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Abstract

In this paper, we start with the existing idea of
taking reordering rules automatically derived
from syntactic representations, and applying
them in a preprocessing step before translation
to make the source sentence structurally more
like the target; and we propose a new approach
to hierarchically extracting these rules. We
evaluate this, combined with a lattice-based
decoding, and show improvements over state-
of-the-art distortion models.

1 Introduction

One of the big challenges for the MT community is
the problem of placing translated words in a natural
order. This issue originates from the fact that dif-
ferent languages are characterized by different word
order requirements. The problem is especially im-
portant if the distance between words which should
be reordered is high (global reordering); in this case
the reordering decision is very difficult to take based
on statistical information due to dramatic expansion
of the search space with the increase in number of
words involved in the search process.

Classically, statistical machine translation (SMT)
systems do not incorporate any linguistic analysis
and work at the surface level of word forms. How-
ever, more recently MT systems are moving towards
including additional linguistic and syntactic infor-
mative sources (for example, source- and/or target-
side syntax) into word reordering process. In this pa-
per we propose using a syntactic reordering system
operating with fully, partially and non- lexicalized
reordering patterns, which are applied on the step

prior to translation; the novel idea in this paper is in
the derivation of these rules in a hierarchical manner,
inspired by Imamura et al (2005). Furthermore, we
propose generating a word lattice from the bilingual
corpus with the reordered source side, extending the
search space on the decoding step. A thorough study
of the combination of syntactical and word lattice re-
ordering approaches is another novelty of the paper.

2 Related work

Many reordering algorithms have appeared over the
past few years. Word class-based reordering was a
part of Och’s Alignment Template system (Och et
al., 2004); the main criticism of this approach is that
it shows bad performance for the pair of languages
with very distinct word order. The state-of-the-art
SMT system Moses implements a distance-based re-
ordering model (Koehn et al., 2003) and a distor-
tion model, operating with rewrite patterns extracted
from a phrase alignment table (Tillman, 2004).

Many SMT models implement the brute force ap-
proach, introducing several constrains for the re-
ordering search as described in Kanthak et al. (2005)
and Crego et al. (2005). The main criticism of such
systems is that the constraints are not lexicalized.
Recently there has been interest in SMT exploiting
non-monotonic decoding which allow for extension
of the search space and linguistic information in-
volvement. The variety of such models includes a
constrained distance-based reordering (Costa-jussà
et al., 2006); and a constrained version of distortion
model where the reordering search problem is tack-
led through a set of linguistically motivated rules
used during decoding (Crego and Mariño, 2007).
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A quite popular class of reordering algorithms is
a monotonization of the source part of the parallel
corpus prior to translation. The first work on this
approach is described in Nießen and Ney (2004),
where morpho-syntactic information was used to ac-
count for the reorderings needed. A representative
set of similar systems includes: a set of hand-crafted
reordering patterns for German-to-English (Collins
et al., 2005) and Chinese-English (Wang et al.,
2007) translations, emphasizing the distinction be-
tween German/Chinese and English clause struc-
ture; and statistical machine reordering (SMR) tech-
nique where a monotonization of the source words
sequence is performed by translating them into the
reordered one using well established SMT mecha-
nism (Costa-jussà and Fonollosa, 2006). Coupling
of SMR algorithm and the search space extension
via generating a set of weighted reordering hypothe-
ses has demonstrated a significant improvement, as
shown in Costa-jussà and Fonollosa (2008).

The technique proposed in this study is most
similar to the one proposed for French-to-English
translation task in Xia and McCord (2004), where
the authors present a hybrid system for French-
English translation based on the principle of auto-
matic rewrite patterns extraction using a parse tree
and phrase alignments. We propose using a word
distortion model not only to monotonize the source
part of the corpus (using a different approach to
rewrite rule organization from Xia and McCord), but
also to extend the search space during decoding.

3 Baseline phrase-based SMT systems

The reference system which was used as a transla-
tion mechanism is the state-of-the-art Moses-based
SMT (Koehn et al., 2007). The training and weights
tuning procedures can be found on the Moses web
page1.

Classical phrase-based translation is considered
as a three step algorithm: (1) the source sequence
of words is segmented into phrases, (2) each phrase
is translated into the target language using a transla-
tion table, (3) the target phrases are reordered to fit
the target language. The probabilities of the phrases
are estimated by relative frequencies of their appear-
ance in the training corpus.

1http://www.statmt.org/moses/

In baseline experiments we used a phrase depen-
dent lexicalized reordering model, as proposed in
Tillmann (2004). According to this model, mono-
tonic or reordered local orientations enriched with
probabilities are learned from training data. During
decoding, translation is viewed as a monotone block
sequence generation process with the possibility to
swap a pair of neighbor blocks.

4 Syntax-based reordering coupled with
word graph

Our syntax-based reordering system requires access
to source and target language parse trees and word
alignments intersections.

4.1 Notation
Syntax-based reordering (SBR) operates with source
and target parse trees that represent the syntactic
structure of a string in source and target languages
according to a Context-Free Grammar (CFG).

We call this representation "CFG form". We
formally define a CFG in the usual way as G =
〈N, T, R, S〉, where N is a set of nonterminal sym-
bols (corresponding to source-side phrase and part-
of-speech tags); T is a set of source-side terminals
(the lexicon), R is a set of production rules of the
form η → γ, with η ∈ N and γ, which is a sequence
of terminal and nonterminal symbols; and S ∈ N is
the distinguished symbol.

The reordering rules then have the form

η0@0 . . . ηk@k →
ηd0@d0 . . . ηdk

@dk|Lexicon|p1 (1)

where ηi ∈ N for all 0 ≤ i ≤ k; (do . . . dk) is
a permutation of (0 . . . k); Lexicon comes from the
source-side set of words for each ηi; and p1 is a prob-
ability associated with the rule. Figure 1 gives two
examples of the rule format.

4.2 Rules extraction
Concept. Inspired by the ideas presented in Imamura
et al. (2005), where monolingual correspondences of
syntactic nodes are used during decoding, we extract
a set of bilingual patterns allowing for reordering as
described below:
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(1) align the monotone bilingual corpus with
GIZA++ (Och and Ney, 2003) and find
the intersection of direct and inverse word
alignments, resulting in the construction
of the projection matrix P (see below));

(2) parse the source and the target parts of the
parallel corpus;

(3) extract reordering patterns from the par-
allel non-isomorphic CFG-trees based on
the word alignment intersection.

Step 2 is straightforward; we explain aspects of
Steps 1 and 3 in more detail below. Figures 1 and 2
show an example of the extraction of two lexicalized
rules for a parallel Arabic-English sentence:

Arabic:
English:

h*A
this

hW
is

fndq
your

+k
hotel

We use this below in our explanations.

Figure 2: Example of subtree transfer and reordering
rules extraction.

Projection matrix. Bilingual content can be rep-
resented in the form of words or sequences of words
depending on the syntactic role of the corresponding
grammatical element (constituent or POS).

Given two parse trees and a word alignment in-
tersection, a projection matrix P is defined as an
M ×N matrix such that M is the number of words
in the target phrase; N is the number of words in
the source phrase; and a cell (i, j) has a value based
on the alignment intersection — this value is zero
if word i and word j do not align, and is a unique
non-zero link number if they do.

For the trees in Figure 2,

P =




1 0 0 0
0 2 0 0
0 0 0 3
0 0 4 0




Unary chains. Given an unary chain of the form
X → Y , rules are extracted for each level in this
chain. For example given a rule

NP@0ADV P@1 → ADV P@1NP@0

and a unary chain "ADV P → AD", a following
equivalent rule will be generated

NP@0AD@1 → AD@1 NP@0.

The role of target-side parse tree. Although re-
ordering is performed on the source side only, the
target-side tree is of great importance: the reorder-
ing rules can be only extracted if the words covered
by the rule are entirely covered by both a node in
the source and in the target trees. It allows the more
accurate determination of the covering and limits of
the extracted rules.

4.3 Rules organization
Once the list of fully lexicalized reordering patterns
is extracted, all the rules are progressively processed
reducing the amount of lexical information. These
initial rules are iteratively expanded such that each
element of the pattern is generalized until all the lex-
ical elements of the rule are represented in the form
of fully unlexicalized categories. Hence, from each

NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << +k >> | p
NN@0 NNP@1 → NNP@1 NN@0 | NN@0 << fndq >> NNP@1 << +k >> | p′

Figure 1: Directly extracted rules.
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initial pattern with N lexical elements, 2N − 2 par-
tially lexicalized rules and 1 general rule are gener-
ated. An example of the process of delexicalization
can be found in Figure 3.

Thus, finally three types of rules are available: (1)
fully lexicalized (initial) rules, (2) partially lexical-
ized rules and (3) unlexicalized (general) rules.

On the next step, the sets are processed separately:
patterns are pruned and ambiguous rules are re-
moved. All the rules from the fully lexicalized, par-
tially lexicalized and general sets that appear fewer
than k times are directly discarded (k is a shorthand
for kful, kpart and kgener). The probability of a
pattern is estimated based on relative frequency of
their appearance in the training corpus. Only one
the most probable rule is stored. Fully lexicalized
rules are not pruned (kful = 0); partially lexicalized
rules that have been seen only once were discarded
(kpart = 1); the thresholds kgener was set to 3: it
limits the number of general patterns capturing rare
grammatical exceptions which can be easily found
in any language.

Only the one-best reordering is used in other
stages of the algorithm, so the rule output function-
ing as an input to the next rule can lead to situa-
tions reverting the change of word order that the
previously applied rule made. Therefore, the rules
that can be ambiguous when applied sequentially
during decoding are pruned according to the higher
probability principle. For example, for the pair of
patterns with the same lexicon (which is empty for
a general rule leading to a recurring contradiction
NP@0 VP@1 → VP@1 NP@0 p1, VP@0 NP@1
→ NP@1 VP@0 p2 ), the less probable rule is re-
moved.

Finally, there are three resulting parameter tables
analogous to the "r-table" as stated in (Yamada and
Knight, 2001), consisting of POS- and constituent-
based patterns allowing for reordering and mono-

tone distortion (examples can be found in Table 5).

4.4 Source-side monotonization
Rule application is performed as a bottom-up parse
tree traversal following two principles:

(1) the longest possible rule is applied, i.e. among
a set of nested rules, the rule with a longest left-side
covering is selected. For example, in the case of the
appearance of an NN JJ RB sequence and presence
of the two reordering rules

NN@0 JJ@1 → ... and

NN@0 JJ@1 RB@2 → ...

the latter pattern will be applied.
(2) the rule containing the maximum lexical infor-

mation is applied, i.e. in case there is more than one
alternative pattern from different groups, the lexical-
ized rules have preference over the partially lexical-
ized, and partially lexicalized over general ones.

Figure 4: Reordered source-side parse tree.

Once the reordering of the training corpus is
ready, it is realigned and new more monotonic align-
ment is passed to the SMT system. In theory, the
word links from the original alignment can be used,
however, due to our experience, running GIZA++
again results in a better word alignment since it is
easier to learn on the modified training example.

Example of correct local reordering done with the
SBR model can be found in Figure 4.

Initial rule: NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << +k >> | p1

Part. lexic. rules: NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << - >> | p2

NN@0 NP@1 → NP@1 NN@0 | NN@0 << - >> NP@1 << +k >> | p3

General rule: NN@0 NP@1 → NP@1 NN@0 | p4

Figure 3: Example of a lexical rule expansion.

81



4.5 Coupling with decoding
In order to improve reordering power of the transla-
tion system, we implemented an additional reorder-
ing as described in Crego and Mariño (2006).

Multiple word segmentations is encoded in a lat-
tice, which is then passed to the input of the de-
coder, containing reordering alternatives consistent
with the previously extracted rules. The decoder
takes the n-best reordering of a source sentence
coded in the form of a word lattice. This approach
is in line with recent research tendencies in SMT, as
described for example in (Hildebrand et al., 2008;
Xu et al., 2005). Originally, word lattice algorithms
do not involve syntax into reordering process, there-

fore their reordering power is limited at representing
long-distance reordering. Our approach is designed
in the spirit of hybrid MT, integrating syntax trans-
fer approach and statistical word lattice methods to
achieve better MT performance on the basis of the
standard state-of-the-art models.

During training a set of word permutation patterns
is automatically learned following given word-to-
word alignment. Since the original and monotonized
(reordered) alignments may vary, different sets of
reordering patterns are generated. Note that no in-
formation about the syntax of the sentence is used:
the reordering permutations are motivated by the
crossed links found in the word alignment and, con-

S 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 L
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E r y q
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* w

t A r y x

* w

m T E m

t A r y x

1 0 L

E r y q

m T E m

E r y q

t A r y x

> n  + h  m T E m  * w  t A r y x  E r y q  W o r d  l a t t i c e ,  p l a i n  t e x t :

W o r d  l a t t i c e ,  r e o r d e r e d  t e x t : > n  + h  m T E m  * w  E r y q  t A r y x  ( c )

( b )

S 1 2 3 4 5> n + h m T E m * w Lt A r y x E r y q

> n  + h  m T E m  * w  t A r y x   E r y qM o n o t o n i c  s e a r c h ,  p l a i n  t e x t :( a )

Figure 5: Comparative example of a monotone search (a), word lattice for a plain (b) and reordered (c) source
sentences.
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sequently, the generalization power of this frame-
work is limited to local permutations.

On the step prior to decoding, the system gen-
erates word reordering graph for every source sen-
tence, expressed in the form of a word lattice. The
decoder processes word lattice instead of only one
input hypothesis, extending the monotonic search
graph with alternative paths.

Original sentence in Arabic, the English gloss and
reference translation are:

Ar.:
Gl.:

>n +h
this

mTEm
restaurant

*w
has

Eryq
history

tAryx
illustrious

Ref: ’this restaurant has an illustrious history’

The monotonic search graph (a) is extended with
a word lattice for the monotonic train set (b) and re-
ordered train sets (c). Figure 5 shows an example
of the input word graph expressed in the form of a
word lattice. Lattice (c) differ from the graph (b) in
number of edges and provides more input options to
the decoder. The decision about final translation is
taken during decoding considering all the possible
paths, provided by the word lattice.

5 Experiments and results

5.1 Data
The experiments were performed on two Arabic-
English corpora: the BTEC’08 corpus from the
tourist domain and the 50K first-lines extraction
from the corpus that was provided to the NIST’08
evaluation campaign and belongs to the news do-
main (NIST50K). The corpora differ mainly in the
average sentence length (ASL), which is the key cor-
pus characteristic in global reordering studies.

A training set statistics can be found in Table 1.

BTEC NIST50K
Ar En Ar En

Sentences 24.9 K 24.9 K 50 K 50 K
Words 225 K 210 K 1.2 M 1.35 M
ASL 9.05 8.46 24.61 26.92
Voc 11.4 K 7.6 K 55.3 36.3

Table 1: Basic statistics of the BTEC training corpus.

The BTEC development dataset consists of 489
sentences and 3.8 K running words, with 6 human-
made reference translations per sentence; the dataset

used to test the translation quality has 500 sentences,
4.1 K words and is also provided with 6 reference
translations.

The NIST50K development set consists of 1353
sentences and 43 K words; the test data contains
1056 sentences and 33 K running words. Both
datasets have 4 reference translations per sentence.

5.2 Arabic data preprocessing
We took a similar approach to that shown in Habash
and Sadat (2006), using the MADA+TOKAN sys-
tem for disambiguation and tokenization. For dis-
ambiguation only diacritic unigram statistics were
employed. For tokenization we used the D3 scheme
with -TAGBIES option. The scheme splits the fol-
lowing set of clitics: w+, f+, b+, k+, l+, Al+ and
pronominal clitics. The -TAGBIES option produces
Bies POS tags on all taggable tokens.

5.3 Experimental setup
We used the Stanford Parser (Klein and Man-
ning, 2003) for both languages, Penn English Tree-
bank (Marcus et al., 1993) and Penn Arabic Tree-
bank set (Kulick et al., 2006). The English Treebank
is provided with 48 POS and 14 syntactic tags, the
Arabic Treebank has 26 POS and 23 syntactic cate-
gories.

As mentioned above, specific rules are not pruned
away due to a limited amount of training material we
set the thresholds kpart and kgener to relatively low
values, 1 and 3, respectively.

Evaluation conditions were case-insensitive and
with punctuation marks considered. The target-
side 4-gram language model was estimated using
the SRILM toolkit (Stolcke, 2002) and modified
Kneser-Ney discounting with interpolation. The
highest BLEU score (Papineni et al., 2002) was cho-
sen as the optimization criterion. Apart from BLEU,
a standard automatic measure METEOR (Banerjee
and Lavie, 2005) was used for evaluation.

5.4 Results

The scores considered are: BLEU scores obtained
for the development set as the final point of the
MERT procedure (Dev), and BLEU and METEOR
scores obtained on test dataset (Test).

We present BTEC results (Tables 2), character-
ized by relatively short sentence length, and the re-
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sults obtained on the NIST corpus (Tables 3) with
much longer sentences and much need of global re-
ordering.

Dev Test
BLEU BLEU METEOR

Plain 48.31 45.02 65.98
BL 48.46 47.10 68.10

SBR 48.75 47.52 67.33
SBR+lattice 48.90 48.78 68.85

Table 2: Summary of BTEC experimental results.

Dev Test
BLEU BLEU METEOR

Plain 41.83 43.80 62.03
BL 42.68 43.52 62.17

SBR 42.71 44.01 63.29
SBR+lattice 43.05 44.89 63.30

Table 3: Summary of NIST50K experimental results.

Four SMT systems are contrasted: BL refers to
the Moses baseline system: the training data is not
reordered, lexicalized reordering model (Tillman,
2004) is applied; SBR refers to the monotonic sys-
tem configuration with reordered (SBR) source part;
SBR+lattice is the run with reordered source part, on
the translation step the input is represented as a word
lattice.

We also compare the proposed approach with a
monotonic system configuration (Plain). It shows
the effect of source-reordering and lattice input, also
decoded monotonically.

Automatic scores obtained on the test dataset
evolve similarly when the SBR and word lattice rep-
resentation applied to BTEC and NIST50K tasks.
The combined method coupling two reordering

techniques was more effective than the techniques
applied independently and shows an improvement
in terms of BLEU for both corpora. The METEOR
score is only slightly better for the SBR configura-
tions in case of BTEC task; in the case of NIST50K
the METEOR improvement is more evident. The
general trend is that automatic scores evaluated on
the test set increase with the reordering model com-
plexity.

Application of the SBR algorithm only (without
a word lattice decoding) does not allow achieving
statistical significance threshold for a 95% confi-
dence interval and 1000 resamples (Koehn, 2004)
for either of considered corpora. However, the
SBR+lattice system configuration outperforms the
BL by about 1.7 BLEU points (3.5%) for BTEC task
and about 1.4 BLEU point (3.1%) for NIST task.
These differences is statistically significant.

Figure 6 demonstrates how two reordering tech-
niques interact within a sentence with a need for
both global and local word permutations.

5.5 Syntax-based rewrite rules
As mentioned above, the SBR operates with three
groups of reordering rules, which are the product
of complete or partial delexicalization of the origi-
nally extracted patterns. The groups are processed
and pruned independently. Basic rules statistics for
both translation tasks can be found in Table 4.

The major part of reordering rules consists of
two or three elements (for BTEC task there are
no patterns including more than three nodes). For
NIST50K there are a few rules with higher size in
words of the move (up to 8). In addition, there are
some long lexicalized rules (7-8), generating a high
number of partially lexicalized patterns.

Table 5 shows the most frequent reordering rules
with non-monotonic right part from each group.

Ar. plain.:
En. gloss:

AElnt
announced

Ajhzp
press

AlAElAm
release

l
by

bEvp
mission

AlAmm AlmtHdp
nations united

fy
in

syrAlywn
sierra leone

An
that

...

...
En. ref.: ’a press release by the united nations mission to sierra leone announced that ...’

Ar. reord.: Ajhzp AlAElAm l bEvp AlmtHdp AlAmm fy syrAlywn AElnt An ...

Figure 6: Example of SBR application (highlited bold) and local reordering error corrected with word lattice reorder-
ing (underlined).
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6 Conclusions

In this study we have shown how the translation
quality can be improved, coupling (1) SBR al-
gorithm and (2) word alignment-based reordering
framework applied during decoding. The system
automatically learns a set of syntactic reordering
patterns that exploit systematic differences between
word order of source and target languages.

Translation accuracy is clearly higher when al-
lowing for SBR coupled with word lattice input rep-
resentation than standard Moses SMT with existing
(lexicalized) reordering models within the decoder
and one input hypothesis condition. We have also
compared the reordering model a monotonic system.

The method was tested translating from Arabic to
English. Two corpora and tasks were considered:
the BTEC task with much need of local reordering
and the NIST50K task requiring long-distance per-
mutations caused by longer sentences.

The reordering approach can be expanded for any
other pair of languages with available parse tools.
We also expect that the method scale to a large train-
ing set, and that the improvement will still be kept,
however, we plan to confirm this assumption exper-
imentally in the near future.

Acknowledgments

This work has been funded by the Spanish Gov-
ernment under grant TEC2006-13964-C03 (AVI-
VAVOZ project) and under a FPU grant.

Group # of rules Voc 2-element 3-element 4-element [5-8]-element

BTEC experiments

Specific rules 703 413 406 7 0 0
Partially lexicalized rules 1,306 432 382 50 0 0

General rules 259 5 259 0 0 0

NIST50K experiments

Specific rules 517 399 193 109 72 25
Partially lexicalized rules 17,897 14,263 374 638 1,010 12,241

General rules 489 372 180 90 72 30

Table 4: Basic reordering rules statistics.

Specific rules

NN@0 NP@1 -> NP@1 NN@0 | NN@0 « Asm » NP@1 « +y » | 0.0270
DTNN@0 DTJJ@1 -> DTJJ@1 DTNN@0 | DTNN@0 « AlAmm »DTJJ@1 « AlmtHdp » | 0.0515

Partially lexicalized rules

DTNN@0 DTJJ@1 -> DTJJ@1 DTNN@0 | DTNN@0 « NON »DTJJ@1 « AlmtHdp » | 0.0017
NN@0 NNP@1 -> NNP@1 NN@0 | NN@0 « NON »NNP@1 « $rm » | 0.0017

General rules

PP@0 NP@1 -> PP@0 NP@1 | 0.0432
NN@0 DTNN@1 DTJJ@2 -> NN@0 DTJJ@2 DTNN@1 |0.0259

Table 5: Examples of Arabic-to-English reordering rules.
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