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Abstract 
We introduce the Coerced Markov Model (CMM) to model the relationship between the 

lexical sequence of a source language and the tag sequence of a target language, with the 
objective of constraining search in statistical transfer-based machine translation systems. CMMs 
differ from standard hidden Markov models in that state sequence assignments can take on values 
coerced from external sources. Given a Chinese sentence, a CMM can be used to predict the 
corresponding English tag sequence, thus constraining the English lexical sequence produced by 
a translation model. The CMM can also be used to score competing translation hypotheses in 
N-best models. Three fundamental problems for CMM designed are discussed. Their solutions 
lead to the training and testing stages of CMM. 
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1    Introduction 

The analysis, transfer, and synthesis paradigm for machine translation is readily amenable to 
statistical methods (Brown et al. 1993). The transfer stage exploits mapping knowledge about 
various linguistic relationships between the source and target languages; statistical information 
is readily incorporated at this stage. Typical kinds of mapping relations include sentence- 
to-sentence, word-to-word, or part-of-speech (POS) tags to tags. Statistical algorithms use 
probabilities to model the word-to-word lexical relations between a pair of sentences in the 
source and target languages (Brown et al. 1993; Dagan et al. 1993; Dagan & Church 1994; 
Fung & McKeown 1994; Wu & Xia 1994; Fung 1995). These probabilities help in the transfer 
stage to constrain or prune the search for an optimal sequence of translated words. Linguistic 
information such as part-of-speech has also been found to be useful for constraining this search. 
(Chang & Chen 1994; Papageorgiou et al. 1994). 

In this paper we investigate an underutilized source of constraints, namely, the mapping be- 
tween words in the source language and parts-of-speech in the target language. Such information 
would also constrain search in the translation model. We believe this mapping relation can be au- 
tomatically learned from bilingual corpora. However, to our knowledge no such attempt has been 
made, perhaps due to the modeling difficulties in the problem. We introduce a Coerced Markov 
Model (CMM) representation that accommodates mapping relations between source-words and 
target-tags in a statistical framework. 

Although there has been work on mapping between source language tags and target language 
tags (Chang & Chen 1994; Papageorgiou et al. 1994), this mapping might not be meaningful 
or sufficiently helpful for translation. In the most common scenario, texts of both languages 
are tagged by their respective POS taggers. A tag-to-tag mapping between the two languages is 
obtained from the tagged text. However, most part-of-speech classes are determined by humans 
according to the linguistic knowledge in that particular language. It is not evident that there 
should be a direct correspondence between POS classes in two different languages, especially in 
language pairs which do not share any common root such as English and Chinese. The relationship 
we derive from English and Chinese part-of-speech mapping is therefore not necessarily a good 
constraint for translation search. 

On the other hand, source language words are capable of giving much more discriminative 
information  about  target  tags  than  source  tags  are.   Moreover,  a reliable tagger for source languages 

241 



such as Chinese may not be available in the first place. We propose to capture the correlation 
between source words and target tags with the Coerced Markov Model. As we discuss below, 
CMMs are a modified variant of discrete, first-order, hidden Markov models such that the state 
sequence is determined by coercion from some second state sequence from outside the model. 

One application of the CMM is that it can predict the English tag sequence corresponding to 
a given Chinese sentence. This tag sequence can be used as a pruning constraint on the search of 
the transfer model for the production of an English lexical sequence. 

Since a transfer model produces an English translation sentence by choosing the individual 
English words corresponding to the individual words in the Chinese sentence, it can produce a 
number of translation hypotheses. An alternative application of CMM is to provide a measure of 
the goodness of the hypotheses. 

In the following sections, we first define the CMM formalism, and then describe its training 
and testing stages. 

2    Coerced Markov Models 

Markov chains are widely used for characterizing parametric random processes. The basic theory 
of hidden Markov models (HMMs) was proposed by Baum & Petrie (1966) and Baum & Egon 
(1967). It was later adapted by Baker (1975) and Jelinek et al. (1975) for processing speech 
signals. The fundamental assumption of using a Markov model for a linguistic mapping (in our 
case between words in one language and tags in the other language) is that the mapping is a 
stochastic process and its parameters are estimable. 

A Markov chain describes the changes of states of a system. For example, at time t, the 
system is in state b, it changes to state a at time t + 1, then there is a state transition from b to 
a with certain probability. First-order Markov chains assume the probability of a state depends 
only on its preceding state, i.e., 

P[qt+1 = a|qt = b, qt-1 = c, qt-2 = d,. . .] = P[qt+1 = a|qt = b] 

At each given state there is an associated output. This output can be continuous, such as the 
spectral signal of speech in a speech recognition system, or discrete, such as the identity of an 
individual  word  within  a  sentence.   If  we  regard the mapping between Chinese word sequences 
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Figure 1: Example of a four-state CMM 

and the tag sequence of its corresponding English translation as a stochastic process, the Coerced 
Markov Model for the process is discrete. 

A Markov model is hidden if its states are not deterministically observable. Given an observa- 
tion sequence, the underlying states are non-deterministic. Hidden Markov models are typically 
used in speech processing, where the underlying states do not actually correspond to explicit 
entities (such as phonemes or words). CMM states are also non-deterministic and therefore 
hidden because the same output sequence can be generated from different state sequences given 
a particular model. 

For our application in Chinese-English translation, the CMM is coercing English tags into 
Chinese language modeling. In a CMM, English tags cannot just follow the rules in English 
language models; they must also consider the fact that they are now “partners” of Chinese words 
that also follow their own rules. The CMM is modeling the “adaptation” of English tags to 
Chinese word order. This is a step beyond monolingual language modeling such as word N-gram 
or class N-gram computation. The CMM's purpose, and its strength, is to model cross-lingual 
class N-grams. An example of a four-state CMM is illustrated in Figure 1. 

Formally, we define the following elements: 

1. the set of states N: Hidden Chinese states, with coerced English tag class values 

2. the set of observable symbols M: Chinese words 
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We choose to associate states with POS classes, and outputs with lexical items, in order to 
obtain the most modeling and discriminative power with the CMM. If we had chosen individual 
Chinese lexical items to be the states, there would be many cases where word v never follows 
word w, where both v and w are entries in the lexicon. There would be many restrictions on state 
transitions, making the model neither flexible nor powerful. Instead, it is more reasonable to use 
POS classes as the states of a CMM because these classes have some linguistic significance. In 
addition, since most POS classes can follow any other POS class given a large enough corpus, 
there can be a transition between any two given states. This means that the CMM is an ergodic 
model with null transitions between only very few states (e.g., from DT to VB), which makes 
the CMM potentially more flexible. Having fixed the states N to be POS classes in one language, 
it follows that the observable symbols M should be the lexical items in the other language. 

Once we have defined the nature of M and M, we have to choose which language N and 
M should come from. We choose M to be the English POS classes, because English taggers are 
readily available and there has been some consensus as to the basic POS classes. On the other 
hand, due to the short history of Chinese NLP, Chinese tagging is still under research and there 
is still a lack of a general paradigm for Chinese POS classes. Having fixed the POS classes N to 
be English, it follows that M is the set of Chinese lexical items. 

Referring again to Figure 1, each state in the CMM corresponds to an English POS class. For 
our experiments, we use Brill's (1993) tagger which uses N = 106 English tag classes. Given 
any two states, there is a weighted transition going in either direction from one to the other. Each 
state can also transit into itself. An array of possible Chinese output words with different weights 
is associated with each state. 

The next three sections of this paper discuss methods and experiments for three fundamental 
problems of CMMs: 

1. Estimation: Given a CMM (i.e., its topology), estimate its parameters so as to best describe 
an observed training sequence. 

2. Path recovery: Given a CMM, its parameters, and a test observation sequence, determine 
the optimal hidden state sequence.   Can be used to suggest constraints on translation 
hypotheses. 

3. Scoring: Given a CMM and its parameters, determine the probabilistic score of a sequence 
of states. Can be used to score translation hypotheses. 
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It may be helpful, in order to understand these three problems, to note a certain parallel between 
them and the three fundamental problems of HMM (Rabiner & Juang 1993), although the cross- 
lingual coercion leads to substantial differences. We will see that problem (1) is the parameter 
estimation process for a CMM, and that problems (2) and (3) can be used for two different 
translation applications that each yield an experimental evaluation. 

3    Estimation 

In this section we describe how we estimate 

1. the transition probabilities A = aij 

2. the output probabilities B = bj(k) 

given a word-aligned parallel corpus. Remember that the objectives of training the CMM are, 
first, to best model the stochastic process of Chinese word sequences co-occuring with their 
English tag counterparts, and second, to supply the most useful constraints possible to help prune 
the search process in a statistical transfer model. 

Transition probabilities We first describe how to compute the transition probabilities aij where 
i and j are any two states in CMM. 

To use an example, the Chinese sentence 

 
has the English alignment 

These arrangements enhance our ability to maintain monetary stability. 

with their POS tags as shown in Table 1. The tag sequence (<>, DT, NNS, <>, VB, PRP$, < >, 
<>, VB, JJ, NN,<>, NN,.) contains <> as null tags since there is no English word align- 
ment to the Chinese word at that position. According to this Chinese sentence and its aligned 
English words, there is a transition from the initial state to DT, DT to NNS, NNS to <>, and 
so forth. Here, the English tag sequence is coerced into modeling the Chinese word sequence. 
If our training data had this single sentence only, then we would get a total of 13 transitions and 
each transition probability would be aij = 1/13. 
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The null tag state comes from the particular phenomenon in Chinese/English translations 
where many Chinese words are not aligned to any English words due to a relatively large 
linguistic difference between the two languages. We believe these null alignments give highly 
unreliable information. In our experiments we penalize the transitions into and out of the null 
state by assigning a very low probability to them. The final transition probabilities are converted 
into the logarithmic form for computational purpose. 

In general, since the probabilities are less than one, their logarithms are negative numbers; 
therefore we take the negative log probabilities for computation. 

Thus the formula for transition probabilities is: 

.    Σ number of transitions from i to j 
                             aij = -1n(                                                       + ξ ) 

total number of transitions 

where ξ is a small flooring parameter to avoid undefined log probabilities. 
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An Experimental Setup We used the HKUST Chinese-English Parallel corpus (Wu 1994) to 
train our CMM. To prepare a training corpus in the required format, we carried out the following 
steps: 

1. Sentence align the corpus into Chinese-English sentence pairs by a length-based method 
(Wu 1994). 

2. Tokenize the Chinese sentences by segmenting substrings of Chinese characters into 
individual words (this was necessary since Chinese text does not have word delimiters). 
We used a Viterbi tagger with a statistically augmented dictionary (Fung & Wu 1994; 
Wu & Fung 1994). 

3. Tag the English sentences by using a corpus-based POS tagger (Brill 1993), 

4. Compute the English word alignment to the individual Chinese words using an estimation- 
maximization model (Wu & Xia 1994), 

5. Filter the training corpus by applying criteria described in (Wu 1995). 

We obtained a total of 1885 Chinese sentences with aligned English words and English POS 
tags as our training corpus. An example of the training corpus format is shown in the first four 
columns of Table 1. 
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Using this training data, we estimated the CMM parameters as follows: 

1. Compute initial probabilities πi : 1 ≤ i ≤  N 

2. Compute transition probabilities aij: there were 1,969 null transitions probabilities out 
of a total of 11,236 transitions. 

3. Compute output probabilities bj(k): 1 ≤ j ≤  N, 1 ≤ k ≤  M 

Table 2: Test sentence 
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The state sequence obtained is compared to the tag sequence in the corpus as follows: 

Viterbi tag sequence    PRP MD IN NN JJ <> CD CD CD CD NNS NN :        CC <>    :       <> . 
Corpus tag sequence   PRP MD VB JJ  JJ <>  CD CD CD CD  <>   NN NNS CC NN NNS NNS . 
Mismatchings *  *                                          *              *            *     *        * 

We can see that our tag sequence output corresponds mostly to the original one. All the 
mismatchings are due to either the Chinese word not being found in the lexicon or there being no 
English word alignment for a Chinese word. This illustrates the fact that the CMM can generate 
English tags from Chinese words when the Chinese word was correctly segmented and found in 
the lexicon. However, when we actually apply the CMM to constrain a translation model, we can 
easily deal with these two cases by applying a null CMM constraint default, i.e.: 

1 if Wordc not found in lexicon or no English word alignment 
2 P[Worde|Wordc] = translation model probability 
3 else 
4 P[Worde|Wordc] = P[CMM(Tage| Worde)] + translation model probability 

5    Scoring Translation Hypotheses 

Another way to use the CMM for translation lies in the solution to problem (3): given an English 
state sequence, we use the CMM to assign it a score. The score is useful because statistical 
machine translation models can generate a number of translation hypothesis sentences, which 
can then be compared using the CMM scores. This is analogous to the N-best method employed 
for speech recognition, which has been found to be more optimal than taking only the 1-best 
hypothesis sentence (Schwartz & Chow 1990); except in this case the hypothesis sentences are 
translations. 

Given a hypothesized English sentence E = (e1, e2,... , eE) with length E, we obtain a tag 
sequence q = (q1, q2,... , qE) in the following way: 
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Since the Chinese character sequence can be segmented in different ways into word sequences, 
the total number of Chinese words in a sentence can be different. For each Chinese sentence with 
a particular length, we manually generate an alignment English word to the individual Chinese 
words. Some Chinese words can be aligned to multiple English words leading to multiple 
hypotheses. Each of these hypothetical sentences is tagged by Brill's tagger. We score the tag 
sequence of each hypothesis by summing the logarithmic transition probabilities from one tag to 
the following one, normalized by the length of the sentence. The English hypotheses with their 
tag sequences, sorted by CMM scores, are shown in Table 3. The lowest score indicates the best 
translation. The best candidate was chosen to be We will provide the aged an additional 5000 
home and attention home places, which is indeed the reference translation for the sentence in the 
original corpus. 

Note that CMM scoring cannot choose between two sequences which differ only in their 
lexical items but not tag sequences. For example, sequence (9) and (10) differ only by their 
final word—places versus seats. These two words are both tagged as NNS, therefore the scores 
for (9) and (10) are the same. However, this lexical choice is obviously a problem of English 
language modeling, and we can hope that the synthesis part of the statistical translation model 
will make an intelligent decision between the two. 
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Table 3: 13-best translation hypotheses and their CMM scores 

1:      11.36     We will provide the aged an additional 5000 home and attention home places. 

PRP MD VB DT JJ DT J.I CD NN CC NN NN NNS. 

2:      11.93     We will provide old people in addition 5000 old people home and attention home places. 

PRP MD VB JJ NNS IN NN CD JJ NNS NN CC NN NN NNS. 

3:      11.98     We will for the old people increase 5000 old people homes and attention attention homes places . 

PRP MD IN DT JJ NNS NN CD JJ NNS NNS CC NN NN NNS NNS. 

4:      12.15     We will for the aged an additional 5000 home and attention attending home places . 

PRP MD IN DT JJ DT JJ CD NN CC NN VBG NN NNS. 

5:      12.22     We will for the aged add 5000 home and attention home places . 

PRP MD IN DT JJ VB CD NN CC NN NN NNS. 

6:      12.34     We will provide the aged additional 5000 home and attention home places. 

PRP MD VB DT JJ JJ CD NN CC NN NN NNS . 

7:      12.77     We will for the aged increase 5000 aged people home and caring and attention home places. 

PRP MD IN DT JJ NN CD VBN NNS NN CC NN CC NN NN NNS. 

8:      12.83     We will provide the aged an additional 5000 aged home and attention home places . 

PRP MD VB DT JJ DT JJ CD VBN NN CC NN NN NNS. 

9:      12.93     We will provide the aged increasing 5000 old people home and attention attention home places. 

PRP MD VB DT JJ NN CD JJ NNS NN CC NN NN NN NNS. 

10:    12.93     We will provide the aged increasing 5000 old people home and attention attention home seats . 

PRP MD VB DT JJ NN CD JJ NNS NN CC NN NN NN NNS. 

11:    13.12     We will provide the aged an additional 5000 the aged home and attention home places. 

PRP MD VB DT JJ DT JJ CD DT JJ NN CC NN NN NNS. 

12:    13.37     We will provide the aged adding 5000 aged home and attention home place . 

PRP MD VB DT JJ NN CD VBN NN CC NN NN NN. 

13:    13.40     We will for the aged addition 5000 home and caring attending old people home places. 

PRP MD IN DT JJ NN CD NN CC VBG VBG JJ NNS NN NNS. 
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6 Directions 

We now plan to investigate how to better model the null states. Since there are many null 
alignments of Chinese words to English, we would like to develop a more powerful model by 
looking at the classes of Chinese words that typically have null alignments or other patterns for 
these alignments. 

A single English POS class was used to represent a state in the CMM in our experiments. In 
the future, we hope to experiment with more complex Markov assumptions. Tri-POS models, for 
example, are widely used for monolingual language modeling, and we believe that their inclusion 
can render CMMs more powerful as well. 

Finally, we have employed predefined English POS classes for training our CMM. It would be 
interesting to investigate how different POS class definitions can affect the CMM's performance. 

7 Conclusion 

We have seen that the Coerced Markov Model is effective in modeling the relationship between 
the lexical sequence of a sentence in one language and part-of-speech sequence in its translated 
version. The model coerces the English tag sequence into modeling Chinese word sequence 
structure, and can be seen as a form of cross-lingual language modeling. 

We have formally specified the CMM states, transitions, and output symbols. A method 
was given for estimating its parameters from a word-aligned training corpus, corresponding to 
the solution to the first fundamental problem of CMMs. We have shown two applications to 
improving the statistical transfer model, corresponding to the solutions of fundamental problems 
(2) and (3) of CMMs: first, we showed that CMM can predict an English tag sequence given 
a Chinese sentence, providing tag constraints to the search of best English lexical sequence as 
translation; second, we showed that CMM scoring of a N-best list of translation hypotheses can 
help to select the best one. 
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