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Abstract
State-of-the-art Machine Translation (MT) sys-
tems are still far from being perfect. An alterna-
tive is the so-called Interactive Machine Transla-
tion (IMT) framework. In this framework, the
knowledge of a human translator is combined
with a MT system. We present a new tech-
nique for IMT which is based on the generation
of partial alignments at phrase-level. The pro-
posed technique partially aligns the source sen-
tence with the user prefix and then translates the
unaligned portion of the source sentence. The
generation of such partial alignments is driven
by statistical phrase-based models. Our tech-
nique relies on the application of smoothing tech-
niques over the phrase models to appropriately
assign probabilities to unseen events. We report
experiments investigating the impact of the dif-
ferent smoothing techniques in the accuracy of
our system. In addition, we compare the results
obtained by our system with those obtained by
other well-known IMT systems.
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1 Introduction

Information technology advances in modern society
have led to the need of more efficient methods of trans-
lation. It is worth mentioning that current MT sys-
tems are not able to produce ready-to-use texts. In-
deed, MT systems usually require human post-editing
in order to achieve high-quality translations.

One way of taking advantage of MT systems is to
combine them with the knowledge of a human transla-
tor, constituting the Interactive Machine Translation
(IMT) paradigm. This IMT paradigm can be consid-
ered a special type of the so-called Computer-Assisted
Translation (CAT) paradigm.

An important contribution to IMT technology was
carried out within the TransType (TT) project [11, 7,
5]. This project entailed a focus shift in which inter-
action directly aimed at the production of the target
text, rather than at the disambiguation of the source
text, as in former interactive systems. The idea pro-
posed in that work was to embed data driven MT tech-
niques within the interactive translation environment.

Following these TT ideas, [1] proposed a new ap-
proach to IMT. In this approach, fully-fledged statisti-
cal MT (SMT) systems are used to produce full target
sentence hypotheses, or portions thereof, which can
be partially or completely accepted and amended by a
human translator. Each partial correct text segment
is then used by the SMT system as additional infor-
mation to achieve further, hopefully improved sugges-
tions. Figure 1 illustrates a typical IMT session.

In this paper, we also focus on the IMT approach to
CAT. Specifically, we propose a new IMT engine based
on the generation of partial alignments at phrase-level.
The proposed technique partially aligns the source sen-
tence with the user prefix and then translates the un-
aligned portion of the source sentence. The partial
alignments are generated using the statistical knowl-
edge provided by a phrase-based model. As it will
be shown, the techniques proposed here require the
application of smoothing techniques over the phrase-
based models to correctly assign probabilities to un-
seen events.

2 Statistical interactive MT

IMT can be seen as an evolution of the SMT frame-
work. The fundamental equation of the statistical ap-
proach to MT is:

ê = argmax
e

{
Pr(f | e) · Pr(e)

}
(1)

where Pr(f | e) is approached by a translation model
that tries to represent the correlation between source
and target sentence and Pr(e) is approached by lan-
guage model representing the well-formedness of the
candidate translation e.

Current MT systems are based on the use of phrase-
based models [19, 10] as translation models. The basic
idea of Phrase-based Translation (PBT) is to segment
the source sentence into phrases, then to translate each
source phrase into a target phrase, and finally to re-
order the translated target phrases in order to compose
the target sentence. If we summarize all the decisions
made during the phrase-based translation process by
means of the hidden variable ãK

1 , we arrive to the fol-
lowing expression:

Pr(f |e) =
∑

K,ãK
1

Pr(f̃K
1 , ãK

1 | ẽK
1 ) (2)
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source Para ver la lista de recursos
interaction-0 To view the resources list
interaction-1 To view a list of resources

interaction-2 To view a list i ng resources
interaction-3 To view a listing o f resources

acceptance To view a listing of resources

Fig. 1: IMT session to translate a Spanish sentence into English. In interaction-0, the system suggests a
translation. In interaction-1, the user moves the mouse to accept the first eight characters ”To view ” and
presses the key a , then the system suggests completing the sentence with ” a list of resources”. Interactions 2
and 3 are similar. In the final interaction, the user completely accepts the present suggestion.

where each ãk ∈ {1 . . . K} denotes the index of the
target phrase ẽ that is aligned with the k-th source
phrase f̃k, assuming a segmentation of length K.

According to Eq. (2), and following a maximum ap-
proximation, the problem stated in Eq. (1) can be re-
framed as:

ê ≈ arg max
e,a

{
p(e) · p(f ,a | e)

}
(3)

State-of-the-art statistical machine translation sys-
tems model p(f ,a|e) following a loglinear ap-
proach [14], that is:

p(f ,a|e) ∝ exp
[∑

i

λifi(f , e,a)
]

(4)

In the IMT scenario we have to find an extension es

for a given prefix ep. For this purpose we reformulate
Eq. (3) as follows:

ês ≈ arg max
es,a

{
p(es | ep) · p(f ,a | ep, es)

}
(5)

where the term p(ep) has been dropped since it does
not depend on es and a.

Thus, the search is restricted to those sentences e
which contain ep as prefix. It is also worth mentioning
that the similarities between Eq. (5) and Eq. (3) (note
that epes ≡ e) allow us to use the same models if the
search procedures are adequately modified [2, 1].

3 Related work

Several IMT systems have been proposed in the liter-
ature. For example, in [7] a maximum entropy ver-
sion of IBM 2 model is used as word-based translation
model. In [15] the Alignment Template approach to
IMT is proposed. In that work a pre-computed word
translation graph is used in order to achieve fast re-
sponse times. This approach is compared with the use
of a direct translation modeling [2]. In [4] an IMT ap-
proach based on stochastic finite-state transducers is
presented. In that work, also word translation graphs
are used to resolve real-time constraints. In [18] a
phrase-based approach is presented.

Recently, in [1] the IMT approach to CAT is pro-
posed, establishing the state-of-the-art in this disci-
pline. In this work the last three approaches men-
tioned above are compared.

In the following sections, we present a new IMT
technique which is based on the generation of partial

alignments at phrase-level. The proposed technique
partially aligns the source sentence with the user prefix
and then translates the unaligned portion of the source
sentence. The generation of such partial alignments is
driven by statistical phrase-based models. Our tech-
nique relies on the application of smoothing techniques
over the phrase models to appropriately assign proba-
bilities to unseen events.

The IMT system we propose is similar to those pre-
sented in [2] and [18]. The so-called interactive gen-
eration strategy presented in [2] does not use word
graphs as well as our proposal. The key difference be-
tween their system and the system we propose is that
they use error-correcting techniques instead of smooth-
ing techniques to assign probabilities to unseen events.
Specifically, the error correcting costs are introduced
as an additional weight in their log-linear model. We
think that our approach is better motivated from a
theoretical point of view, as it has been deeply studied
and demonstrated in the field of language modelling.
In addition, our system needs much less time per it-
eration (hundredths of seconds vs. seconds, as will be
shown in section 7) than the system presented in [2].

The work presented in [18] is based on filtering the
phrase table to obtain translations that are compatible
with the user prefix. Since this approach seems too re-
strictive (phrase models always present coverage prob-
lems in complex tasks, as is discussed in section 4), we
guess that also any sort of smoothing is taken into ac-
count, but as far as we know the exact technique that
is used is not explained. Because of this, we think that
the work presented in [18] can benefit from the study
on smoothing techniques presented here.

4 Phrase-based alignments

The problem of finding the best alignment at phrase
level has been studied in [16, 8, 13]. The concept of
phrase-based alignment can be formalized as follows:

Let f ≡ f1, f2, . . . , fJ be a source sentence and e ≡
e1, e2, . . . , eI the corresponding target sentence in a
bilingual corpus. A phrase-alignment between f and
e is defined as a set S of ordered pairs included in
P(f) × P(e), where P(f) and P(e) are the set of all
subsets of consecutive sequences of words, of f and e,
respectively. In addition, the ordered pairs contained
in S have to include all the words of both the source
and target sentences.

A phrase-based alignment of length K (ÃK) of
a sentence pair (f , e) is defined as a triple ÃK ≡
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(f̃K
1 , ẽK

1 , ãK
1 ), where ãK

1 is a specific one-to-one map-
ping between the K segments/phrases of both sen-
tences (1 ≤ K ≤ min(J, I)).

Then, given a pair of sentences (f , e) and a phrase
alignment model, we have to obtain the best phrase-
alignment ÃK (or Viterbi phrase-alignment V (ÃK))
between them. Assuming a phrase-alignment of length
K, V (ÃK) can be computed as:

V (ÃK) = arg max
ÃK

{
p(f̃K

1 , ãK
1 |ẽK

1 )
}

(6)

where, following the assumptions of [19],
Pr(f̃K

1 , ãK
1 |ẽK

1 ) can be efficiently computed as:

p(f̃K
1 , ãK

1 |ẽK
1 ) =

K∏
k=1

p(f̃k|ẽãk
) (7)

The model parameters ({p(f̃ |ẽ)}) are typically
estimated via relative frequencies as p(f̃ |ẽ) =
N(f̃ , ẽ)/N(ẽ), where N(f̃ |ẽ) is the number of times
that f̃ has been seen as a translation of ẽ within the
training corpus.

On the basis of Eq. (7), a very straightforward tech-
nique can be proposed for finding the best phrase-
alignment of a sentence pair (f , e). This can be con-
ceived as a sort of constrained translation. In this
way, the search process only requires the use of a reg-
ular SMT system which filters its phrase-table in order
to obtain those translations of f that are compatible
with e.

As noted in [16], this technique has no practical
interest when applied on regular tasks. Specifically,
the technique is not applicable when the alignments
cannot be generated due to coverage problems of the
phrase-based model (i.e. one or more phrase pairs re-
quired to compose a given alignment have not been
seen during the training process). Coverage problems
are very frequent in complex translation tasks as will
be shown in section 7. In order to solve this problem,
an alternative technique is proposed. The alternative
technique is able to consider every source phrase of f as
a possible translation of every target phrase of e. For
this purpose, it uses a general mechanism for assigning
probabilities to phrase pairs based on the application
of smoothing techniques over the phrase-table. In ad-
dition, the search algorithm that is used no longer fil-
ters its phrase-table to generate the sentence e, but
instead it can efficiently explore the set of possible
alignments between f and e (see [16] for more details).

4.1 A log-linear approach to phrase-to-
phrase alignments

The score for a given alignment can be calculated ac-
cording Eq (7). This scoring function does not allow
control of basic aspects of the phrase alignment, such
as the lengths of the source and target phrases, and the
reorderings of phrase alignments. This problem can
be alleviated following the approach stated in Eq. (4),
thus introducing different feature functions as scoring
components in a log-linear fashion.

We use the same set of feature functions proposed
in [16]:

• f1(f , e,a) = log(
∏K

k=1 p(ẽãk
|f̃k)): direct phrase

model log-probability

• f2(f , e,a) = log(
∏K

k=1 p(f̃k|ẽãk
)): inverse phrase

model log-probability

• f3(f , e,a) = log(
∏K

k=1 p(|ẽk|)): target phrase
length model. This component can be modeled
by means of a uniform distribution (penalizes the
length of the segmentation) or a geometric distri-
bution (penalizes the length of the target phrases)

• f4(f , e,a) = log(
∏K

k=1 p(ãk|ãk−1)): distortion
model. This component is typically modeled by
means of a geometric distribution (penalizes the
reorderings)

• f5(f , e,a) = log(
∏K

k=1 p(|f̃k| | |ẽãk
|)): source

phrase length model given the length of the tar-
get phrase. This component can be modeled by
means of different distributions: uniform (does
not take into account the relationship between the
length of source and target phrase), Poisson or ge-
ometric

The corresponding weights λi, i ∈ {1, 2, . . . , 5} can
be computed by means of MERT training.

5 Smoothing

As was mentioned in section 4, the application of
smoothing techniques is crucial in the generation of
phrase-alignments. Most of the well-known language
model smoothing techniques (see for example [12]) can
be imported to the SMT field and specifically to the
PBT framework, as it is shown in [6]. However, PBT
and the generation of phrase-alignments differ in a
key aspect. While in PBT the probabilities of un-
seen events are not important (since the decoder only
proposes phrase translations contained in the model,
see [6]), in the generation of phrase alignments, assign-
ing probabilities to unseen events is one of the most
important problems that has to be solved (see [16]).

In the rest of this section, we describe the smoothing
techniques that has been used in our work.

5.1 Statistical estimators

Training data can be exploited in different ways to es-
timate statistical models. Regarding the phrase-based
models, the standard estimation technique is based on
the relative frequencies of the phrase pairs. Taking
this standard estimation technique as a starting point,
a number of alternative estimation techniques can be
derived.

We have implemented the following estimation tech-
niques for phrase-based models: Maximum-likelihood
(ML), Good-Turing (GT), Absolute-discount (AD),
Kneser-Ney smoothing (KN), and Simple discount
(SD). The SD estimation technique works in a similar
way to AD estimation but it subtracts a fixed proba-
bility mass instead of a fixed count.

A good way to tackle the problem of unseen events
is the use of probability distributions that decompose
phrases into words. In our work we have used the
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IBM 1 model as defined in [3] to assign probabilities to
phrase pairs instead of sentence pairs (this distribution
will be referred to as LEX).

5.2 Combining estimators

The statistical estimators described above can be com-
bined in the hope of producing better models. We have
chosen three different techniques for combining estima-
tors: Linear interpolation, Backing-off, and Log-linear
interpolation. Specifically, we have implemented com-
binations of two estimators, a phrase-based model es-
timator (ML, GT, AD, KN or SD estimator) and the
LEX estimator.

The key difference between interpolation and back-
ing off is that the latter only uses information from the
smoothing distribution (the LEX distribution) for low
frequency or unseen events. Since for phrase align-
ment generation, better prediction of unseen events
has a great impact, backing-off seems a specially suit-
able approach.

Finally, the main difference between linear and log-
linear combination is that the former moderates ex-
treme probability values and preserves intermediate
values, whereas the latter preserves extreme values
and makes intermediate values more extreme. When
assigning probabilities to unseen events, the phrase-
based model statistical estimators will produce very
low or zero probabilities that will be moderated by
linear combination (using the LEX distribution), and
preserved by log-linear combination. Because of this,
we expect linear combination to work better than log-
linear combination.

6 IMT based on partial phrase-
based alignments

In this section we propose a new IMT technique based
on the generation of partial phrase-alignments between
the source sentence f and the user prefix ep. The con-
cept of partial phrase-alignment is similar to the con-
cept of complete phrase alignment described in sec-
tion 4. Specifically, we define a partial alignment be-
tween f and ep as the set S ′ of ordered pairs that
contains all the words of ep and only a subset of the
words of f .

The generation of the suffix in IMT can be seen as
a two-stage process. First we partially align the prefix
ep with a part of f , and second, we translate the un-
aligned portion of f (if any) giving the suffix es. For
this purpose, we propose the use of a stack-decoding al-
gorithm [9]. The stack-decoding algorithm attempts to
iteratively expand partial solutions, called hypotheses,
until a complete translation is found. The expanded
hypotheses are stored into a stack data structure which
allows the efficient exploration of the search space.

The expansion process consists of appending target
phrases as translation of previously uncovered source
phrases of a given hypothesis. Let us suppose that we
are translating the sentence f ≡ “Para ver la lista de
recursos”, and that the user has validated the prefix
ep ≡ “To view a” (interaction 1 of the IMT session
given in Figure 1). Figure 2 shows an example of the

results obtained by the expansion algorithm that we
propose for two hypotheses h1 and h2.

Hypothesis h1 has covered the source phrase “Para
ver la” (covered phrases are noted with underlined
words in Figure 2), appending the target phrase “To
view a”. Since for h1, the user prefix ep has already
been generated, the expansion process works in the
same way as the one executed in a regular translator.
Let us suppose that we are covering the source phrase
f̃ ≡“lista de recursos” given by the source positions
u ={4,5,6}. We generate the new hypotheses h3 and
h4 by appending target phrases ẽ from the set Tf̃ of
translations for f̃ contained in the phrase table.

Regarding the hypothesis h2, it has covered the
source phrase “Para” appending the target phrase
“To”. In this case, the prefix ep has not been com-
pletely generated. Let er ≡ “view a” be the remain-
ing words that are to be appended to h2 to complete
the user prefix. In this case, we have to take into ac-
count whether we are covering the last source phrase
positions or not. For example, let us suppose that we
cover the phrase positions u ={2,3,4,5,6} (f̃ ≡ “ver la
lista de recursos”). Since those are the last positions
to be covered, we have to ensure that the whole pre-
fix ep is generated. For this purpose, we append er

to h2, resulting in the hypothesis h5. In addition, we
can append phrases ẽ contained in the set Tf̃ having
er as sub-prefix (if any). This allows the generation of
hypotheses like h6 that takes advantage of the infor-
mation contained in the phrase table.

In contrast, if we are not covering the last phrase
positions of h2, we can also append strings from the
set Ser

of sub-prefixes of er to the newly generated hy-
potheses, allowing the translation system to complete
the whole prefix ep in subsequent expansion processes.
For example, let us suppose that we cover the phrase
positions u ={2} (f̃ ≡ “ver”). In this case we can
append the phrase “view” which is a subprefix of er,
resulting in the hypothesis h7. In addition, we can
also append er itself, resulting in the hypothesis h8.
Finally, appending phrases from Tf̃ having er as sub-
prefix (if any) can also be considered, although this
situation has not been depicted in Figure 2.

Algorithm 1 shows the expansion algorithm that we
propose for its application in IMT. The algorithm is a
formalization of the ideas depicted in Figure 2.

The time cost of the IMT expansion algorithm can
be reduced by the introduction of pruning techniques.
Such pruning techniques include hypotheses recombi-
nation, stack length limitation and restrictions on the
maximum number of target phrases that can be linked
to an unaligned source phrase during the expansion
process. Specifically, in those cases where ep has not
already been generated, only a subset of the strings
contained in the set Ser

are considered as candidates
for the expansion process. One possible criterion to
choose the substrings is based on the length of the
phrase f̃ to be translated determined by u. Only those
substrings with lengths similar to the length of f̃ are
considered. In addition, the set of expanded hypothe-
ses that is returned by the algorithm can be sorted by
score, keeping only the best ones.
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. . .

. . .

. . .

ep: To view a

h1

h2

h3

h4

h5

h6

h7

h8

u ={4,5,6}

u = . . .

u ={2,3,4,5,6}

u ={2}

u = . . .

f :Para ver la lista de recursos
e:To view a

f :Para ver la lista de recursos
e:To view a list of resources︸ ︷︷ ︸

ẽ ∈ T
f̃

f :Para ver la lista de recursos
e:To view a listing of resources︸ ︷︷ ︸

ẽ ∈ T
f̃

f :Para ver la lista de recursos
e:To

f :Para ver la lista de recursos
e:To view a︸ ︷︷ ︸

ẽ ≡ er

f :Para ver la lista de recursos
e:To view a list of resources︸ ︷︷ ︸

ẽ ∈ T
f̃
, is prefix(er, ẽ)

f :Para ver la lista de recursos
e:To view︸ ︷︷ ︸

ẽ ∈ Ser − {er}

f :Para ver la lista de recursos
e:To view a︸ ︷︷ ︸

ẽ ≡ er

Fig. 2: Example of the expansion of two hypotheses
h1 and h2 given f ≡ “Para ver la lista de recursos”
and the user prefix ep ≡ “To view a”

7 Experimental results

In this section we describe the experiments we carried
out to test the IMT techniques that we have presented
in previous sections.

7.1 Experimental setup

The experiments were performed using the Xerox
XRCE corpus [17], which consist of translation of
Xerox printer manual involving three different pairs
of languages: French-English, Spanish-English, and
German-English. The main features of these corpora
are shown in Table 1. Partitions into training, devel-
opment, and test were performed by randomly select-
ing (without replacement) a specific number of devel-
opment and test sentences and leaving the remaining
ones for training. In order to get a first impression

input : ep (user validated prefix), hyp (hypothesis to
be expanded)

output : hyp vector (Vector of expanded hypotheses)
auxiliar: Uhyp (set of uncovered phrase positions of

hyp), Ser (set of sub-prefixes of er), Tf̃ (set

of translations for f̃ in phrase table)
begin

forall u ∈ Uhyp do

f̃ =get source phrase(hyp,u);
if hyp does not contain ep then

er =get remaining prefix (hyp,ep);
if u is the last phrase to be covered then

forall ẽ ∈ Ser − {er} do
add(hyp vector,append(hyp,u,ẽ))

add(hyp vector,append(hyp,u,er));
forall ẽ ∈ Tf̃ do

if is prefix(er,ẽ) and er 6= ẽ then
add(hyp vector,append(hyp,u,ẽ))

else
forall ẽ ∈ Tf̃ do

add(hyp vector,append(hyp,u,ẽ))

end

Algorithm 1: Pseudocode for the IMT hypothesis
expansion algorithm

of the complexity of these corpora, the BLEU score
and the number of sentences with coverage problems
of the test partition (for both translation directions)
are also reported. As can be seen, there is a great
number of sentences that present coverage problems
for the different corpora.

It is worth noting that the manuals were not the
same in each pair of languages, therefore the figures
for the different English counterparts are shown.

IMT experiments were carried out for both direc-
tions of the three different corpora.

7.2 Assessment criteria

The evaluation of the techniques presented in this pa-
pers were carried out using the Key-stroke and mouse-
action ratio (KSMR) measure [1], which is calculated
as the number of keystrokes plus the number of mouse
movements plus one more count per sentence (aimed
at simulating the user action needed to accept the final
translation), divided by the total number of reference
characters.

In the experiments we carried out only one reference
translation was considered.

7.3 IMT results

In Table 2 the IMT results using different phrase-to-
phrase alignment smoothing techniques are presented,
for three different language pairs and translation di-
rections, Geometric distributions were selected to im-
plement both the f3 and f5 feature functions. The
first row of the table shows the baseline, which con-
sists of the results obtained using a maximum likeli-
hood estimation (ML) without smoothing. The rows
labelled with (GT, AD, KN, and SD) show the re-
sults for the phrase-based model estimators presented

334



Spa Eng Fre Eng Ger Eng
Sent. pairs 55761 52844 49376

T
ra

in
Running words 657172 571960 573170 542762 440682 506877
Vocabulary 29565 25627 27399 24958 37338 24899
Sent. pairs 1012 994 964

D
e
v Running words 13808 12111 9801 9480 8283 9162

Perplexity (3-grams) 34.0 46.2 74.1 96.2 124.3 68.4
Sent. pairs 1125 984 996

T
e
st Running words 9358 7634 9805 9572 9823 10792

Running characters 57536 45770 62885 54757 70963 61327
Perplexity (3-grams) 59.6 107.0 135.4 192.6 169.2 92.8
BLEU score 58.7 51.1 26.7 24.9 24.8 16.4
Sents. with coverage problems 617 633 615 653 724 722

Table 1: Xerox corpus statistics for three differente language pairs

in section 5.1. The rest of the rows corresponds to
different estimation techniques combined with linear
interpolation (LI), backing-off (BO), and log-linear in-
terpolation (LL). As was expected (see section 5.2)
linear interpolation and backing-off obtains better re-
sults than log-linear interpolation.

The baseline system obtained by far the worst re-
sults. In contrast, all those experiments that included
the LEX distribution outperformed the others due to
improved assignment of probabilities to unseen events.

Smooth. Spa-Eng Fre-Eng Ger-Eng
ML 36.7/32.5 59.4/53.2 63.6/57.2
GT 28.6/29.4 51.9/49.4 57.7/53.0
AD 30.3/28.1 50.4/46.7 58.4/52.5
KN 30.3/28.1 50.4/46.7 58.4/52.4
SD 28.5/29.4 51.6/49.2 57.1/52.5
ML+LEXLI 21.2/21.3 39.9/39.2 43.9/42.4
GT+LEXLI 21.1/21.3 39.9/39.2 44.2/42.2
AD+LEXLI 21.4/22.2 40.2/40.5 45.1/42.2
KN+LEXLI 21.5/22.2 40.1/40.5 45.0/42.2
SD+LEXLI 21.2/21.2 39.9/39.0 44.0/41.8
GT+LEXBO 21.1/21.0 39.8/39.0 45.3/42.3
SD+LEXBO 21.2/21.0 39.8/39.2 45.1/42.3
ML+LEXLL 37.5/35.5 59.5/53.7 64.3/58.0
GT+LEXLL 24.0/25.8 43.2/43.3 50.9/46.9
AD+LEXLL 30.8/29.2 51.3/46.9 59.7/52.1
KN+LEXLL 30.9/29.1 51.4/46.9 59.7/52.0
SD+LEXLL 23.6/27.7 43.2/42.7 50.7/45.9

Table 2: KSMR results for the three Xerox corpora
(for both direct and inverse translation directions sepa-
rated by the symbol “/”) for different smoothing tech-
niques. Geometric distributions were selected to im-
plement the f3 and f5 feature functions

In order to study the effect of the different proba-
bility distributions used for the feature functions f3

(target phrase length model) and f5 (source phrase
length model) an exhaustive experimentation was car-
ried for all smoothing techniques, and their respective
combinations with the Lexical distribution. Table 3 re-
ports the KSMR results for all possible combinations
of the probability distributions used for f3 (Uniform
(U) and Geometric (G)) and for f5 (Uniform (U), Ge-
ometric (G), and Poisson (P)). As can be seen in this
table slight KSMR differences are obtained. In Table 3
only the results obtained for the best smoothing tech-
nique (Good-Turing) are reported. The best results
were obtained when U+G distribution were used for

the GT smoothing estimation, and G+G for the BO
combination. As was mentioned in section 4.1, the use
of a uniform distribution for f3 penalizes the length
of the segmentation and the use of a geometric dis-
tribution penalized the length of the source phrases.
Correspondingly, the use of a geometric distribution
for f5 makes it possible to establish a relationship be-
tween the length of source and target phrases (the use
of a Poisson distribution also worked well).

Smooth. f3, f5 Spa-Eng Fre-Eng Ger-Eng

GT

U,U 30.1/29.0 53.8/50.7 58.0/53.9
U,P 29.5/28.6 52.9/49.7 57.6/53.4
U,G 28.7/28.0 51.7/48.7 57.3/52.7
G,U 30.5/29.7 54.6/51.5 58.5/54.4
G,P 29.7/29.4 53.3/50.5 58.2/53.7
G,G 28.6/29.4 51.9/49.4 57.7/53.0
U,U 21.8/21.6 40.4/39.1 44.8/42.2
U,P 21.5/21.4 40.2/39.0 44.3/42.0

GT+ U,G 21.3/21.4 40.1/38.8 44.0/41.8
LEXBO G,U 21.6/21.5 40.3/39.1 44.6/42.1

G,P 21.4/21.3 40.0/39.0 44.2/41.9
G,G 21.1/21.0 39.8/39.0 45.3/42.3

Table 3: KSMR results for the three Xerox cor-
pora (for both direct and inverse translation directions
separated by the symbol “/”) for all possible combina-
tions of the probability distributions for the f3 and f5

feature functions when using two different smoothing
techniques

In Table 4 the IMT results for the three considered
corpora (for both translation directions) are shown.
MERT training for the development corpus was per-
formed to adjust the weights of the log-linear model.
In this case, only the Good-Turing (GT) and Simple
Discount (SD) results are reported, showing that both
techniques yielded similar results. The last column of
Table 4 shows the average time in seconds per itera-
tion needed to complete a new translation given a user
validated prefix. Clearly, these times allow the system
to work on a real time scenario.

Finally, in Table 5 a comparison of the best results
obtained in this work (Partial Statistical Phrase-based
Alignments (PSPBA)) with state-of-the-art IMT sys-
tems is reported (95% confidence intervals are shown).
We compared our system with those presented in [1]:
the alignment templates (AT), the stochastic finite-
state transducer (SFST), and the phrase-based (PB)
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Corpus Smooth. KSMR secs./iter.

Spa–Eng
GT+LEXBO 19.6 0.086
SD+LEXBO 19.6 0.090

Eng–Spa
GT+LEXBO 17.5 0.093
SD+LEXBO 17.6 0.094

Fre–Eng
GT+LEXBO 36.9 0.204
SD+LEXBO 37.0 0.205

Eng–Fre
GT+LEXBO 34.4 0.148
SD+LEXBO 34.4 0.147

Ger–Eng
GT+LEXBO 39.5 0.170
SD+LEXBO 39.5 0.184

Eng–Ger
GT+LEXBO 39.1 0.152
SD+LEXBO 39.2 0.154

Table 4: KSMR results for the three Xerox cor-
pora, using geometric distributions for f3 and f5 fea-
ture functions. MERT training was performed. The
average time (in secs.) per iteration is also reported

Corpus AT PB SFST PSPBA
Spa–Eng 24.0±1.3 18.1±1.2 26.9±1.3 19.6±1.1
Eng–Spa 23.2±1.3 16.7±1.2 21.8±1.4 17.6±1.1
Fre–Eng 40.5±1.4 37.2±1.3 45.5±1.3 37.0±1.4
Eng–Fre 40.4±1.4 35.8±1.3 43.8±1.6 34.4±1.2
Ger–Eng 45.9±1.2 36.7±1.2 46.6±1.4 39.5±1.1
Eng–Ger 44.7±1.2 40.1±1.2 45.7±1.4 39.2±1.1

Table 5: KSMR results comparison of our system and
three different state-of-the art IMT systems. 95% con-
fidence intervals are shown

approaches to IMT. As can be seen, our system obtains
similar results and in some cases clearly outperforms
the results obtained by these IMT systems. Specifi-
cally, our results were better than those obtained by
the SFST and the AT systems. In contrast, the KSMR
results with respect to the PB approach were similar.

8 Conclusions

We have presented a new technique for IMT which
is based on the generation of partial alignments at
phrase-level. The generation of such partial align-
ments is driven by statistical phrase-based models and
relies on the application of smoothing techniques to as-
sign probabilities to unseen events.

The experiments we carried out show the great im-
pact of the smoothing techniques in the accuracy of
our system. The combination of a phrase-based model
estimator with a lexical distribution yielded the best
results. Three different combination techniques were
tested: backing-off, linear interpolation and log-linear
interpolation. As we expected, backing-off and linear
interpolation worked better than log-linear

Finally, we have compared the results obtained by
our system with those obtained by state-of-the-art
IMT systems. Our system obtained similar results
and in some cases clearly outperformed the results ob-
tained by the state-of-the-art systems.
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