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Motivation

� A belief in SMT is that “more data  → better translation”.

� But:

� how much parallel text do we need to obtain acceptable  

translation?

� Do we have a constant increase in performance when adding 

more data?

� If we have an exhaustive amount of parallel data, can the SMT 

model be a limitation?

� Can we find the current limitation of the SMT approach?

� Some helpful facts:

� data availability (Europarl, Hansard, UN corpus, Web, …);

� recent advances in software (Moses, …);

� computing power (HPC cluster, cloud computing, …).
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Motivation
� Extensive study of a Phrase based SMT system using Moses, 

Europarl and a HPC cluster.

� Try to answer the previous questions by extrapolating the performance 

of the system under different conditions:

� constantly increasing the training;

� changing the system parameters;

� adding noise to the system parameters;

� …

� Investigate the potentials and limitations of the current technology 

analysing a STM system as a Learning System.

� Explore new aspects of a SMT system under a machine learning point 

of view.

� Confirm some previous results in SMT field.

� Suggest some possible research directions.
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Introduction

� Performance of a learning system is result of 

(at least) two effects:

� representation power of the hypothesis class:

how well the system can approximate the target behaviour;

� statistical effects:

how well the system can estimate the best element of 

the hypothesis class.
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Introduction

� They interact, with richest classes being better 

approximators of the target behaviour, but 

requiring more training data to identify the best 

hypothesis.

� In SMT, learning task is complicated by the 

fact that the probability of encountering new 

words or expressions never vanishes.
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Introduction

� These observations lead us to analyze:

� learning and unlearning curves;

� flexibility of the representation class;

� stability of the model;

� Experiments:

1. role of training set size on performance on new sentences;

2. role of training set size on performance on known sentences;

3. role of phrase length in translation table;

4. model perturbation: analysis and unlearning curves.
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Experimental Setup

� Software
� Moses.
� Giza++: IBM model 1, 2, 3, and 4 with number of iterations 
for model 1 equal to 5, model 2 equal to 0, model 3 and 4 
equal to 3. 

� SRILM: n-gram order equal to 3 and the Kneser-Ney 
smoothing algorithm.

� Mert: 100 the number of nbest target sentence for each 
develop sentence. 

� Training, development and test set sentences are 
tokenized and lowercased. 

� Maximum number of tokens for each sentence in the 
training pair is 50.

� TMs were limited to a phrase-length of 7 words. LMs were 
limited to 3.
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Experimental Setup

� Data
� Europarl Release v3 Spanish-English corpus.
� Training set: 1,259,914 pairs.
� Test and Development sets 2,000 pairs each. 

� Evaluation Scores

� BLEU, NIST, Meteor, TER, Unigram Recall, Unigram 

Precision, FMean, F1, Penalty and Fragmentation.

� BLEU is used as evaluation score after we observed 

its high correlation to the other scores on the corpus.
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Experimental Setup

� Hardware

� University of Bristol cluster machine, 

http://www.acrc.bris.ac.uk/acrc/hpc.htm. 

� 96 nodes each with two dual-core opteron processors. 

� 8 Gb of RAM memory per node (2 Gb per core).

� SilverStorm Infiniband high-speed connectivity throughout 

for parallel code message passing. 

� General Parallel File System (GPFS). 

� Storage 11 terabytes.

� Torque v2.1.6p17 as the Resource Manager. 

� Maui v3.2.6p16 as the scheduler. 
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Role of training set size on performance

on unknown sentences

� Analyse how performance is affected by training set 
size, by creating learning curves.

� Create subsets of the complete corpus by sub-
sampling sentences from a uniform distribution, with 
and without replacement;

� with replacement: analyse the performance on different 
training sets of the same size and the effects of 
optimization phase; 

� without replacement: study the SMT learning curves in the 
Linear-Linear and Linear-Log scales.
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Role of training set size on performance

on unknown sentences

� Create subsets of the complete corpus by sub-
sampling sentences from a uniform distribution, with 
replacement.

� Ten random subsets for each of the 20 chosen sizes 
(each size  5%, 10%, etc of the complete corpus).

� For each subset, a new instance of Moses has been 
created.

� Development and test sets contain 2,000 pairs each.

� The experiments have been run for the models with 
and without the optimization step.
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Role of training set size on performance

on unknown sentences

1. Small error bars.

2. Benefits optimization 

phase.

3. Curves affected by 

the Birthday 

paradox.



Marco Turchi - Univ. of Bristol                Learning to Translate 14

Role of training set size on performance

on unknown sentences

� The whole training set is split in 20 blocks containing 
5% of the data without replacement.

� Each increment of the training set size is a 
concatenation of a new block of data with the 
previous.

� Five random splits have been done of the whole 
training set.

� Each split produces a learning curve.

� A region of confidence is created between the 
learning curve with best performance and the 
learning curve with worst performance. 
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Role of training set size on performance

on unknown sentences

� Learning Curve region in Linear-Linear Scale.

1. Addition of massive 

amounts of data 

result into smaller 

improvements. 
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Role of training set size on performance

on unknown sentences

� Learning Curve region in Linear-Log Scale.

1. Logarithmic 

behaviour can not 

be excluded.

2. Learning curve is 

“logarithm at 

best”.
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Role of training set size on performance

on known sentences
� Experiment much like the one described above.

� Key difference: the test set was selected randomly 

from the training set (2,000 pairs after cleaning 

phase). 

� An upper bound on the performance achievable by 

this architecture if access to ideal data was not an 

issue.

� Performance on translating training sentences are not 

due to simple memorization of the entire sentence.

� ”Human Translation” identifies the curve obtained 

using the reference sentences as target sentences.



Marco Turchi - Univ. of Bristol                Learning to Translate 18

Role of training set size on performance

on known sentences
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Role of training set size on performance

on known sentences

� Fit a line to the test on test set learning curves in the 

linear-log scale using least squares.

� The approximated learning curve will reach the test on 

training learning curve with “only” 10^15 sentence 

pairs. It means:

� 10^9 times the Europarl dataset

� 3*10^9 years of proceedings of the European Parliament.

� The Indexed Web contains at least 27.1 billion pages 

(Saturday, 09 May, 2009 ) by 

http://www.worldwidewebsize.com. If we assume that each 

page has 10 sentences, it would not be enough.



Marco Turchi - Univ. of Bristol                Learning to Translate 20

Role of training set size on performance

on known sentences

� If the right information has been seen, the system 

can reconstruct the sentences rather accurately.

� System can represent internally a good model of 

translation.

� It seems unlikely that good performance will ever be 

inferred by increasing the size of training datasets in 

realistic amounts.

� Process with which we learn the necessary tables 

representing the knowledge of the system is 

responsible for the performance limitations.
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Role of phrase length in translation table

� Gap between performances on training and on test sets is 

typically affected by model selection choices. 

� Choice of the phrase length is crucial in the selection of the 

right model.

� Ten random subsets of the complete corpus containing 
629,957 pairs of sentences have been created. 

� For each subset, ten instances of the SMT have been 
created.

� Each instance has been trained using a different phrase 
length, from 1 to 10.

� Each model has been tested on the test set, 2,000 sentences, 
and on a random subset of 2,000 sentence from the training 
set. 
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Role of phrase length in translation table
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Role of phrase length in translation table

� In both the learning curves there is a big improvement moving 
from the word by word translation, phrase length equal 1, to the
phrase based model. 

� No significant advantages seem to be present when phrase 
length is bigger than 4 in the “test on test set” learning curve.

� The rise of the phrase length improves the performance of the 
system when it has been tested on sentences sampled by the 
training set.

� Phrase length changes the dimension of the translation tables, 
but the system continues to prefer short phrase to long ones 
during the decoding phase
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Model perturbation: analysis and 

unlearning curves
� The training step results in various forms of knowledge: 

translation table, language model and lambda parameters 

from the optimization. 

� The internal models learnt by the system are  lists of 

phrases, with probabilities associated to them.

� In order to simulate the effect of inaccurate estimation of the 
statistical parameters, two different experiments have been 
run:

� a percentage of noise has been added to each probability in the LM 
and TM (Adding Noise);

� noise has been added in the form of wrong associations between 
numerical and textual parts of LM and TM (Randomization of 
Parameters);
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Model perturbation: analysis and unlearning 

curves

� Two models trained with 62,995 and 629,957 pairs of 

sentences have been used.

� Different value of percentage of noise between 0 and 1 have 
been used.

� The noisy probability is obtained as p’ = min(1, p +ν),where ν

= rand(−p k, +p   k) with percentage of noise k    [0, 1].

� If this quantity is bigger than one it has been approximated to 

one.

� For each model, for each value of k, ten experiments have 

been run. 

� Optimization step has not been run.

× × ∈
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Model perturbation: analysis and 

unlearning curves
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Model perturbation: analysis and unlearning 

curves (Randomization of Parameters)

� We define:

� Numerical Swap: given two entries of LM or TM, the 

numerical parts are swapped.

� Words Swap: given two entries of TM, the target language 

phrases are swapped. 

� Percentage of noise represents  a certain number of 
swaps.

� Three different sets of experiments have been run:

� Words Swap of TM;

� Numerical Swap of LM;

� Numerical Swap of TM. 
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Model perturbation: analysis and unlearning 

curves (Randomization of Parameters)

Words Swap in TM Numerical Swap in TM and LM
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Model perturbation: analysis and unlearning 

curves

� Adding Noise: gentle decline of the unlearning curve 
suggests that fine tuning of parameters does not 
seem to control the performance. 

� Randomisation of Parameters: more aggressive 
noise produces more significant decline in 
performance. LM is less affected than TM. In Word 
Swap experiments a more rapid decline should be 
expected, but high redundancy in the TM prevents it.
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� Our experiments suggest that: 

� the current bottleneck is the lack of sufficient data, not the function 

class used for the representation of translation systems. 

� Adding more i.i.d. data does not appear to be a practical way to 

significantly improve performance.

� The perturbation analysis suggests that improved statistical principles 

are unlikely to make a big difference either.

� More than the accurate estimation of parameters, it is the compilation 

of the translation tables that drives the performance of the system.

� Model selection choices, phrase length, will not make a big difference

� Since it is unlikely that sufficient data will be available by simply 

sampling a distribution, one needs to address a few possible ways to 

transfer large amounts of knowledge into the system.

Conclusion/Considerations
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� A research programme naturally follows from our analysis:

� an effort to identify or produce datasets on demand.

� It breaks the traditional i.i.d. assumptions on the origin of data.

� It would also require an effective way to do confidence estimation on 

translations, to identify those instances where there is low confidence in the 

output.

� Introduction of significant domain knowledge in the form of linguistic 

rules, to dramatically reduce the amount of data needed to essentially 

reconstruct them by using statistics.

� The barrier to improving performance is a direct consequence of Zipf’s

law and the frequency of phrases in text. 

� The impossibility of the algorithm to deal with unknown phrases, and 

their non-vanishing frequency in natural corpora conspire to create a 

fundamental limitation.

Conclusion/Considerations
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