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Abstract 

We argue that learning word alignments 
through a compositionally-structured, joint 
process yields higher phrase-based transla-
tion accuracy than the conventional heuris-
tic of intersecting conditional models. 
Flawed word alignments can lead to flawed 
phrase translations that damage translation 
accuracy. Yet the IBM word alignments 
usually used today are known to be flawed, 
in large part because IBM models (1) 
model reordering by allowing unrestricted 
movement of words, rather than con-
strained movement of compositional units, 
and therefore must (2) attempt to compen-
sate via directed, asymmetric distortion and 
fertility models. The conventional heuris-
tics for attempting to recover from the re-
sulting alignment errors involve estimating 
two directed models in opposite directions 
and then intersecting their alignments – to 
make up for the fact that, in reality, word 
alignment is an inherently joint relation. A 
natural alternative is provided by Inversion 
Transduction Grammars, which estimate 
the joint word alignment relation directly, 
eliminating the need for any of the conven-
tional heuristics. We show that this align-
ment ultimately produces superior 
translation accuracy on BLEU, NIST, and 
METEOR metrics over three distinct lan-
guage pairs. 

1 Introduction 

In this paper we argue that word alignments 
learned through a compositionally-structured, joint 

process are able to significantly improve the train-
ing of phrase-based translation systems, leading to 
higher translation accuracy than the conventional 
heuristic of intersecting conditional models. To-
day, statistical machine translation (SMT) systems 
perform at state-of-the-art levels; their ability to 
weigh different translation hypotheses against each 
other to find an optimal solution has proven to be a 
great asset. What sets various SMT systems apart 
are the models employed to determine what to con-
sider optimal. The most common systems today 
consist of phrase-based models, where chunks of 
texts are substituted and rearranged to produce the 
output sentence. 

Our premise is that certain flawed word align-
ments can lead to flawed phrase translations that in 
turn damage translation accuracy, since word 
alignment is the basis for learning phrase transla-
tions in phrase-based SMT systems. A critical part 
of such systems is the word-level translation 
model, which is estimated from aligned data. Cur-
rently, the standard way of computing a word 
alignment is to estimate a function linking words in 
one of the languages to words in the other. Func-
tions can only define many-to-one relations, but 
word alignment is a many-to-many relation. The 
solution is to combine two functions, one in each 
direction, and harmonize them by means of some 
heuristic. After that, phrases can be extracted from 
the word alignments. 

The problem is that the starting point for word 
alignments is usually the IBM models (Brown et 
al., 1993), which are known to produce flawed 
alignments, in large part because they (1) model 
reordering by allowing unrestricted movement of 
words, rather than constrained movement of com-
positional units, and therefore must (2) attempt to 
compensate via directed, asymmetric distortion and 
fertility models. 
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The conventional heuristics for attempting to re-
cover from the resulting alignment errors is to es-
timate two directed models in opposite directions 
and then intersect their alignments – to make up 
for the fact that, in reality, word alignment is an 
inherently joint relation. It is unfortunate that such 
a critical stage in the training process of an SMT 
system relies on inaccurate heuristics, which have 
been largely motivated by historical implementa-
tion factors, rather than principles explaining lan-
guage phenomena. 

Inversion Transduction Grammar (ITG) models 
provide a natural, alternative approach, by estimat-
ing the joint word alignment relation directly, 
eliminating the need for any of the conventional 
heuristics. A transduction grammar is a grammar 
that generates sentences in two languages (L0 and 
L1) simultaneously; i.e., one start symbol expands 
into two strings, as for example in Figure 1(b).  A 
transduction grammar explains two languages si-
multaneously.  ITGs model a class of transductions 
(sets of sentence translations) with expressive 
power and computational complexity falling be-
tween (a) finite-state transducers or FSTs and (b) 
syntax-directed transduction grammars1 or SDTGs.  
An ITG produces both a common structural form 
for a sentence pairs, as well as relating the words – 
aligning them.  This could actually work as the 
joint word alignment that is usually constructed by 
heuristic function combination. 

Yet despite the substantial body of literature on 
word alignment, ITG based models, and phrase-
based SMT, the existing work has not assessed the 
potential for improving phrase-based translation 
quality by using joint ITG based word alignments 
to replace the error-prone conditional IBM model 
based word alignments and associated heuristics 
for intersecting bidirectional IBM alignments. 

On one hand, word alignment work is usually 
evaluated not on actual translation quality, but 
rather on artificial metrics like alignment error rate 
(AER, Och & Ney, 2003), which relies on a manu-
ally annotated gold standard word alignment. 
There are some indications that ITG produces bet-
ter alignment then the standard method (Zhao & 
Vogel, 2003, Zhang & Gildea 2005, Chao & Li, 
2007). There is, however, little inherent utility in 
alignments – their value is determined by the SMT 
systems one can build from them. In fact, recent 

                                                           
1 Which “synchronous CFGs” are essentially identical to. 

studies have discredited the earlier assumption that 
lower AER is correlated with improved translation 
quality – the opposite can very well occur (Ayan & 
Dorr, 2006). Therefore it is essential to evaluate 
the quality of the word alignment not in terms of 
AER, but rather in terms of actual translation qual-
ity in a system built from it. 

On the other hand, ITG models have been em-
ployed to improve translation quality as measured 
by BLEU (Papineni et al., 2002), but still without 
directly addressing the problem of dependence on 
inaccurate IBM alignments. Sánchez & Benedí 
(2006) construct an ITG from word alignments 
computed by the conventional IBM model, which 
does little to alleviate the problems. Sima’an & 
Mylonakis (2008) use an ITG to structure a prior 
distribution to a phrase extraction system, which is 
an altogether different approach. Cherry & Lin 
(2007) do use ITG to build word alignments, but 
blur the lines by still mixing in the conventional 
IBM method, and focus on phrase extraction. 

The present work clearly demonstrates, for the 
first time to our knowledge, that replacing the 
widely-used heuristic of intersecting IBM word 
alignments from two directed conditional models 
instead with a single ITG alignment from a joint 
model produces superior translation accuracy.  The 
experiments are performed on three distinct lan-
guage pairs: German–English, Spanish–English, 
and French–English. Translation accuracy is re-
ported in terms of BLEU, NIST, and METEOR 
metrics. 

2 Background 

Statistical Machine Translation is a paradigm 
where translation is considered as a code-breaking 
problem. The goal is to find the most likely output 
sentence (clear text message) given the supplied 
input sentence (coded message), according to some 
model. 

To get a probabilistic model, large amounts of 
training data are used. These data have to be 
aligned so that an understanding of correspon-
dences between the languages is there to be learnt 
from. Even if the data is assumed to be aligned at 
sentence level, sub-sentence alignment is also 
needed. This is usually carried out by training 
some statistical model of a word-to-word function 
(Brown et al., 1993), or a hidden Markov model 
consuming input words and emitting output words 
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(Vogel, Ney & Tillmann, 1996). The toolkit 
GIZA++ (Och & Ney, 2000) is freely available and 
widely used to compute such word alignments. 

All these models learn a directed translation 
function that maps input words to output words. 
Since these functions focus solely on surface phe-
nomena, they have no mechanisms for dealing with 
the kind of structured reordering between lan-
guages that could account for, e.g., the difference 
between SVO languages and SOV languages. 

What emerges is in fact a rather flawed model of 
how one language is rewritten into another. The 
conventional way to alleviate this flaw is to train 
an equally flawed model in the other direction, and 
then intersect the two. This practice certainly alle-
viates some of the problems, but far from all. 

To build a phrase-based SMT system, the word 
alignment is used as a starting point to try to ac-
count for the entire sentence. This means that the 
word alignment is gradually expanded, so that all 
words in both sentences are accounted for, either 
by words in the other language, or by the null 
empty word ε. This process is called grow-diag-
final (Koehn, Och & Marcu, 2003). 

The grow-diag-final process does smooth over 
some of the flaws still left in the word alignment, 
but error analysis gives reason to doubt that it re-
pairs enough of the errors to avoid damaging trans-
lation accuracy. Thus, we are motivated to 
investigate a completely different approach that 
attempts to avoid the noisy directed alignments in 
the first place. 

2.1 Inversion Transduction Grammars 

A transduction is a set of sentence translation 
pairs – just as a language is a set of sentences.  The 
set defines a relation between the input and output 
languages. 

In the generative view, a transduction gram-
mar generates a transduction, i.e., a set of sentence 
translation pairs or bisentences – just as an ordi-
nary (monolingual) language grammar generates a 
language, i.e., a set of sentences.  In the recogni-
tion view, alternatively, a transduction grammar 
biparses or accepts all sentence pairs of a trans-
duction – just as a language grammar parses or 
accepts all sentences of a language.  And in the 
transduction view, a transduction grammar trans-
duces (translates) input sentences to output sen-
tences. 

Two familiar classes of transductions have been 
in widespread use for decades in many areas of 
computer science and linguistics: 

 
A syntax-directed transduction is a set of bisen-
tences generated by some syntax-directed transduc-
tion grammar or SDTG (Lewis & Stearns, 1968; 
Aho & Ullman, 1969, 1972).  A “synchronous CFG” 
is equivalent to an SDTG. 
 
A finite-state transduction is a set of bisentences 
generated by some finite-state transducer or FST.  
It is possible to describe finite-state transductions us-
ing SDTGs (or synchronous CFGs) by restricting 
them alternatively to the special cases of either “right 
regular SDTGs” or “left regular SDTGs”.  However, 
such characterizations rather misleadingly overlook 
the key point – by severely limiting expressive 
power, finite-state transductions are orders of magni-
tude cheaper to biparse, train, and induce than syn-
tax-directed transductions – and are often even more 
accurate to induce. 
 

More recently, an intermediate equivalence class 
of transductions whose generative capacity and 
computational complexity falls in between these 
two has become widely used in state-of-the-art MT 
systems – due to numerous empirical results indi-
cating significantly better fit to modeling transla-
tion between many human language pairs: 

 
An inversion transduction is a set of bisentences 
generated by some inversion transduction gram-
mar or ITG (Wu, 1995a, 1995b, 1997).  As above 
with finite-state transductions, it is possible to de-
scribe inversion transductions using SDTGs (or syn-
chronous CFGs) by restricting them alternatively to 
the special cases of “binary SDTGs”, “ternary 
SDTGs”, or “SDTGs whose transduction rules are 
restricted to straight and inverted permutations only”.  
Again however, as above, such characterizations 
rather misleadingly overlook the key point – by se-
verely limiting expressive power, inversion transduc-
tions are orders of magnitude cheaper to biparse, 
train, and induce than syntax-directed transductions – 
and are often even more accurate to induce. 
 
Any SDTG (or synchronous CFG) of binary 

rank – i.e., that has at most two nonterminals on 
the right-hand-side of any rule – is an ITG.  (Simi-
larly, any SDTG (or synchronous CFG) that is 
right regular is a finite-state transduction gram-
mar.)  Thus, for example, any grammar computed 
by the binarization algorithm of Zhang et al. 
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monolingual bilingual 
 

regular or 
finite-state 
languages 

FSA 
or 

CFG that is 
right regular 
or left regular  

 
 
 
 

O(n2) 

 
regular or 
finite-state 

transductions 
FST 
or  

SDTG (or syn-
chronous CFG) 

that is 
right regular 
or left regular 

 

 
 
 
 

O(n4) 

context-free 
languages 

CFG 

 
 

O(n3) 

inversion 
transductions 

ITG 
or  

SDTG (or syn-
chronous CFG) 
that is binary 

or ternary 
or inverting 

 
 

O(n6) 

   
syntax-directed 
transductions 

SDTG 
(or synchro-
nous CFG) 

 

 
 
 

O(n2n+2) 

 
Table 1: Summary comparison of computational 
complexity for Viterbi and chart (bi)parsing, and 
EM training algorithms for both monolingual and 

bilingual hierarchies. 
 

 

(2006) is an ITG.  Similarly, any grammar induced 
following the hierarchical phrase-based translation 
method, which always yields a binary transduction 
grammar (Chiang 2005), is an ITG. 

Moreover, any SDTG (or synchronous CFG) of 
ternary rank – i.e., that has at most three nontermi-
nals on the right-hand-side of any rule – is still 
equivalent to an ITG.  Of course, this does not hold 
for SDTGs (or synchronous CFGs) in general, 
which allow arbitrary rank (possibly exceeding 
three) at the price of exponential complexity, as 
summarized in Table 1. 

Without loss of generality, any ITG can be con-
veniently written in a 2-normal form (Wu, 1995a, 
1997).  This cannot be done for SDTGs (or syn-
chronous CFGs) – unlike the monolingual case of 
CFGs, which form an equivalence class of context-
free languages that can all be written in Chomsky’s 
2-normal form.  In the bilingual case, only ITGs 

form an equivalence class of inversion transduc-
tions that can all be written in a 2-normal form. 

Formally, an ITG in this 2-normal form, which 
segregates syntactic versus lexical rules, consists 
of a tuple  where N is a set of non-
terminal symbols, V0 and V1 are the vocabularies of 
L0 and L1 respectively, R is a set of transduction 
rules, and  is the start symbol.  Each trans-
duction rule takes one of the following forms: 

 
S → X 
X → [Y Z] 
X → <Y Z> 
X → segmentL0/ε 
X → ε/segmentL1 
X → segmentL0/segmentL1 

 
where X, Y and Z may be any nonterminal. 

Aside from the start rule, there are two kinds of 
syntactic transduction rules, namely straight and 
inverted.  In the above notation, straight transduc-
tion rules X → [Y Z] use square brackets, 
whereas inverted rules X → <Y Z> use angled 
brackets.  The transductions generated by straight 
nodes have the same order in both languages, 
whereas the transduction generated by the inverted 
nodes are inverted in one of the languages, mean-
ing that the children are read left-to-right in L0 and 
right-to-left in L1. In Figure 1(b) for example, the 
parse tree node instantiating an inverted transduc-
tion rule is marked with a horizontal bar.  This 
mechanism allows for a minimal amount of reor-
dering, while keeping the complexity down. 

The last three forms are for lexical transduction 
rules.  Each segment comes from the vocabulary 
of one of the languages, indicated by the subscript.  
In the simplest case, the two ε-rule forms define 
singletons, which insert “spurious” segments into 
either language.  Spurious segments lack any cor-
respondence in the other language – they are 
“aligned to null” – and singletons are lexical rules 
that associate a null-aligned segment in one of the 
languages with an empty segment (ε) in the other. 

On the other hand, the last rule form defines a 
lexical translation pair that aligns the 
word/phrase segmentL0 to its translation 
segmentL1.  Such rules can also be written com-
positionally as a pair of singletons, although it 
reads less transparently: 

 
X → segmentL0/ε ε/segmentL1 
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Note that segments typically consist of multiple 
tokens. Common examples include: 

• Chinese word/phrase segments consisting of 
multiple unsegmented character tokens 

• Chinese word/phrase segments consisting of 
multiple smaller, presegmented multi-
character word/phrase tokens 

• English phrase/collocation segments consist-
ing of multiple word tokens (roller coaster) 

ITGs inherently model phrasal translation – lin-
guistically speaking, ITGs assume the set of lexical 
translation pairs constitutes a phrasal lexicon (just 
as lexicographers assume in building ordinary eve-
ryday dictionaries). An advantage of this is that the 
ITG biparsing and decoding algorithms perform 
integrated translation-driven segmentation si-
multaneously with optimizing the parse (Wu, 
1997; Wu & Wong, 1998). 

These properties allow an ITG to (1) insert and 
delete words/phrases, which matches the ability of 
the conventional methods for word alignment as 
well as phrase alignment, and (2) account for the 
reordering in a more principled and restricted way 
than conventional alignment methods. 

A stochastic ITG or SITG is an ITG where 
every rule is associated with a probability. As with 
a stochastic CFG (SCFG), the probabilities are 
conditioned on the left-hand-side symbol, so that 
the probability of rule X → χ is p(χ|X). 

A bracketing ITG or BITG or BTG (Wu, 
1995a) contains only one nonterminal symbol, 
with syntactic transduction rules X → [X X] and 
X → <X X>, which means that it produces a 
bracketing rather than a labeled tree. With a sto-
chastic BITG (SBITG or SBTG) it is still possible 
to determine an optimal tree, since inversion and 
alignment are coupled: where inversions are 
needed is decided by the translations, and vice 
versa. 

In Wu (1995b) algorithms for training a SITG 
using expectation maximization, as well as finding 
the optimal parse of a sentence pair given a SITG 
are presented. These are polynomial time O(n6), as 
seen in Table 1. Further pruning methods can also 
be added, especially for longer sentences. 

2.2 Previous uses of ITG in alignment 

There have been several attempts to use various 
forms of ITGs in an alignment setting. 

Zhao & Vogel (2003) and Sánchez & Benedí 
(2006) both use GIZA++ to establish their SITG. 
Since they use GIZA++ to create their ITG, little 
light is shed on the question of whether an ITG 
produces better alignments than GIZA++. 

Zhang & Gildea (2005) compare lexicalized and 
standard ITGs on an alignment task, and conclude 
that both are superior to IBM models 1 and 4, and 
that lexicalization helps. They also employ some 
pruning techniques to speed up training. Chao & Li 
(2007) incorporate the reordering constraints im-
posed by an ITG to their discriminative word 
aligner, and also note a lower alignment error rate 
in their system. Since neither work evaluates re-
sults on a translation task, it is hard to know 
whether better AER would translate into improved 
translation quality, in light of Ayan & Dorr (2006). 

Sima’an & Mylonakis (2008) use an ITG as the 
basis of a prior distribution in their system that ex-
tracts all possible phrases rather than employing a 
length cut-off, and report an increase in translation 
quality as measured by the BLEU score (Papineni 
et al., 2002). In this paper, it is not primarily pure 
ITG that is being evaluated, but it lends some 
credibility to our assumption that the ITG structure 
helps when aligning. 

Cherry & Lin (2007) use an ITG to produce 
phrase tables that are then used in a translation sys-
tem. However, to make their system outperform 
GIZA++, they blend in a non-compositionality 
constraint that is still based on GIZA++ word 
alignments. We would very much like to clearly 
see and understand the difference between ITG and 
GIZA++ alignments, and the lines are somewhat 
blurred in their work. 

3 Model 

First, the lexicon of the SBITG is initialized, by 
extracting lexical transduction rules from cooccur-
rence data from the corpus. Each pair of tokens in 
each sentence pair is initially considered equally 
likely to be a lexical translation pair. Each token is 
also considered to be a possible singleton. The two 
syntactic transduction rules X → [X X] and X → 
<X X> are initially assumed to be equally likely. 

Then full expectation-maximization training 
(Wu, 1995b) is carried out on the training data. 
Instead of waiting for full convergence, the process 
is halted when the increase in the training data’s 
probability starts to decline. 
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 sentence pairs tokens 
de-en 115,323 1,602,781 
es-en 108,073 1,466,132 
fr-en 95,990 1,340,718 

Table 2: Summary of training data. 
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Figure 1: (a) Bidirectional IBM 
alignments and their intersection 

and (b) ITG alignments. 

 
Figure 2: (a) Bidirectional IBM 
alignments and their intersection 

and (b) ITG alignments. 

 
Figure 3: (a) Bidirectional IBM 

alignments and their intersec-
tion and (b) ITG alignments. 

 
 
 
At this point, we extract the optimal parses from 

the training data, and use the word alignment im-
posed by the ITG instead of the one computed by 
GIZA++ (Och & Ney, 2000). Training after this 
point is carried out according to the guidelines for 
the WSMT08 baseline system (see section 4.2). In 
Figure 1(a) is an example of a sentence aligned 
with GIZA++, and in Figure 1(b) is the same sen-
tence, aligned with ITG. In this case it is clearly 
visible how the structured reordering constraints 
that the ITG enforces results in a clear alignment, 
whereas GIZA++ is unable to sort it out. 

4 Experimental setup 

4.1 Data 

We used a subset of the data provided for the Sec-
ond Workshop on Statistical Machine Translation2, 
which consists mainly of texts from the Europarl 
corpus (Koehn, 2005). We used the Europarl part 
for the translation tasks: German–English (de-en), 
Spanish–English (es-en), and French–English 
(fr-en). Table 2 summarizes the datasets used for 
training. For tuning and testing, the tuning and de-
velopment test sets provided for the workshop 
were used – each measuring 2,000 sentence pairs. 

4.2 Baseline system 

For baseline system we trained phrase-based SMT 
models with GIZA++ (Och & Ney, 2000), the 
training scripts supplied with Moses (Koehn et al., 
                                                           
2 www.statmt.org/wmt08 
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2007), and minimum error rate training (MERT, 
Och, 2003), all according to the WSMT08-
guidelines for baseline systems. This means that 5 
iterations are carried out with IBM model 1 train-
ing, 5 iterations with HMM training, 3 iterations of 
IBM model 3 training, and finally 3 iterations of 
IBM model 4 training. After GIZA++ training, the 
Moses training script extracts and scores phrases, 
and establishes a lexicalized reordering model. 

The WSMT08 guidelines call for the combina-
tion heuristic “grow-diag-final-and” (GDFA). We 
also tried the “intersect” combination heuristic, 
which simply calculates the intersection of align-
ment points in the two directed alignments pro-
vided by GIZA++. 

4.3 SBITG system 

Since imposing an SBITG biparse on a sentence 
pair forces a word alignment on the sentence pair, 
word alignment under SBITG models is identical 
to biparsing. 

Expectation-maximization training was used to 
induce a SBITG from the training data. Training is 
halted when the EM-process started to converge. In 
our experience, convergence typically requires no 
more than 3 iterations or so. When EM training is 
finished, we extracted the optimal biparses from 
the training data, which then constitute the optimal 
alignment given the grammar. This alignment was 
then output in GIZA++ format. All singletons from 
the SBITG alignment were converted to be null-
alignments in the GIZA++ formatted file. These 
files could then be used instead of GIZA++ in the 
remainder of the training process for the phrase-
based translation system. 

Although the results from the ITG are inter-
preted as two directed alignments, they are identi-
cal, both with each other and the intersection. 
Trying different combination heuristics for these 
results always yields the same results. 

The training process was identical save for the 
fact that the word alignments were produced by 
SBITGs rather than by GIZA++. 

5 Experimental results 

We trained a total of nine systems (three tasks and 
three different alignments), which we evaluated 
with three different measures: BLEU (Papineni et 
al., 2002), NIST (Doddington, 2002), and 
METEOR (Lavie & Agarwal 2007). 

Figure 2 shows a sentence pair as it was aligned 
with the two different models. Figure 2(a) shows 
the GIZA++ alignment in both directions, and the 
intersection between them, whereas Figure 2(b) 
shows the SBITG alignment with its common 
structure. The asymmetric reordering mechanism 
of the IBM models is simply unable to relate the 
two halves to one another. The segment zur 
kenntnis genommen could certainly be said to 
mean note, but as a verb, and not as a noun, which 
is the current usage of the word. This is an inherent 
problem of the asymmetry of the IBM models, 
which is rectified by simultaneous alignment. 

Figure 3 shows another sentence pair. Again, 
Figure 3(a) was aligned with GIZA++ and Figure 
3(b) with the SITG model. This shows a case with 
perhaps even more structured reordering, where a 
notion of constituency is definitely needed to get it 
right. SITG handles constituency, and gets this is-
sue right. The IBM models do not, resulting in the 
error of aligning either to aufgerufen. 

As mentioned before, the GDFA heuristic is ap-
plied after the word alignment process, and it does 
fix some of these problems. Therefore we opted to 
evaluate this, not on alignments, but rather on 
translation quality of phrase based SMT systems 
derived from the alignments. Our empirical results 
confirm that SBITG alignments do indeed lead to 
better translation quality, as shown in Table 2. 

We also tried the intersect combination heuris-
tic, and depending on language pair and evaluation 
metric, the GDFA and intersect heuristics come out 
on top. The ITG approach is, however, consistently 
better than either of the heuristics applied to 
GIZA++ output. 

6 Discussion 

There are of course fundamental differences be-
tween ITG and IBM models. The main difference 
is that IBM models are directed and surface ori-
ented, whereas the ITG model is joint and struc-
tured. The directedness means that the IBM models 
are unable to produce a word alignment that is op-
timal for a sentence pair; they can only produce 
word alignments that are optimal when translating 
from one language into the other. An ITG on the 
other hand is capable of producing the optimal 
alignment that explains both sentences in the pair. 
We see this phenomenon clearly in Figures 1–3. 
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BLEU NIST METEOR 
GIZA++ GIZA++ GIZA++ 

 

GDFA inters. SBITG GDFA inters. SBITG GDFA inters. SBITG 

de-en 20.59 20.69 21.13 5.8668 5.8623 5.9380 0.4969 0.4953 0.5029 
es-en 25.97 26.33 26.63 6.6352 6.6793 6.7407 0.5599 0.5582 0.5612 
fr-en 26.03 26.17 26.63 6.6907 6.7071 6.8151 0.5544 0.5560 0.5635 
 

Table 2: Results. The best result on each task/metric combination is in bold digits. 
(The identical results for SBITG on Spanish–English and French–English are not typos.) 

 
IBM models are also built to allow for fairly 

“whimsical” reorderings, which are not modeled 
very well to begin with. This allows for far too 
many degrees of freedom to fit the model to the 
data. Because natural languages are inherently 
structural, this excess degree of freedom could hurt 
performance. Some restraints are needed. ITGs on 
the other hand only allow for compositionally 
structured reordering, which corresponds better to 
the reorderings between natural languages. There 
are some issues with ITG as well, one of them be-
ing that all permutations are actually not allowed, 
even if structured. This has led to some problems 
when an a prior alignment or structure is forced 
upon a sentence pair, but using unrestricted expec-
tation-maximization means that the sentence pair is 
fitted to the grammar, and what the grammar can-
not express is not applied to the data. Even if ITG 
proves to be too restrictive in the future, the fact 
that it bases reordering on structure, rather than 
unrestricted lexical movement, gives it an edge 
over the IBM models. The benefits of structured 
reordering as opposed to unrestricted are clearly 
visible in Figures 1–3. 

An argument to continue using IBM models is 
that two directed alignments can be intersected and 
heuristically grown to build a joint alignment, thus 
compensating for the flaws in the original models. 
But as we have seen in Figure 3, even the combi-
nation of two models contains errors that should 
have been avoided. This approach is not able to 
smooth over the flaws of the IBM models. 

The results in this paper give credibility to the 
claim that these limitations of the IBM models are 
so serious that they hurt translation quality of sys-
tems built upon them; even after the phrase build-
ing heuristic has been applied. Systems built on 
ITG alignment on the other hand fare better, on all 
three evaluation metrics. 

There is still more to be done. So far we have 
only employed bracketing SITGs, which are not 
able to distinguish one structure form another. The 
structural changes that the SBITG is capable of are 
dictated by the alignment of the leaves in the tree. 
This seems impressive, given the information at 
hand, but is really a logical conclusion of the fact 
that the grammar can leverage different alignment 
probabilities against each other, and as the align-
ment is coupled to the structure of the ITG parse, 
the structure is constrained to the alignment. The 
reverse is also true: the alignment is constrained by 
the structure. This coupling is essential to the train-
ing of SITGs. For a SBITG, there is very little in-
formation in the structure, only the decision to read 
the node as straight or inverted. This is not an in-
herent property of ITGs in general; more informa-
tion can be carried higher up in the tree by labeling 
the nonterminals. There is great hope that adding 
more information to the structuring, even better 
alignments could be gained. 

In this paper we have extracted the word align-
ments from ITG biparses, and inserted them into 
the conventional phrase-based SMT pipeline. It is 
feasible to extract phrases directly from the gram-
mar, as demonstrated by Cherry & Lin (2007). Our 
results suggest that augmenting other portions of 
the phrase-based SMT framework with ITG struc-
tures might also be worth exploring, in particular 
decoding. Recall that in the transduction view of 
transduction grammars (as opposed to generative 
or recognition views), an output translation can be 
determined by parsing an input sentence with a 
transduction grammar (Wu 1996; Wu & Wong 
1998). This kind of translation would also entail 
the notion of structure that we have just witnessed 
helping alignment. Phrase-based SMT currently 
relies on unrestricted phrasal movement, which is a 
lot better than unrestricted lexical movement, but 
could probably use some structure as well. 
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7 Conclusion 

We have shown that learning word alignments 
through a compositionally-structured, joint process 
yields higher phrase-based translation accuracy 
than the conventional heuristic of intersecting con-
ditional models. 

The conventional method with IBM-models suf-
fers from their directionality. The asymmetry 
causes bad alignments. We have instead introduced 
an automatically induced ITG alignment that does 
not suffer from this asymmetry, and is able to ex-
plain the two sentences simultaneously rather than 
one in terms of the other. The IBM-models also 
suffers from a simplified reordering model, which 
relies on moving individual words. The hierarchi-
cal structure of ITGs means that even a BITG has 
enough structural information to outperform the 
IBM models. Previous work shows that these ad-
vantages translate into better alignments as meas-
ured against a manually annotated gold standard 
using alignment error rate (AER). Previous work 
also shows that AER is a poor indicator of whether 
translation quality is increased. We have showed 
that the increase in alignment quality actually 
translates into an increase in translation quality in 
this case, as measured by BLEU, NIST and 
METEOR across three different language pairs. 
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