
[Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation
of Natural Languages, Colgate University, Hamilton, New York, August 14-16, 1985]

A CASE STUDY IN SOFTWARE EVOLUTION:

FROM ARIANE-78.4 TO ARIANE-85

Ch.BOITET
P.GUILLAUME
M.QUEZEL-AMBRUNAZ

I. TWO SETS OF GOALS

1. INITIAL LINGUISTIC MOTIVATIONS FOR A FIFTH
VERSION

1.1. Structure of ARIANE-78.4

Let us briefly recall the structure of the translation
process under version 4, which has been presented in detail
in many previous papers (6,8).

A l l phases are mandatory (this is marked by a "+" sign).

The lexical information for analysis is essentially

27

contained in the AM dictionaries, although it is possible to
handle special cases (of small classes of words) directly in
the AS grammar.

A priority scheme is used in TL to choose, for a given
lexical unit, the equivalent(s) given by the highest-ranking
dictionary. The priorities may vary from one execution to
the other, for example according to the domain being
handled. Some dictionaries may even be ignored for a given
translation.

1.2. Some linguistically desirable improvements

Numerous discussions with many users have led to the
conclusion that some limitations of version 4 were too
restrictive and should be removed as early as possible, not
waiting for the completion of an entirely new (LISP-based)
software. Among them:

1. difficulty of creating a coherent and complete
morpho-syntactic indexing scheme for analysis
dictionaries, using only ATEF;

2. impossibility to handle during analysis very frequent
idioms, such as German verbs with separable particles,
without rendering the structural analysis unduly
complex;

3. somewhat illogical character of the overall indexing
scheme: in analysis, syntactico-semantical properties
of the LUs (lexical units) are introduced for each
morph, whereas, in transfer and generation, the
properties which are used only for generation are
given during the lexical transfer. This may cause a
duplication of efforts, and a risk of incoherence, in
a multilingual setting.

4. restrictive character of the facility provided to
change from one decoration type to another, added to
the limitation of the size of the decorations ("masks
of variables").

28

1.3. Structure and content of ARIANE-78.5

Those remarks led to a first set of goals, and to the
design of a new version called ARIANE-78.5. Let us summarize
the main points.

1. ARIANE-78.5 should offer new facilities for lexical
processing. To that effect:

- EXPANS/TRANSFER (EXPANS in short) has been defined,
as a new LSPL based on TRANSF;

 - optional "lexical expansion" phases have been
introduced.

2. The overall design of a particular translation system
should be more modular. To that effect:

- an extension of the part of the syntax (and
semantics) of the SLLPs dealing with the
declaration of decoration types and with the
passage from one type to another has been defined;

- it should be possible to construct a structural
analyzer as a sequence of transformational systems
using the same decoration type.

This led to the following schema for ARIANE-78.5 (see
right), where the optional phases are marked by a "-" sign.

2. ADDITIONAL SYSTEM-ORIENTED GOALS

Starting from this set of requirements, it would have
been quite possible to satisfy them by just adapting the
data structures and slightly modifying some programs.

To take an example, ARIANE-78.4 maintains a file of all
LUs (lexical units) of any source (or target) language XYZ
(a "language code" such as "ENG" for some version of
English), with an indication of the files where they appear
(dictionaries, grammars, etc.). It would have been quite
easy to modify the structure of this file to allow for more
"LU defining files".

However, the fact that there was no urgency in delivering
a new version led us to add another set of goals.

29

30

2.1. Evolution of the SLLPs

First, we wanted to implement the resolution of external
entities (such as internal values for the LU strings)
differently, and to introduce an explicit link-edit step,
instead of maintaining the above mentioned LU files, which
are in effect "link maps" of a particular kind.

Second, we felt that the current internal implementation
contained too much "handshaking" between the SLLPs and the
environment. For example:

- the correspondence between external names of grammars
(such as "GR1$AS_ENG" for the structural analysis of
ENG) and the internal names of the corresponding files
(here, FILASENG_GRAM1_A) is known and used by the
compilers and interpreters;

- in the definition of a decoration type for some phases
(AS, TL, TS, GM), an implicit reference is made to the
definition of the decoration type used in the
preceding phase. For example, if "GENDER:=(M,F)." has
been defined in AM, it is redefined in AS as
"GENDER:=(*).".

2.2. Syntax-directed management of the environment

In ARIANE-78.4, the control structure of the interactive
monitor and of the internal supervisor reflects directly the
fixed sequence of phases used for translation. As we had
already "opened" the system at some critical points (e.g.,
between AS and TS), in order to experiment with "corrector
expert systems", we felt the need to reconsider completely
our strategy.

Hence, we added the requirement that the system should in
effect be parametrized by the sequence of execution, which
should be given in something like a command language. As we
will see later on, this idea has led even further.

2.3. User-friendliness: multilinguality and displays

ARIANE-78.4 exists in two versions, French and English.
For about 20% of the programs, message files are given as

31

parameters. For the rest, the programs exist in two
versions. We felt that the new release should be made 100%
multilingual, by transforming a l l programs (about 100000
source lines in ASM360, 15000 in PL360. 3000 in PL/I, 25000
in EXEC/XEDIT, 15000 in PASCAL).

When ARIANE-78 was designed, no screens were available,
so that the dialogue between the interactive monitor and the
user is a sequence of questions and answers. For the
production environment (TRAGEN), we had already introduced
the possibility to choose on the screen the texts to be
translated in a given corpus. Also, the integrated ARIANE
help facility ("DET") uses the advantages of the screen. In
order for the system to become even more user-friendly, we
decided to convert a sizeable proportion of the dialogues to
screen-oriented processes.

3. MAIN CHARACTERISTICS OF ARIANE-85

3.1. The SLLPs

The main linguistic processes ("phases") such as AM, AX,
AS, etc., are written in one of 4 SLLPs: ATEF, ROBRA,
EXPANS/TRANSFER and SYGMOR. EXPANS/TRANSFER is new.

The sublanguage for describing decoration types and the
passage between two decoration types has been given the
status of a SLLP in its own right, and called TRACOMPL. It
s t i l l is a sublanguage of each "main" SLLP.

The "handshaking" has been suppressed, so that the
compilation of any phase is completely independent of that
of any other phase.

A possibility of backtracking in conditional assignments
of decorations has been introduced in TRACOMPL,
EXPANS/TRANSFER and ROBRA.

Also, the LUs are now considered as strings, and no more
as special identifiers for the values of an (i m p l i c i t l y
declared) string type (STRING(24), to be precise).

32

3.2. Describing & using various sequences of linguistic
processes

For the checks of coherency and the preparation of
linguistic "modules", the user uses an external language
for sequence descriptions (ELSD): a set of possible
execution sequences is represented as a graph bearing
"phases" or explicit conversions of decoration types
(TRACOMPL) on the nodes and implicit (REFORM) conversions of
decoration types on the arcs. For the execution proper, the
sublanguage describing the finite paths of such graphs is
used.

The preceding description is subsequently translated into
the internal language for sequence descriptions (ILSD),
which is a specialized macro-language. The correspondence
between external and internal names is computed during this
translation.

3.3. The environment

The dialog language (French, English, etc.) is a
parameter of the environment. The subenvironments are the
same as before (preparation of texts and lingware, tests,
morphological checks, production of translations, human
revision with on-line computerized dictionary).

The conversational monitor is a combination of a
question-answer system and of screen-oriented processes.
These processes are implemented using a standard full screen
editor. In particular, this enables the system to be driven
as. though through a command language, by sending it an
appropriate sequence of answers (or commands to the editor),
which are stacked in the standard output-restricted deque
supported by the operating system (CMS).

3.4. Implementation & usability on new micros

The implementation is still of the same type as explained
above. However, the organization of the (virtual) memory
during execution has been changed, so that medium-sized
applications such as Russian-French (with large grammars and
around 10000 LUs, corresponding roughly to 30000 terms)
should run in considerably less space than now, where 2.5 Mb
are necessary, Including the operating system.

33

This should make it feasible to run the entire system on
an IBM-PC XT/370, and to l i n k it with a translator
workstation implemented on a cheap micro, such as TAIM
(A.Melby) on IBM-PC (7).

II. THE USER'S POINT OF VIEW

Let us now detail the improvements offered by ARIANE-85,
from the user's point of view. They concern a l l levels of
the organization of the lingware:

- definition and use of the linguistic "categories",
appearing in the decoration types;

- organization of the lexicon;

- higher level organization of the main processes
(phases and subphases).

1. CATEGORIES (DECORATIONS)

1.1. Semantics

For any phase PH, declaring a decoration type amounts in
fact to declare two decoration types, called here "DEC1" and
"DEC2". Let DEC0 be the decoration type of an input to PH.
If PH is AM, the input is a string and DEC0 is empty.
Otherwise, the input is a tree decorated on DEC0.

DEC0 is only partially known in PH: DEC1 must be a
subtype of DEC0. This constraint is verified by the
environment, before any execution is allowed.

If PH is a ROBRA or SYGMOR phase, the whole tree is
transformed into DEC2, and then processed by the
corresponding automaton (defined by the lingware).

Otherwise, PH is an EXPANS/TRANSFER phase, and the
corresponding automaton processes each node N in turn,
choosing the image subtree by evaluating conditions on its
DEC1 image, called "àN", initializing a l l image nodes I to
its DEC2 image "çN", and then modifying further the DEC2

34

decoration of each Image node, according to the conditional
assignment associated in the dictionary.

The transformation of any node S from DEC0 to DEC2, as
defined by the definition of the decoration type, occurs as
follows:

1. "reduction" to DEC1, producing a decoration called
"àS";

2. "reformatting" (systematic transformation) to DEC2,
using the correspondence given in Part A of the syntax
(see below), and producing a decoration called "çS".
This operation occurs "variable by variable"
(attribute by attribute). It may rename the values of
the variables (e.g. M to MASC and F to FEM), but
cannot modify elementary values.

Note that the reduction to DEC1 is an implicit
reformatting operation. For this reason, it is called
a "REFORM" transition. Until now, this is exactly
what happens in ARIANE-78.4.

3. "complementary transformation": this is the new
extension (TRACOMPL), which appears in Part B in the
syntax below. If present, the CVAR expression defines
a further transformation of the decoration of each
node, expressed as a conditional assignment. This
transformation may change values individually,
conditionally on values of àS, çS or S. "S" is a
name for the current DEC2 decoration of node S, and is
initialized to çS.

In EXPANS/TRANSFER, this naming convention (àS, çS, S)
for the decorations associated to a node S is used twice.
In the definition of the decoration type ("declaration"), it
is exactly as we have just said.

In a conditional assignment appearing in an image
subtree, "çI" is used to refer to the DEC2 decoration of
node S (the processed source node) obtained after executing
the complete transformation associated to the definition of
the decoration type.

35

1.2. Sketch of the syntax

---------------- part A (old) ---------------------
 -EXC- ... -NEX- ... (-ARITH- ...)

---------------- part B (new) ---------------------
 ((-PROC- ...) (-PRCA- ...) -CVAR- <expression CVAR>)

Part A (Declaration and global transposition)

3 forms are possible:

(1) $<variable> : = (<1ist of values>).
<variable> appears in both DEC1 and DEC2, the
correspondence between values being
positional. Example: $GENDER:=(MASC,FEM).

(2) $$<variable> : = (<list of values>).
<variable> belongs to DEC1, but not to DEC2.
The correspondence between values is
positional.

(3) <variable> : = (<list of values>).
<variable> belongs to DEC2, but not to DEC1.
As a matter of fact, it could belong to DEC0,
but to its "unknown" part. For all practical
purposes, it is new, and initialized to the
associated null value (called "<variable>0",
for example "GENDER0").

Hence, the following convention, used in ARIANE-78.4:

"(${$}} <variable> : = (*)."

has become illicit.

Part B (Transformation of values)

By convention, the current node is called S, as above.
The identifiers "àS". "çS" and "S" may be used to refer to
the various states of the transformation, as explained
above.

The parts introduced by -PROC- and -PRCA- are exactly
analogous to their counterparts in ROBRA (simple and
conditional procedures). A PCIS (internode boolean
procedure) with one argument may be called as a PCP
(argument free boolean procedure).

36

For the boolean procedures (PCP and PCIS), we use the
notation of ARIANE-78.4. For a given argument node N, not
prefixed by "à" or "ç" (indicating DEC1 or DEC2,
respectively), the call determines dynamically the
decoration type of N.

The part Introduced by -CVAR- is analogous to the
expression which may follow "S: çS," in a ROBRA rule of the
form:

"S = = S // S : çS. ...".
the only difference being the possible use of àS and çS. S
is the only assignable variable.

In the RCA expressions (for conditional assignments),
which are analogous to LISP "COND" expressions, the
constraint that the last condition be empty has been
removed. Semantically, the execution of such an expression
(which may be embedded to any depth) occurs in an unary
backtracking non-deterministic way; exactly as for the
upper level of control in ROBRA (control graph).

1.3. Example

The following example has been taken from the transfer
(TL or TX) part of a German-French model.

2. DICTIONARIES

2.1. Semantics of EXPANS/TRANSFER

The new LSPL EXPANS/TRANSFER, or EXPANS in short, has two
modes of execution:

- the TRANSFER mode is the same as in TRANSF of
ARIANE-78. In the diagram given above for ARIANE-85,
it is used only in TL (lexical transfer).

At execution time, there are two separate LU
"variables", corresponding to the "source" and
"target" LUs, exactly as if these variables (which are
implicitly declared) had been declared as "UL" and
"$$UL";

37

-EXC-
 ...
$$FS : = (FS1, ... FS24). ** DEC1.
FS : = (FS1, ... FS20). ** DEC2.

 -PROC-

PCP : FS1 = = FS -E- FS1. ** May be used with an
argument decoration on DEC1 or DEC2.

PCIS : CD3(XR,XL) = = RL(XR) -NE- RLO -ET-
(-FS(XR -E- FS19 -OU- FS(XL) -E- FS20 -)
-ET- FS(çS) -NE- FS(S).

** At compile time, it is known that XR (the formal
parameter) may belong to DEC1 or DEC2: the actual
parameter may be àS, çS or S.

** If FS23 and FS24 had been used, XR would be on DEC1,
and the actual parameter could only be àS.

PAF : FSN20 = = FS : = FS20. ** Necessarily on DEC2.
PAF : P3(X) = = SEM : = SEM(X) -I- CONCR -U- ABSTR.

 -PRCA-

SUPP(X2;X1) = = -SI- FS(X1) -E- FS18 -OU- FS(X1) -E- FS19
-ALORS- FS(X2) : = FS19.

-CVAR-

$$SUPP(S;çS); ** $$SUPP(S;àS) would also be possible.
-SI- $CD3(çS,S) -OU- $FS1(çS) -ALORS- $FNS20.

-FIN-

- the EXPANS mode is new, and supposes only one LU
variable, exactly as if it would be defined as "$UL".

It is to be used in the "lexical complement"
phases, such as AX, AY, TX, TY, GX, GY.

Unlike TRANSF, the underlying automaton allows to:

- use a limited context in the input tree to choose and
create the output tree;

- define an action by default, in TRANSFER mode. This
action may be used to create dynamically an auxiliary
dictionary "0" containing the LUs unreferenced in the

38

normal dictionaries and the equivalents constructed by
the default action.

This is a "defaulter", as in the METAL system, but
it is used for translation, and not for analysis,
where l inguis t s use the power of ATEF (2)
"unknown-word grammar" facility.

The basic idea of the semantics of EXPANS is to see it as
a specialization of an (unimplemented) extension of ROBRA
(8), let's say ROBRA', which would allow expressions on two
decoration types (as in TRACOMPL or EXPANS/TRANSFER) and the
selection of right-hand sides of rules in dictionaries.

Let AO be the object input tree. The set of active EXPANS
dictionaries, with their priorities, determines one "access
expression" (accessor function, in other terminologies), to
a rhs of a ROBRA' rule. Everything occurs as if the
following grammar were executed, with the only difference
that nodes P, G, D, if absent in the lhs, are considered to
denote null values in the rhs.

-GRAM-

GEXPANS(UTH) : E1, E2, E3, E4, E5 ; <-- &NUL.

-REGLES-

E1 (S) P(G,*,S,*,D) = = $$$DICT. ** "$$$DICT" is used
E2 (S) P(* ,S,*,D) = = $$$DICT. ** here to denote the
E3 (S) P(* ,S,*,D) = = $$$DICT. ** access to the rhs
E4 (S) P(G,*, S, *) = = $$$DICT. ** selected in DICT.
E5 (S) P(* , S, *) = = $$$DICT.

2.2. Syntax

The procedures (PRC file) have exactly the same syntax as
in TRACOMPL:

(-PROC- <PCP, PCIS, PAF>) (-PRCA- <proc. RCA>)

The "formats" (FCP and FAF files, used to define constant
decorations on DEC1 and DEC2, respectively), are exactly as
in ARIANE-78.4.

39

The syntax of the dictionaries is augmented:

- choice conditions may be internode expressions or
procedures (CIS or PCIS) on "àS". "àP", "àG" and "àD";

- there is a new, special (and optional) dictionary "0",
where the user may write his default action, as the
first item, using a special form of the syntax:

<empty (no LU string)> = = // <default action>.

The default action is made of:

- an expression for creating a target LU string;

- a normal <tail of assignment>.

- in assignment expressions, two cases are
distinguished:

- the image subtree is implicit, or (equivalently)
given as "S". "S" may be assigned, and "S", "çS",
"àS", "àP", "àG", and "àD" may be used for tests or
as source of values;

- the image subtree is explicit. Each image node "I"
may be assigned, and "I", "çI", "àS", "àP", "àG",
and "àD" may be used for tests or as source of
values.

Example and use

= = // '?!' !! UL !!'!?', *FT1, $PC3.

If UL(S) = 'XYZT' (undefined!), the expression:
"UL(S) : = '?!XYZT!?', *FT1, $PC3. "

will be executed, and the item:

'XYZT' = = // '?!XYZT!?', *FT1, $PC3.

will be added to dictionary 0. "!!" denotes of course the
concatenation of strings. Incidentally, this is the only
place in ARIANE-85 where this operation may be used on LUs.

40

3. ORGANIZATION OF THE PROCESSES (SUB)-PHASES

3.1. Subphases

A phase is defined as a collection of files written in a
certain SLLP. A subphase is any subcollection, usually
augmented with an ordering, which gives rise to a coherent
and executable lingware.

For any EXPANS phase, it is possible to define up to 7
dictionaries, and to use any subset of them, with a priority
scheme, expressed by a very simple expression such as: "4 5
2 6 3 1". According to the domain of a text, it is possible
to obtain more specific translations, or even sets of
properties ("to code for" appears nowadays only in
biochemistry and genetic engineering, for example).

For any ROBRA phase, it is possible to define a set of up
to 7 transformational systems, written on separate files,
but using the same decoration type. At execution time, the
user may choose to use (some of) them in an appropriate
sequence.

This division may be used to address several kinds of
texts with the same lingware:

- if there are several input formats, it is possible to
normalize them, using different transformational
subsystems, at the beginning of the structural
analysis;

- if there are several typologies, the subsystems using
typology-specific heuristics to resolve particular
problems (ambiguity, anaphora,...) may also be kept as
separate modules;

- in applications where there is a sufficient proximity
of the two languages for a simplified linguistic
strategy to be cost-effective, the main part of the
structural analysis may exist in two versions;

41

several kinds of transfer and generations may be
developed simultaneously, for different purposes, such
as normalization within the same language, or prosodic
generation.

In ATEF, it is also possible to develop several
alternative grammars, as was already the case for SYGMOR.

3.2. Phases

The introduction of optional phases AX and AY should make
it possible to incorporate the lexical knowledge in a more
modular fashion. For example, AM may be used to associate
lemmas and strictly morphological information with the
morphs. Then, AX may be used to relate the lexical units to
the lemmas, and to give them syntactico-semantic
information, such as valencies, argument frames and semantic
restrictions on the arguments. AY may then add Information
about the syntactico-semantic behavior of idioms whose
components are separable or flexional, such as compound
predicates or German verb-particle constructions.

Other optional EXPANS phases have been included in the
above diagram. The most important is GX, the most natural
use of which is to index all properties of target lexical
units not necessary at transfer time -- that is, almost all.
Until now, all lexical target information (not including the
strictly morphological information) had to be included in
all TL dictionaries for all language pairs with the same
target language.

3.3. Specifying a given organization under the new
monitor

Let us now give an example of a screen prepared by the
monitor.

42

43

44

III. THE IMPLEMENTOR'S POINT OF VIEW

The internal level of the software comprises the
processors for the SLLPs (compilers, interpreters, loaders,
supervisor). At this level, the logical structure of the
specialized data-base is ignored.

The external level includes the interactive monitor and
the data-base management utilities, which of course make use
of internal level routines.

1. THE SLLPS

A main principle of the evolution has been to reuse
existing modules, as far as possible. As a matter of fact,
this has been done to a large extent. Low-level programming
may be structured, and, conversely, programming in a
high-level language is not a guarantee of structured
programming!

1.1. Compilers

The compilers for ATEF, ROBRA and SYGMOR have simply been
adapted, in order to produce lists of external references
(the LU string values), instead of accessing and modifying a
shared LU f i le (see above). Parametrizing the messages by
the dialog language was not too difficult, due to the
modular construction of the compilers.

A new compiler for TRACOMPL has been built. It includes
some parts from the old compiler for “variable decorations”,
and from the old ROBRA compiler.

In the same manner, the new EXPANS/TRANSFER compiler
reuses some parts of the old TRANSF compiler. The main
differences are that:

- the use of a limited context leads to an important
extension of the rhs syntax;

- the hash-code is constructed differently, because the
internal values of the LU strings are not known any
more at compile time. At loading time, the internal
values are used to finish the construction of the
hash-code.

45

1.2. Interpreters

The interpreter for TRACOMPL uses the previous algorithm
for the reduction and reformatting operations. For the
complementary transformation, however, a new one has been
designed, by extending the existing evaluator of expressions
and procedures on decorations (RBEVMSK). The extension
introduces the possibility of back-tracking in conditional
assignments.

In all interpreters, the status of the lexical units has
changed. In ARIANE-78.4, there are in effect two sets of LUs
during a given execution, the static set (made of all values
appearing in the lingware), and the dynamic set (created in
AM by the subgrammar for unknown words). In some cases, the
same string may correspond to 2 different LUs, one static
and the other dynamic, which have 2 different internal
values. An internal value is a two-byte signed integer.

In ARIANE-85, the LU strings are the real values. The
internal integer values are dynamically associated to the
strings, and may vary from one phase to the other.

The integer assigned to a given string is simply the rank
of the string in the lexicographic ordering of the set of
all LU strings known at a given moment. This ordering is
obtained by a classical and efficient merge of the (already
sorted) lists of LU strings produced by the compilers or
contained in the internal representations of the decorated
trees associated to the units of translation.

But for the handling of the LUs, the interpreters for the
grammars (ATEF, ROBRA, SYGMOR) have not changed at all.

1.3. Loaders

In ARIANE-85 as in ARIANE-78.4, it is necessary to load
the appropriate compiled programs (interpreters and
utilities) and the compiled lingware before any execution is
possible. Then, modules (binary core images) may be created,
and used later as binary translation programs.

In ARIANE-78.4, such a module contains both a software
and a lingware part. In ARIANE-85, the loaders have been

46

modified in order to be able to generate separate modules
for the software and the lingware parts.

A further modification is the inclusion to a link-edit
step for the LUs: the loaders store the internal value of
each UL in the compiled (and loaded) lingware code, at the
appropriate locations.

Also, a special kind of loading operation produces the
internal tables for the implicit "reduction" operations
(REFORM phases, or "empty" transitions in the graph of
possible sequences). This makes it possible for the
data-base monitor to check for consistency before starting
any execution.

2. DB MANAGEMENT AND SEQUENCING: EXTERNAL LEVEL

2.1. A specialized data-base

As has been said before, the interactive monitor (ARIANE
for short) manages a specialized data-base of texts and of
lingware files, in the user space. Of course, it uses
resources from the system space, always accessed in
read-only mode.

In the current state of ARIANE-85, the structure of the

lingware mirrors the diagram given at the beginning of this
paper for ARIANE-78.5. In the future, it might be possible
to use a description of possible sequences of phases to
generate an appropriate description of the data-base.

The data-base is organized around external notions such
as source (or target) language code, or "elements" of
(sub)-phases in a given SLLP.

For any SLLP, the data-base knows which are the possible
"elements", their type, and their mutual dependencies. These
elements are stored in the above mentioned "lingware files".
For example, in TL (EXPANS/TRANSFER in TRANSFER mode), we
have:

- DV, for the "declaration of variables" (definition of
the decoration type);

- PRC, for the procedures used to choose between several
 image subtrees;

47

- FCP, for the formats on DEC1 (used in conditions on
the source);

- FAF, for the formats on DEC2 (used as source of
attribute values in assignments);

- DIC1 to DIC7, for the dictionaries.

As in ARIANE-78.4. the compilation of the elements is
separate. ARIANE knows, however, that DV must be compiled
before FAF, and PRC before any DICn. Everything happens as
if DV, PRC, etc. were explicitly "imported" in each DICn.

This knowledge is used whenever an element is modified:
all depending elements are automatically decompiled. In the
same manner, when the user asks for the compilation of a
phase (or of a subphase), ARIANE knows the appropriate order
in which to compile the elements.

The evolution from ARIANE-78.4 to ARIANE-85 has made it
possible to suppress al1 dependencies between phases.
Before, any modification in the DV of AS caused AS and all
transfers from the considered source language code to be
decompiled. Generation phases were left untouched, because,
in ARIANE-78.4, the values of all variables must all be
redefined in GS, using the "$" convention (see Part I).

ARIANE also commands the generation of lingware modules
and stores them in the user space for use in the testing or
production environments.

All LU-handling facilities of the data-base have been
rewritten, according to the new implementation of the LUs.
For example, it is possible to ask for a list of the LUs
appearing in DIC1, DIC2 and DIC5 of TL, and not in DIC6 and
in GRAM5 of AS.

2.2. An External Language for Sequence Descriptions
(ELSD)

Two examples have been given above. This ELSD has been
designed by the third author with the aim to mix the
unavoidable linear form with the more conspicuous graphical
form. The graph appears in the left part of the description,
and the corresponding elements or parameters are given
linearly in the right part.

48

49

2.3. Using a general-purpose editor and not a screen
handling facility

The decision to use XEDIT, a general-purpose
screen-oriented editor, may be contested. Why not use a
general menu-generating facility? The answers are the
following:

- no additional external tool is used. Improving the
maintainability of the system;

- this technique has been successfully used for the
VISULEX interface and for the THAM revision
environment;

- the same editor is used to modify the lingware files;

- as mentioned before, this makes it possible to drive
the system in disconnected mode, by sending to it
answers or editor commands, such simulating a human
operator.

Of course, it would be even nicer to use a syntactic
editor, tailored to the SLLPs and to the ELSD. But this
would have been a project in its own right.

3. SEQUENCING LINGUISTIC PROCESSES: INTERNAL LEVEL

It would have been possible to command the execution of a
sequence of phases directly from the interactive monitor, by
programming it in EXEC2 (CMS Shell). But it would then have
been impossible to avoid the constant use of files for
transmitting intermediate results (tree structures) between
phases.

3.1. An Internal Language for Sequence Descriptions
(ILSD)

Hence, an internal langage for sequence descriptions

50

ILSD) has been designed and implemented by the second
author. The idea is to express a set of possible sequences
of phases, with the choice of subphases, as a graph, where:

1. each node corresponds to a "main" phase (in ATEF,
ROBRA, EXPANS or SYGMOR), or to an explicit
transformation phase (TRACOMPL);

2. each arc corresponds to an implicit transformation of
the decoration type (REFORM).

Let use give an example corresponding to the graph
described above at the external level.

ç Fragment for 5 phases (see example above) of an
ç ILSD program for a graph of possible sequences.
ç
ç ATEF(1) - EXPANS(4) - TRACOMPL(6) - ROBRA(8).
ç ou ATEF(1) - TRACOMPL(9) - ROBRA(S).

ç (1) ---- 3->-- (4) ---- 5->-- (6) ---------- 7->-- (8) *.
ç ! !
ç !------ 2 ->--~------ (9)------------------ 10 ->----!

ç Node (1), AM phase (ATEF)

STEP = 1 ; çNode 1 (STEP)
TYPHA2 = ATEF ; çLSPL
NOMPHAZ = AM ; çName of phase
FIFAZ = CHG01ENG AM; çGeneral descriptor
FSTEP ;

ç Transition AM (1) to AMAS (9) ---- REFORM operation

SKIP = 2 ; çArc 2
NOMPHAZ = REF2 ; çName of phase
INDPHAZ = --- REFORM: AM->AMAS --- ; çHeading
DET = I ; çTrace
FITRANS = CAMXXENG RAMAS; çTranslation table
FISOR = FAMXXENG LAMAS; çTable for files
FIZON = FAMXXENG ZAMAS; çMap of zones
MODULE = FAMXXENG MAMAS; çLinguistic module
LS = ENG ; çLanguage code
SUISTEP = 9 ; çDestination of the arc
FSKIP ;

51

ç Transition AM (1) to AX (4) -- REFORM operation

SKIP = 3 ; çArc 3
NOMPHAZ = REF3 ; çName of phase
INDPHAZ = --- REFORM: AM->AX ---------- ; çHeadlng
DET = I ; çTrace
FITRANS = CAMXXENG RAXXX; çTranslation table
FISOR = FAMXXENG LAMAS; çTable for files
FIZON = FAMXXENG ZAMAS; çMap of zones
MODULE = FAMXXENG MAMAS; çLinguistic module

LS = ENG ; çLanguage code
ç no SUISTEP: last arc from node 1, goes to next node: 4
FSKIP ;

ç Node (4), AX phase (EXPANS)

STEP = 4 ; çNode 4
TYPHAZ = EXPANS ; çLSPL
NOMPHAZ = AX ; çName of phase
FIFAZ = CHGO1ENG AX; çGeneral descriptor
FSTEP ;

ç Transition AX (4) to AXAS (6) -- REFORM operation

SKIP = 5 ; çArc 5
NOMPHAZ = REF5 ; çName of phase
INDPHAZ = --- REFORM: AX->AXAS --- ; çHeading
DET = I ; çTrace
FITRANS = CAXXXENG RAXAS; çTranslation table
FISOR = FAXXXENG LAXAS; çTable for files
FIZON = FAXXXENG ZAXAS; çMap of zones
MODULE = FAXXXENG MAXAS; çLinguistic module
LS = ENG ; çLanguage code
FSKIP ;

ç Node (6), AXAS phase (TRACOMPL)

STEP = 6 ; çNode 6
TYPHAZ = TRACOMPL çLSPL
NOMPHAZ = AXAS ; çName of phase
FIFAZ = CHGO1ENG AMAX ; çGeneral descriptor
FSTEP ;

52

ç Transition AXAS (6) to AS (8) -- REFORM operation

SKIP = 8 ;
NOMPHAZ = REF8 ; çName of phase
INDPHAZ = ---- REFORM: AXAS->AS - --------- ; çHeading
DET = I ; çTrace
FITRANS = CAXASENG RASXX; çTranslation table
FISOR = FAXASENG LASXX; çTable for files
FI20N = FAXASENG ZASXX; çMap of zones
MODULE = FAXASENG MASXX; çLinguistic module
LS = ENG ; çLanguage code
VAR2 = -------- ----- ; çVariables

ç no SUISTEP: last arc from node 6, goes to next node: 8
FSKIP ;

ç Node (8), AS phase (ROBRA)

STEP = 8 ; çNode 8
TYPHAZ = ROBRA ; . çLSPL
NOMPHAZ = AS ; çName of phase
FIFAZ = CHGO1ENG AS; çGeneral descriptor
FSTEP ;

DSEQ ; çGoing back to node 9 ("hanging")

ç Node (9), AMAS phase (TRACOMPL)

STEP = 9 ; çNode 9
TYPHAZ = TRACOMPL çLSPL
NOMPHAZ = AMAS ; çName of phase
FIFAZ = CHGO1ENG AMAS ; çGeneral descriptor
FSTEP ;

ç Transition AMAS (9) to AS (8) -- REFORM operation

SKIP = 10 ; çArc 10
NOMPHAZ = REF10 ; çName of phase
INDPHAZ = --- REFORM: AMAS->AS --- ; çHeading
DET = I ; çTrace
FITRANS = CAMASENG RASXX; çTranslation table
FISOR = FAMASENG LASXX; çTable for files
FIZON = FAMASENG ZASXX; çMap of zones
MODULE = FAMASENG MASXX; çLinguistic module
LS = ENG ; çLanguage code
SUISTEP = 8 ; çDestination of the arc
FSKIP ;
END ; çEnd of the graph

53

* CHG01ENG AM -- general descriptor for AM
TYPHAZ = ATEF çSLLP
NOMPHAZ = AM çName of phase
INDPHAZ = --- PHASE DE MORPHOLOGIE --- çTrace heading
FICOR = CHFICENG AM çFiles to load
PARAM = CHPARENG AM çParameters
FISOR = FAMXXENG LDONG çTable of files
FIZON = FAMXXENG LZONG çWork areas
MODULE = FAMXXENG MODO1 çLing. module
* CHF01ENG AM -- files to load for AM
VARM = FCPAMENG VIN2M çDVM
VARS = FCPAMENG VIN2S çDVS
MASO = FCPAMENG FINTM çFTM
REFORM = FCPAMENG FRFIM çReferences FTM
FORMATS = FCPAMENG FITTS çFTS
REFORS = FCPAMENG FRTIS çReferences FTS
GRAM = FCPAMENG GINT5 çGRAM
REFREG = FCPAMENG GRFR5 çRef. rules
REFULG = FCPAMENG GULG5 çRef. LU
DICT1 = FCPAMENG DITT1 çDIC1
TABDIC1 = FCPAMENG DTIN1 çDIC1 (h-code)
REFULD1 = FCPAMENG DULG1 çDIC1 (LUs)
DICT2 = FCPAMENG DITT2 çDIC2
TABDIC2 = FCPAMENG DTIN2 çDIC2 (h-code)
REFULD2 = FCPAMENG DULG2 çDIC2 (LUs)
NUMUL = FCPAMENG ULPHG çLUs for AM
* CHP01ENG AM -- parameters for AM
LG = ENG çSource language
GD = G çDirection of analysis: G=left
TT = A çWithout "homophrases"
DICT = 1,2 çDictionaries used
MU = N çLevel of interaction
GS = N çOutput of the graph
DT = N çTrace of loading
DETSUPG = NNNN çTrace of supervisor
MAPZ = NN çMap of zones
* CHGO1ENG AS -- general descriptor for AS
TYPHAZ = ROBRA çType of phase
NOMPHAZ = AS çName of phase
INDPHAZ = - ---------- PHASE "AS" ---- çTrace heading
FICOR = CHFICENG AS çFiles to load
PARAM = CHPARENG AS çParameters
FISOR1 = FASXXENG LDON1 çGR1: Table of files
FIZON1 = FASXXENG LZON1 çGR1 : list of zones
MODULE1 = FASXXENG MODO1 çGR1 : module
FISOR3 = FASXXENG LDON3 çGR3: table of files
FIZON3 = FASXXENG LZON3 çGR3: list of zones
MODULES = FASXXENG MODG3 çGR3: module

etc.

54

The ILSD is a specialized macro-language. For reasons of
efficiency, it has been made considerably simpler than the EXEC2
language of CMS used at the external level, and its interpreter has been
implemented directly in assembler.

3.2. A generalized supervisor

The new supervisor has been designed and implemented with
the aim:

- to decrease the size of the necessary virtual memory;

- not to augment the use of external memory;

- to use separate software and lingware modules;

- not to use any new external tool (such as a
screen-handling facility).

Those three aims express the desire to satisfy the
constraints of the new IBM-PC XT/370 or AT/370 (maximum 4Mb
of virtual memory, 10-15Mb for the user on disk, CMS, EXEC2,
XEDIT and DGF available), so as to implement the complete
system on a micro, with all its subenvironments.

The organization of the memory during execution is as
follows.

As a matter of fact, the generalized supervisor is itself
an interpreter for the ILSD. This generalizes the idea

55

underlying the implementation of all components of the
system (the SLLPs).

3.3. Uniform generation of software and lingware
"modules"

This trend toward uniformization is also visible in the
uniform treatment of software and lingware modules. From the
data-base point of view, the main difference is that the
software modules are kept on a share system space, whereas
the lingware modules are stored in the user space, and are
created or erased under the user's control.

From the internal point of view, there is a necessary
difference of structure of these modules, because the
compilers of the SLLPS don't produce executable machine
code, but a code for some abstract machine simulated by the
"interpreters" of the SLLPs. However, this difference is not
visible at the external level.

CONCLUSION

Although there is a parallel effort to develop an
entirely new (LISP based) CAT system, in the framework of
our national project, we hope that the effort invested in
ARIANE-85 will prove to be fruitful. First, the development
of various ARIANE-78-based MT systems has been scheduled in
such a way that it will be possible to make use very quickly
of the new possibilities offered by ARIANE-85.

Second, the fact that the underlying software is largely
written in low-level programming langages has certainly
slowed down the implementation. But, in the current world of
microcomputers, it might very well prove important that this
very sophisticated system can run on new IBM micros, with a
price tag less than 10% of that of a LISP machine, with
comparable projected performance.

Third, it may be interesting to note the evolution of the
specialized data-base monitor toward a complete programming
environment, organized around a set of specialized languages
for linguistic programming and for the description of
sequences of phases or subphases.

56

REFERENCES

1 . J. Chauché (1974),
"Transducteurs et arborescences. Etude et réalisation
de systèmes appliqués aux grammaires
transformationnelles",
Thèse d'Etat, Grenoble, décembre 1974.

2. J. Chauché (1975),
"Les langages ATEF et CETA",
AJCL. Microfiche 17, 21-39, 1975.

3. Ch.Boitet (1976),
"Un essai de réponse à quelques questions théoriques
et pratiques liées à la Traduction Automatique.
Définition d'un système prototype",
Thèse d'Etat, Grenoble, avril 1976.

4. Ch.Boitet, P.Guillaume, M.Quézel-Ambrunaz (1978),
"Manipulation d'arborescences et parallélisme: le
système ROBRA",
Proc. of COLING-78, Bergen.

5. B.Vauquois (1979).
"Aspects of automatic translation in 1979",
IBM-Japan, Scientific Program, July 1979.

6. Ch.Boitet & N.Nedobejkine (1981),
"Recent developments in Russian-French Machine
Translation at Grenoble",
Linguistics 19, 199-271 (1981).

7. A.Melby,
"Multi-level translation aids in a distributed
system",
Proceedings COLING82, North-Holland, 215-220, Prague,
July 82.

8. Ch.Boitet, P.Guillaume, M.Quézel-Ambrunaz (1982),
"ARIANE-78: an integrated environment for automated
translation and human revision",
Proceedings COLING82, North-Holland, Linguistic Series
No 47, 19-27, Prague, July 82.

9. Ch.Boitet & N.Nedobejkine (1983),
"Illustration sur le développement d'un atelier de
traduction automatisée".
Colloque "l'informatique au service de la
linguistique", Université de METZ, France, juin 1983.

57

10. B.Vauquois (1983),
 "Automatic Translation",

Proc. of the summer school The Computer and the Arabic
Language, Ch. 9, Rabat, October 1983.

11. R.Gerber (1984),
"Etude des possibilités de coopération entre un
système fondé sur des techniques de compréhension
implicite (système logico-syntaxique) et un système
fondé sur des techniques de compréhension explicite
(système expert",
Thèse de 3è cycle, Grenoble, janvier 1984.

12. Ch.Boitet (1984),
"Research and development on MT and related techniques at
Grenoble University (GETA)",
Lugano Tutorial on Machine Translation, April 1984.

13. J.Slocum (1984),
"METAL: The LRC Machine Translation System",
Lugano Tutorial on Machine Translation, April 1984.

14. Ch.Boitet & R.Gerber (1984),
"Expert Systems and other new techniques in MT",
Proc. of COLING-84, ACL, 468-471, Stanford, July 2-6,
1984.

15. D.Bachut & N.Verastegui (1984),
"Software tools for the environment of a
computer-aided translation system",
Proc. of COLING-84, ACL, 330-334, Stanford, July 2-6,
1984.

16. W.Bennett & J.Slocum,
"METAL: The LRC Machine Translation System",
Linguistic Research Center, Austin, Texas, USA,
September 1984.

-o-o-o-o-o-o-o-

58

