 5-gram language model rescoring as a way
of avoiding memory limitations in language model estimation and decoding. De-
pending on translation grammar and language model complexity, pruning thresh-
olds in search can be set so that search errors are inconsequential. 5-gram rescoring
requires first to obtain n-gram counts for n ≤ 5 for a large monolingual corpus. Given
a test set, n-grams present in the output lattices generated by a first-pass decoder are
then extracted. The stupid backoff n-gram model (Brants et al., 2007) is described

16



J. Pino, A. Waite, W. Byrne HFile for SMT Model Filtering (5–24)

with the pseudo-probability S(·). It has the form:

S(Wi|W
i−1
i−n+1) =

{
f(Wi

i−n+1)

f(Wi−1
i−n+1

)
if f(Wi

i−n+1) > 0

αS(Wi|W
i
i−n+2) otherwise

(1)

whereWj
i is a sequence of words contained in a machine translation hypothesis, f(Wj

i)

is the count of the occurrences of the word sequenceWj
i in a large monolingual corpus,

and α is a constant that is set heuristically. To compute the pseudo-probability of an
n-gram S(Wi|W

i−1
i−n+1) the only statistics required are the counts for the constituent

word sequences extracted from the monolingual corpus. Brants et al. (2007) show that
with large amounts of data, stupid backoff smoothing performs similarly to Kneser-
Ney smoothing (Kneser and Ney, 1995).

5.2. HFile for n-gram count filtering

The HFile stores n-grams Wj
i as keys, and their counts f(Wj

i) as values. Each word
of the key is mapped to an integer so that the n-gram becomes a string of integers.
Each integer is then converted into a binary representation with a three byte width,
which is adequate for the vocabulary used by our collections. The count is stored
using a four byte integer representation.

5.3. Suffix array

The suffix array baseline is a modified version of the Suffix Array Language Model
toolkit (SALM) toolkit (Zhang and Vogel, 2006). The original SALM toolkit used a 32-
bit integer representation for each element in the suffix array. This representation has
been widened to 64-bits to allow a larger corpus to be indexed. SALM loads the suffix
array and monolingual corpus into memory for fast computation of the counts.

5.4. Experimental setup

We use the following setup:
• Data: We use a concatenation of the Gigaword Fifth Edition (Parker et al., 2011)

with the English side of the NIST’12 parallel data for the constrained track. The
SALM toolkit imposes a 256 word limit on sentence length in the corpus, there-
fore we truncated all sentences to 256 words. The corpus contains 5.4 billion
words. From the monolingual corpus we extract 2.5 billion word sequences and
counts. These are stored in an HFile with 8 KB data block size.

• Translation lattices: we replicate an experiment where a set of 2816 translation
lattices are rescored using a 5-gram stupid backoff language model (Blackwood,
2010). The n-gram keys required to build the set-specific language model are
extracted from the lattices using modified counting transducers (Mohri, 2003).
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The queries take the form of 8.4 million keys, of which 7.3 million of the keys
are unique.

• HFile optimization: we execute four HFile based queries based on whether the
HFile contains a Bloom filter index, and whether the HFile is stored on local disk
or a distributed file system.

• Time measurement phases: we split the query execution into distinct phases.
For SALM we record the time taken to load the suffix array and monolingual cor-
pus into memory, which we label index load time. We then enumerate through
the unsorted keys in the query and compute the count associated with the key.
Note that for any duplicate key in the query a duplicate count is computed. We
call this phase query retrieval. For the HFile based infrastructure, the query has
to be sorted. A Bloom filter may also be applied after the sort. We call this phase
query processing. We then look up the HFile to locate the query keys. The look
up phase is also labelled query retrieval.

• Hardware configuration: identical to the one in Section 4.

5.5. Results and Discussion

The results are shown in Table 2 from which we can draw the following observa-
tions:

• Speed: column 4 shows that the HFile infrastructure provides a competitive
query speed with respect to SALM.

• Memory: column 5 shows that the memory overhead of the HFile infrastructure
is much lower than SALM. We could reduce the suffix array memory usage by
doing an on-disk binary search but this would increase the query processing
time.

• HFile optimizations: an interesting result is the effect that the Bloom filter has
on the query processing time for the distributed query. The time spent loading
the blocks that comprise the Bloom filter offsets the time saved retrieving the
counts. However, when using local disk the Bloom filter has only a small impact
on the query processing time.

In addition, although disk usage is not an issue, it is worth mentioning that the En-
glish monolingual data together with the suffix array represent 90G of uncompressed
data and the HFile size is 11G without Bloom filter and 14G with Bloom filter. We
store the English monolingual data in a decompressed file for more efficient loading
into a suffix array. On the other hand, only HFile blocks potentially containing a key
are uncompressed during an HFile query.

We did not report comparisons to the KenLM toolkit (Heafield, 2011), which is
designed for retrieving n-gram probabilities from an ARPA file as opposed to raw
n-gram counts. It might be possible to build an ARPA file containing n-gram counts;
we leave this study to future work and hope to obtain improvements in speed.
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Index Query Query Total Peak
Load Processing Retrieval Time Memory

Suffix Array 8m39s - 3m20s 11m59s 90.7G
HFile, HDFS - 18s 3m54s 4m12s 3.1G

HFile, Bloom, HDFS - 1m11s 2m52s 4m3s 5.8G
HFile, Local - 18s 3m5s 3m23s 3.1G

HFile, Bloom, Local - 25s 1m56s 2m21s 5.8G

Table 2. Timing results for n-gram count queries.

6. Conclusion

We have presented a strategy to filter SMT models to a given test set. This strategy
is easy to implement, flexible as it was applied to two different tasks and it does not
require extensive computing resources as it is run on one machine. We have demon-
strated that its performance in terms of speed and memory usage is competitive with
other current alternative approaches.

In the future, we would like to provide two extensions to our HFile infrastructure.
First, in order to increase the speed in batch mode, we would like to implement a
MapReduce version that would split the queries (as opposed to the HFile). Second,
in order to provide a real time system, we would like to reduce latency by optimizing
the source pattern instance creation phase.
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